Localization Analysis of Natural Toxin of Solanum tuberosum L. via Mass Spectrometric Imaging

Authors

  • Riho Hashizaki Department of Bioscience, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
  • Hanaka Komori Department of Bioscience, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
  • Kohei Kazuma Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
  • Katsuhiro Konno Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan
  • Kyuichi Kawabata Department of Bioscience, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
  • Daisaku Kaneko Kyushu Institute of Technology, 1-1 Sensui, Tobata, Kitakyushu, Fukuoka, 804-0015, Japan
  • Hajime Katano Department of Bioscience, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan
  • Shu Taira Department of Bioscience, Fukui Prefectural University, Eiheiji, Fukui, 910-1195, Japan

DOI:

https://doi.org/10.6000/1927-3037.2016.05.01.1

Keywords:

Food safety, glycoalkaloid, mass spectrometry imaging, a-solanine, a-chaconine.

Abstract

The use of mass spectrometry imaging (MSI) revealed the localization of a-solanine and a-chaconine as natural toxins for Potato (Solanum tuberosum L.). The content of Potato glycoalkaloids, a-solanine and a-chaconine, were quantitatively determined by high performance liquid chromatography (HPLC). Matrix assisted laser desorption/ionization-based tandem mass spectrometry (MS) could determine a-solanine and a-chaconine from raw potato extraction and section. After budbreak, a-solanine and a-chaconine were produced and localized at periderm and germ compared with that before budbreak. At germ region, these glycoalkaloids did not exist whole germ region but eccentrically localize at germ surface and central region. The amount of a-chaconine was twofold higher than a-solanine at periderm. At germ region, there was no difference between these toxins.

References

Friedman M. Tomato Glycoalkaloids: Role in the Plant and in the Diet. J Agric Food Chem 2002; 50(21): 5751-80. http://dx.doi.org/10.1021/jf020560c

Fewell AM, Roddick JG. Potato glycoalkaloid impairment of fungal development. Mycological Research 1997; 101(5): 597-603. http://dx.doi.org/10.1017/S0953756296002973

Fewell AM, Roddick JG, Weissenberg M. The international journal of plant biochemistryInteractions between the glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth. Phytochemistry 1994; 37(4): 1007-11. http://dx.doi.org/10.1016/S0031-9422(00)89518-7

Bushway R, Savage S, Ferguson B. Inhibition of acetyl cholinesterase by solanaceous glycoalkaloids and alkaloids. American Potato Journal 1987; 64(8): 409-13. http://dx.doi.org/10.1007/BF02853703

Percival G. Light-induced glycoalkaloid accumulation of potato tubers (Solanum tuberosum L). J Sci Food Agric 1999; 79(10): 1305-10. http://dx.doi.org/10.1002/(SICI)1097-0010(19990715)79:10<1305::AID-JSFA368>3.0.CO;2-R

Conner HW. Effect of light on solanine synthesis in the potato tuber. Plant Physiol 1937; 12: 79-98. http://dx.doi.org/10.1104/pp.12.1.79

Ha M, Kwak JH, Kim Y, Zee OP. Direct analysis for the distribution of toxic glycoalkaloids in potato tuber tissue using matrix-assisted laser desorption/ionization mass spectrometric imaging. Food Chem 2012; 133(4): 1155-62. http://dx.doi.org/10.1016/j.foodchem.2011.11.114

Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 2001; 7(4): 493-6. http://dx.doi.org/10.1038/86573

Sugiura Y, Taguchi R, Setou M. Visualization of spatiotemporal energy dynamics of hippocampal neurons by mass spectrometry during a kainate-induced seizure. PLoS One 2011; 6(3): e17952. http://dx.doi.org/10.1371/journal.pone.0017952

Tsuyama N, Mizuno H, Masujima T. Mass Spectrometry for Cellular and Tissue Analyses in a Very Small Region. Anal Sci 2011; 27(2): 163. http://dx.doi.org/10.2116/analsci.27.163

Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y, Setou M. Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 2008; 80(12): 4761-6. http://dx.doi.org/10.1021/ac800081z

Zaima N, Goto-Inoue N, Hayasaka T, Setou M. Application of imaging mass spectrometry for the analysis of Oryza sativa rice. Rapid Commun Mass Spectrom 2010; 24(18): 2723-9. http://dx.doi.org/10.1002/rcm.4693

Taira S, Shimma S, Osaka I, Kaneko D, Ichiyanagi Y, Ikeda R, et al. Mass Spectrometry Imaging of the Capsaicin Localization in the Capsicum Fruits. Int J Biotechnol Wellness Ind 2012; 1(1): 61-5. http://dx.doi.org/10.6000/1927-3037.2012.01.01.04

Taira S, Hashimoto M, Saito K, Shido O. Visualization of decreased docosahexaenoic acid in the hippocampus of rats fed an n – 3 fatty acid-deficient diet by imaging mass spectrometry. J Biophys Chem 2012; 3: 221-6. http://dx.doi.org/10.4236/jbpc.2012.33025

Downloads

Published

2016-03-01

How to Cite

Hashizaki, R., Komori, H., Kazuma, K., Konno, K., Kawabata, K., Kaneko, D., Katano, H., & Taira, S. (2016). Localization Analysis of Natural Toxin of Solanum tuberosum L. via Mass Spectrometric Imaging. International Journal of Biotechnology for Wellness Industries, 5(1), 1–5. https://doi.org/10.6000/1927-3037.2016.05.01.1

Issue

Section

Articles