Recent Advances in Biodegradable Polymers

Authors

  • Sunil Dhamaniya Polymer Synthesis & Catalysis, Reliance Research & Development Centre, Reliance Industries Limited, Ghansoli 400701, Navi Mumbai, India
  • Virendrakumar Gupta Polymer Synthesis & Catalysis, Reliance Research & Development Centre, Reliance Industries Limited, Ghansoli 400701, Navi Mumbai, India
  • Rucha Kakatkar Department of Fibres & Textile Processing Technology, Institute of Chemical Technology, Mumbai, India

DOI:

https://doi.org/10.6000/1929-5995.2018.07.02.3

Keywords:

Biodegradable polymers, polymer blends, 3D printing, carbon dioxide, renewable resources.

Abstract

Biodegradable polymers are important as an alternative to conventional non-degradable polymers for sustainable eco-system. The recent trends indicate that the new developments in biodegradable polymers focus on novel polymer systems that can cater the need of biomedical and packaging applications in-terms of performance and economics. The new interest is rapidly moving toward reducing carbon footprint through utilization of carbon dioxide and developing new methods of manufacturing such as 3D printing for specific purposes. This review focus on the present state-of-art and recent developments in biodegradable polymers covering their sources, synthetic methodologies, salient properties, degradation patterns, polymer blends and nanocomposites. As well as biodegradable polymers as a 3D printing material and the use of carbon dioxide as a renewable raw material for biomedical and packaging applications.

References

Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in polymer science 2007; 32(8-9): 762-98. https://doi.org/10.1016/j.progpolymsci.2007.05.017 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017

Chandra RU. Biodegradable polymers. Progress in polymer science 1998; 23: 1273-335. https://doi.org/10.1016/S0079-6700(97)00039-7 DOI: https://doi.org/10.1016/S0079-6700(97)00039-7

Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in polymer science 2000; 25(10): 1503-55. https://doi.org/10.1016/S0079-6700(00)00035-6 DOI: https://doi.org/10.1016/S0079-6700(00)00035-6

Rai R, Tallawi M, Grigore A, Boccaccini AR. Synthesis, properties and biomedical applications of poly (glycerol sebacate)(PGS): a review. Progress in polymer science 2012; 37(8): 1051-78. https://doi.org/10.1016/j.progpolymsci.2012.02.001 DOI: https://doi.org/10.1016/j.progpolymsci.2012.02.001

Vert M. Polymeric biomaterials: strategies of the past vs. strategies of the future. Progress in Polymer Science 2007; 32(8-9): 755-61. https://doi.org/10.1016/j.progpolymsci.2007.05.006 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.006

Pasut G, Veronese FM. Polymer–drug conjugation, recent achievements and general strategies. Progress in polymer science 2007; 32(8-9): 933-61. https://doi.org/10.1016/j.progpolymsci.2007.05.008 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.008

Varma IK, Albertsson AC, Rajkhowa R, Srivastava RK. Enzyme catalyzed synthesis of polyesters. Progress in Polymer Science 2005; 30(10): 949-81. https://doi.org/10.1016/j.progpolymsci.2005.06.010

Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Progress in polymer science 2010; 35(3): 338-56. https://doi.org/10.1016/j.progpolymsci.2009.12.003 DOI: https://doi.org/10.1016/j.progpolymsci.2009.12.003

Okada M. Chemical syntheses of biodegradable polymers. Progress in polymer science 2002; 27(1): 87-133. https://doi.org/10.1016/S0079-6700(01)00039-9 DOI: https://doi.org/10.1016/S0079-6700(01)00039-9

Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Progress in polymer science 2006; 31(6): 576-602. https://doi.org/10.1016/j.progpolymsci.2006.03.002 DOI: https://doi.org/10.1016/j.progpolymsci.2006.03.002

Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Progress in polymer science 2002; 27(6): 1123-63. https://doi.org/10.1016/S0079-6700(02)00012-6 DOI: https://doi.org/10.1016/S0079-6700(02)00012-6

Fenouillot F, Rousseau A, Colomines G, Saint-Loup R, Pascault JP. Polymers from renewable 1, 4: 3, 6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review. Progress in Polymer Science 2010; 35(5): 578-622. https://doi.org/10.1016/j.progpolymsci.2009.10.001 DOI: https://doi.org/10.1016/j.progpolymsci.2009.10.001

Nishat N, Malik A. Biodegradable coordination polymer: Polycondensation of glutaraldehyde and starch in complex formation with transition metals Mn (II), Co (II), Ni (II), Cu (II) and Zn (II). Arabian Journal of Chemistry 2016; 9: S1824-32. DOI: https://doi.org/10.1016/j.arabjc.2012.05.002

Lima KO, Biduski B, da Silva WM, Ferreira SM, Montenegro LM, Dias AR, Bianchini D. Incorporation of tetraethylorthosilicate (TEOS) in biodegradable films based on bean starch (Phaseolus vulgaris). European Polymer Journal 2017; 89: 162-73. https://doi.org/10.1016/j.eurpolymj.2017.02.008 DOI: https://doi.org/10.1016/j.eurpolymj.2017.02.008

Mendes JF, Paschoalin RT, Carmona VB, Neto AR, Marques AC, Marconcini JM, Mattoso LH, Medeiros ES, Oliveira JE. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate polymers 2016; 137: 452-8. https://doi.org/10.1016/j.carbpol.2015.10.093 DOI: https://doi.org/10.1016/j.carbpol.2015.10.093

Gołacki K, Stropek Z, Kołodziej P, Gładyszewska B, Rejak A, Mościcki L, Boryga M. Studies on stress relaxation process in

biodegradable starch film. Agriculture and Agricultural Science Procedia 2015; 7: 80-6. https://doi.org/10.1016/j.aaspro.2015.12.038 DOI: https://doi.org/10.1016/j.aaspro.2015.12.038

Farah NH, Salmah H, Marliza M. Effect of butyl methacrylate on properties of regenerated cellulose coconut shell biocomposite films. Procedia Chemistry 2016; 19: 335-9. https://doi.org/10.1016/j.proche.2016.03.020 DOI: https://doi.org/10.1016/j.proche.2016.03.020

Zailuddin NL, Husseinsyah S. Tensile properties and morphology of oil palm empty fruit bunch regenerated cellulose biocomposite films. Procedia Chemistry 2016; 19: 366-72. https://doi.org/10.1016/j.proche.2016.03.025 DOI: https://doi.org/10.1016/j.proche.2016.03.025

Mostafa NA, Farag AA, Abo-dief HM, Tayeb AM. Production of biodegradable plastic from agricultural wastes. Arabian journal of chemistry 2015.

Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of colloid and interface science 2017; 505: 154-67. https://doi.org/10.1016/j.jcis.2017.05.106 DOI: https://doi.org/10.1016/j.jcis.2017.05.106

Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS. Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. InMacromolecular Symposia 2005 Apr (Vol. 224, No. 1, pp. 181-192). Weinheim: WILEY‐VCH Verlag. DOI: https://doi.org/10.1002/masy.200550616

Cuesta-Aluja L, Castilla J, Masdeu-Bultó AM, Henriques CA, Calvete MJ, Pereira MM. Halogenated meso-phenyl Mn (III) porphyrins as highly efficient catalysts for the synthesis of polycarbonates and cyclic carbonates using carbon dioxide and epoxides. Journal of Molecular Catalysis A: Chemical 2016; 423: 489-94. https://doi.org/10.1016/j.molcata.2015.10.025 DOI: https://doi.org/10.1016/j.molcata.2015.10.025

Lu XB, Liang B, Zhang YJ, Tian YZ, Wang YM, Bai CX, Wang H, Zhang R. Asymmetric catalysis with CO2: Direct synthesis of optically active propylene carbonate from racemic epoxides. Journal of the American Chemical Society 2004; 126(12): 3732-3. https://doi.org/10.1021/ja049734s DOI: https://doi.org/10.1021/ja049734s

Geschwind J, Wurm F, Frey H. From CO2‐Based Multifunctional Polycarbonates With a Controlled Number of Functional Groups to Graft Polymers. Macromolecular Chemistry and Physics 2013; 214(8): 892-901. https://doi.org/10.1002/macp.201200608 DOI: https://doi.org/10.1002/macp.201200608

Hilf J, Schulze P, Seiwert J, Frey H. Controlled Synthesis of Multi‐Arm Star Polyether–Polycarbonate Polyols Based on Propylene Oxide and CO2. Macromolecular rapid communications 2014; 35(2): 198-203. https://doi.org/10.1002/marc.201300663 DOI: https://doi.org/10.1002/marc.201300663

Liu Y, Deng K, Wang S, Xiao M, Han D, Meng Y. A novel biodegradable polymeric surfactant synthesized from carbon dioxide, maleic anhydride and propylene epoxide. Polymer Chemistry 2015; 6(11): 2076-83. https://doi.org/10.1039/C4PY01801J DOI: https://doi.org/10.1039/C4PY01801J

Tao J, Song C, Cao M, Hu D, Liu L, Liu N, Wang S. Thermal properties and degradability of poly (propylene carbonate)/ poly (β-hydroxybutyrate-co-β-hydroxyvalerate)(PPC/PHBV) blends. Polymer Degradation and Stability 2009; 94(4): 575-83. https://doi.org/10.1016/j.polymdegradstab.2009.01.017 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.01.017

Hwang Y, Jung J, Ree M, Kim H. Terpolymerization of CO2 with propylene oxide and ε-caprolactone using zinc glutarate catalyst. Macromolecules 2003; 36(22): 8210-2. https://doi.org/10.1021/ma034498b DOI: https://doi.org/10.1021/ma034498b

Sabantina L, Kinzel F, Ehrmann A, Finsterbusch K. Combining 3D printed forms with textile structures-mechanical and geometrical properties of multi-material systems. InIOP Conference Series: Materials Science and Engineering 2015 (Vol. 87, No. 1, p. 012005). IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/87/1/012005

Yuryev Y, Mohanty AK, Misra M. Hydrolytic stability of polycarbonate/poly (lactic acid) blends and its evaluation via poly (lactic) acid median melting point depression. Polymer Degradation and Stability 2016; 134: 227-36. https://doi.org/10.1016/j.polymdegradstab.2016.10.011 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.10.011

Holländer J, Genina N, Jukarainen H, Khajeheian M, Rosling A, Mäkilä E, Sandler N. Three-dimensional printed PCL-based implantable prototypes of medical devices for controlled drug delivery. Journal of pharmaceutical sciences 2016; 105(9): 2665-76. https://doi.org/10.1016/j.xphs.2015.12.012 DOI: https://doi.org/10.1016/j.xphs.2015.12.012

Kuang TR, Mi HY, Fu DJ, Jing X, Chen BY, Mou WJ, Peng XF. Fabrication of poly (lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Industrial & Engineering Chemistry Research 2015; 54(2): 758-68. https://doi.org/10.1021/ie503434q DOI: https://doi.org/10.1021/ie503434q

Zhou Y, Lei L, Yang B, Li J, Ren J. Preparation of PLA-based nanocomposites modified by nano-attapulgite with good toughness-strength balance. Polymer Testing 2017; 60: 78-83. https://doi.org/10.1016/j.polymertesting.2017.03.007 DOI: https://doi.org/10.1016/j.polymertesting.2017.03.007

Esmaeilzadeh J, Hesaraki S, Hadavi SM, Ebrahimzadeh MH, Esfandeh M. Poly (d/l) lactide/polycaprolactone/bioactive glasss nanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors. Materials Science and Engineering: C 2017; 77: 978-89. https://doi.org/10.1016/j.msec.2017.03.134 DOI: https://doi.org/10.1016/j.msec.2017.03.134

Seoane IT, Manfredi LB, Cyras VP. Properties and processing relationship of polyhydroxybutyrate and cellulose biocomposites. Procedia Materials Science 2015; 8: 807-13. https://doi.org/10.1016/j.mspro.2015.04.139 DOI: https://doi.org/10.1016/j.mspro.2015.04.139

Nishat N, Malik A. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn (II), Co (II), Ni (II), Cu (II), and Zn (II)] metals. Journal of Saudi Chemical Society 2016; 20: S7-15. https://doi.org/10.1016/j.jscs.2012.07.017 DOI: https://doi.org/10.1016/j.jscs.2012.07.017

Souza AC, Benze RF, Ferrão ES, Ditchfield C, Coelho AC, Tadini CC. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT-Food Science and Technology 2012; 46(1): 110-7. https://doi.org/10.1016/j.lwt.2011.10.018 DOI: https://doi.org/10.1016/j.lwt.2011.10.018

Li Y, Tan Y, Xu K, Lu C, Wang P. A biodegradable starch hydrogel synthesized via thiol-ene click chemistry. Polymer Degradation and Stability 2017; 137: 75-82. https://doi.org/10.1016/j.polymdegradstab.2016.07.015 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.07.015

Biduski B, da Silva FT, da Silva WM, El Halal SL, Pinto VZ, Dias AR, da Rosa Zavareze E. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food chemistry 2017; 214: 53-60. https://doi.org/10.1016/j.foodchem.2016.07.039 DOI: https://doi.org/10.1016/j.foodchem.2016.07.039

Arolkar GA, Salgo MJ, Kelkar-Mane V, Deshmukh RR. The study of air-plasma treatment on corn starch/poly (ε-caprolactone) films. Polymer Degradation and Stability 2015; 120: 262-72. https://doi.org/10.1016/j.polymdegradstab.2015.07.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.07.016

Brandelero RP, Grossmann MV, Yamashita F. Effect of the method of production of the blends on mechanical and structural properties of biodegradable starch films produced by blown extrusion. Carbohydrate Polymers 2011; 86(3): 1344-50. https://doi.org/10.1016/j.carbpol.2011.06.045 DOI: https://doi.org/10.1016/j.carbpol.2011.06.045

Andrade-Mahecha MM, Pelissari FM, Tapia-Blácido DR, Menegalli FC. Achira as a source of biodegradable materials: Isolation and characterization of nanofibers. Carbohydrate polymers 2015; 123: 406-15. https://doi.org/10.1016/j.carbpol.2015.01.027 DOI: https://doi.org/10.1016/j.carbpol.2015.01.027

Barari B, Pillai KM. Green composites made from cellulose nanofibers and bio-based epoxy: Processing, performance, and applications. In Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites 2017 (pp. 31-49). DOI: https://doi.org/10.1016/B978-0-08-100656-6.00003-0

Balakrishnan P, Sreekala MS, Kunaver M, Huskić M, Thomas S. Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate polymers 2017; 169: 176-88. https://doi.org/10.1016/j.carbpol.2017.04.017 DOI: https://doi.org/10.1016/j.carbpol.2017.04.017

Zhang CW, Li FY, Li JF, Wang LM, Xie Q, Xu J, Chen S. A new biodegradable composite with open cell by combining modified starch and plant fibers. Materials & Design 2017; 120: 222-9. https://doi.org/10.1016/j.matdes.2017.02.027 DOI: https://doi.org/10.1016/j.matdes.2017.02.027

Carothers WH. Studies on polymerization and ring formation. I. An introduction to the general theory of condensation polymers. Journal of the American Chemical Society 1929; 51(8): 2548-59. https://doi.org/10.1021/ja01383a041 DOI: https://doi.org/10.1021/ja01383a041

Bikiaris DN, Achilias DS. Synthesis of poly (alkylene succinate) biodegradable polyesters I. Mathematical modelling of the esterification reaction. Polymer 2006; 47(13): 4851-60. https://doi.org/10.1016/j.polymer.2006.04.044 DOI: https://doi.org/10.1016/j.polymer.2006.04.044

Bikiaris DN, Achilias DS. Synthesis of poly (alkylene succinate) biodegradable polyesters, Part II: Mathematical modelling of the polycondensation reaction. Polymer 2008; 49(17): 3677-85. https://doi.org/10.1016/j.polymer.2008.06.026 DOI: https://doi.org/10.1016/j.polymer.2008.06.026

Gümther B, Zachmann HG. Influence of molar mass and catalysts on the kinetics of crystallization and on the orientation of poly (ethylene terephthalate). Polymer 1983; 24(8): 1008-14. https://doi.org/10.1016/0032-3861(83)90152-0 DOI: https://doi.org/10.1016/0032-3861(83)90152-0

Tomita K, Ida H. Studies on the formation of poly (ethylene terephthalate): 2. Rate of transesterification of dimethyl terephthalate with ethylene glycol. Polymer 1973; 14(2): 55-60. https://doi.org/10.1016/0032-3861(73)90096-7 DOI: https://doi.org/10.1016/0032-3861(73)90096-7

Shah TH, Bhatty JI, Gamlen GA, Dollimore D. Aspects of the chemistry of poly (ethylene terephthalate): 5. Polymerization of bis (hydroxyethyl) terephthalate by various metallic catalysts. Polymer 1984; 25(9): 1333-6. https://doi.org/10.1016/0032-3861(84)90386-0 DOI: https://doi.org/10.1016/0032-3861(84)90386-0

Pang K, Kotek R, Tonelli A. Review of conventional and novel polymerization processes for polyesters. Progress in polymer science 2006; 31(11): 1009-37. https://doi.org/10.1016/j.progpolymsci.2006.08.008 DOI: https://doi.org/10.1016/j.progpolymsci.2006.08.008

Evtushenko YM, Krushevskii GA, Miroshnikov YP, Zaitsev BE, Konstant OD. Tetrabutoxytitanium adduct formation in esterification reactions. Theoretical Foundations of Chemical Engineering 2009; 43(5): 771. https://doi.org/10.1134/S0040579509050285 DOI: https://doi.org/10.1134/S0040579509050285

Deming TJ. Synthetic polypeptides for biomedical applications. Progress in Polymer Science 2007; 32(8-9): 858-75. https://doi.org/10.1016/j.progpolymsci.2007.05.010 DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.010

Yu M, Nowak AP, Deming TJ, Pochan DJ. Methylated mono-and diethyleneglycol functionalized polylysines: nonionic, α-helical, water-soluble polypeptides. Journal of the American Chemical Society 1999; 121(51): 12210-1. https://doi.org/10.1021/ja993637v DOI: https://doi.org/10.1021/ja993637v

Guo J, Huang Y, Jing X, Chen X. Synthesis and characterization of functional poly (γ-benzyl-l-glutamate)(PBLG) as a hydrophobic precursor. Polymer 2009; 50(13): 2847-55. https://doi.org/10.1016/j.polymer.2009.04.016 DOI: https://doi.org/10.1016/j.polymer.2009.04.016

Dhamaniya S, Jacob J. Synthesis and characterization of copolyesters based on tartaric acid derivatives. Polymer bulletin 2012; 68(5): 1287-304. https://doi.org/10.1007/s00289-011-0606-9 DOI: https://doi.org/10.1007/s00289-011-0606-9

Dhamaniya S, Jacob J. Synthesis and characterization of polyesters based on tartaric acid derivatives. Polymer 2010; 51(23): 5392-9. https://doi.org/10.1016/j.polymer.2010.09.034 DOI: https://doi.org/10.1016/j.polymer.2010.09.034

Feldmann J, Koebernick H, Richter K, Woelk HU, inventors; Unilever Bestfoods North America Inc, assignee. Process for recovering pure crystalline monoanhydrohexitols and dianhydrohexitols. United States patent US 4,564,692 1986 Jan 14.

Okada M, Okada Y, Tao A, Aoi K. Biodegradable polymers based on renewable resources: Polyesters composed of 1, 4: 3, 6‐dianhydrohexitol and aliphatic dicarboxylic acid units. Journal of applied polymer science 1996; 62(13): 2257-65. https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2257::AID-APP10>3.0.CO;2-0 DOI: https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2257::AID-APP10>3.0.CO;2-0

Okada M, Tsunoda K, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. IV. Enzymatic degradation of polyesters composed of 1, 4: 3.6‐dianhydro‐D‐glucitol and aliphatic dicarboxylic acid moieties. Journal of applied polymer science 2000; 77(2): 338-46. https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<338::AID-APP9>3.0.CO;2-C DOI: https://doi.org/10.1002/(SICI)1097-4628(20000711)77:2<338::AID-APP9>3.0.CO;2-C

Okada M, Aoi K. Biodegradable polymers from 1, 4: 3, 6-dianhydro-D-glucitol(Isosorbide) and its related compounds. Current Trends in Polymer Science 2002; 7: 57-70.

Braun D, Bergmann M. Polyesters with 1.4: 3.6‐dianhydrosorbitol as polymeric plasticizers for PVC. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 1992; 199(1): 191-205. https://doi.org/10.1002/apmc.1992.051990115 DOI: https://doi.org/10.1002/apmc.1992.051990115

Kricheldorf HR, Gomourachvili Z. Polyanhydrides 10. Aliphatic polyesters and poly (ester‐anhydride) s by polycondensation of silylated aliphatic diols. Macromolecular Chemistry and Physics 1997; 198(10): 3149-60. https://doi.org/10.1002/macp.1997.021981013 DOI: https://doi.org/10.1002/macp.1997.021981013

Kricheldorf HR, Masri MA. New polymer syntheses. LXXXII. Syntheses of poly (ether‐sulfone) s from silylated aliphatic diols including chiral monomers. Journal of Polymer Science Part A: Polymer Chemistry 1995; 33(15): 2667-71. https://doi.org/10.1002/pola.1995.080331513 DOI: https://doi.org/10.1002/pola.1995.080331513

Okada M, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. II. Synthesis and biodegradability of polyesters containing furan rings. Journal of Polymer Science Part A: Polymer Chemistry 1997; 35(13): 2729-37. https://doi.org/10.1002/(SICI)1099-0518(19970930)35:13<2729::AID-POLA18>3.0.CO;2-D DOI: https://doi.org/10.1002/(SICI)1099-0518(19970930)35:13<2729::AID-POLA18>3.0.CO;2-D

Okada M, Tachikawa K, Aoi K. Biodegradable polymers based on renewable resources. III. copolyesters composed of 1, 4: 3, 6‐dianhydro‐D‐glucitol, 1, 1‐bis (5‐carboxy‐2‐furyl) ethane and aliphatic dicarboxylic acid units. Journal of applied polymer science 1999; 74(14): 3342-50. https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3342::AID-APP7>3.0.CO;2-U DOI: https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3342::AID-APP7>3.0.CO;2-U

Vogt S, Larcher Y, Beer B, Wilke I, Schnabelrauch M. Fabrication of highly porous scaffold materials based on functionalized oligolactides and preliminary results on their use in bone tissue engineering. Eur Cell Mater 2002; 4: 30-8. https://doi.org/10.22203/eCM.v004a03 DOI: https://doi.org/10.22203/eCM.v004a03

Noordover BA, van Staalduinen VG, Duchateau R, Koning CE, van Benthem RA, Mak M, Heise A, Frissen AE, van Haveren J. Co-and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. Biomacromolecules 2006; 7(12): 3406-16. https://doi.org/10.1021/bm060713v DOI: https://doi.org/10.1021/bm060713v

Noordover, B.A.J.; Sablong, R.J.; Duchateau, R.; Benthem, R.A.T.M. van; Ming, W.; Konning, C.; Haveren, J. van Process for the production of a dianhydrohexitol based polyester WO. Pat 2008031592, 2008

Van Haveren J, Oostveen EA, Micciche F, Noordover BA, Koning CE, Van Benthem RA, Frissen AE, Weijnen JG. Resins and additives for powder coatings and alkyd paints, based on renewable resources. Journal of Coatings Technology and Research 2007; 4(2): 177-86. https://doi.org/10.1007/s11998-007-9020-5 DOI: https://doi.org/10.1007/s11998-007-9020-5

Okada M, Yamada M, Yokoe M, Aoi K. Biodegradable polymers based on renewable resources. V. Synthesis and biodegradation behavior of poly (ester amide) s composed of 1, 4: 3, 6‐dianhydro‐d‐glucitol, α‐amino acid, and aliphatic dicarboxylic acid units. Journal of applied polymer science 2001; 81(11): 2721-34. https://doi.org/10.1002/app.1718 DOI: https://doi.org/10.1002/app.1718

Gomurashvili Z, Kricheldorf HR, Katsarava R. Amino acid based bioanalogous polymers. Synthesis and study of new poly (ester amide) s composed of hydrophobic α-amino acids and dianhydrohexitoles 2000; 37: 215. DOI: https://doi.org/10.1081/MA-100101089

Okada M, Yokoe M, Aoi K. Biodegradable polymers based on renewable resources. VI. Synthesis and biodegradability of poly (ester carbonate) s containing 1, 4: 3, 6‐dianhydro‐d‐glucitol and sebacic acid units. Journal of applied polymer science 2002; 86(4): 872-80. https://doi.org/10.1002/app.10995

Kricheldorf HR, Sun SJ, Gerken A, Chang TC. Polymers of carbonic acid. 22. Cholesteric polycarbonates derived from (S)-((2-methylbutyl) thio) hydroquinone or isosorbide. Macromolecules 1996; 29(25): 8077-82. https://doi.org/10.1021/ma960494d DOI: https://doi.org/10.1021/ma960494d

Okada M, Yokoe M, Aoi K. Biodegradable polymers based on renewable resources. VI. Synthesis and biodegradability of poly (ester carbonate) s containing 1, 4: 3, 6‐dianhydro‐d‐glucitol and sebacic acid units. Journal of applied polymer science 2002; 86(4): 872-80. https://doi.org/10.1002/app.10995 DOI: https://doi.org/10.1002/app.10995

Yokoe M, Aoi K, Okada M. Biodegradable polymers based on renewable resources. VII. Novel random and alternating copolycarbonates from 1, 4: 3, 6‐dianhydrohexitols and aliphatic diols. Journal of Polymer Science Part A: Polymer Chemistry 2003; 41(15): 2312-21. https://doi.org/10.1002/pola.10772 DOI: https://doi.org/10.1002/pola.10772

Yokoe M, Aoi K, Okada M. Biodegradable polymers based on renewable resources VIII. Environmental and enzymatic degradability of copolycarbonates containing 1, 4: 3, 6‐dianhydrohexitols. Journal of applied polymer science 2005; 98(4): 1679-87. https://doi.org/10.1002/app.22339 DOI: https://doi.org/10.1002/app.22339

Yokoe M, Aoi K, Okada M. Biodegradable polymers based on renewable resources. IX. Synthesis and degradation behavior of polycarbonates based on 1, 4: 3, 6‐dianhydrohexitols and tartaric acid derivatives with pendant functional groups. Journal of Polymer Science Part A: Polymer Chemistry 2005; 43(17): 3909-19. https://doi.org/10.1002/pola.20830 DOI: https://doi.org/10.1002/pola.20830

Saiyasombat W, Molloy R, Nicholson TM, Johnson AF, Ward IM, Poshyachinda S. Ring strain and polymerizability of cyclic esters. Polymer 1998; 39(23): 5581-5. https://doi.org/10.1016/S0032-3861(97)10370-6 DOI: https://doi.org/10.1016/S0032-3861(97)10370-6

Williams CK. Synthesis of functionalized biodegradable polyesters. Chemical Society Reviews 2007; 36(10): 1573-80. https://doi.org/10.1039/b614342n DOI: https://doi.org/10.1039/b614342n

Kamber NE, Jeong W, Waymouth RM, Pratt RC, Lohmeijer BG, Hedrick JL. Organocatalytic ring-opening polymerization. Chemical reviews 2007; 107(12): 5813-40. https://doi.org/10.1021/cr068415b DOI: https://doi.org/10.1021/cr068415b

Robert JL, Aubrecht KB. Ring-opening polymerization of lactide to form a biodegradable polymer. Journal of chemical education 2008; 85(2): 258. https://doi.org/10.1021/ed085p258 DOI: https://doi.org/10.1021/ed085p258

Gupta AP, Kumar V. New emerging trends in synthetic biodegradable polymers–Polylactide: A critique. European polymer journal 2007; 43(10): 4053-74. https://doi.org/10.1016/j.eurpolymj.2007.06.045 DOI: https://doi.org/10.1016/j.eurpolymj.2007.06.045

Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 2003; 4(6): 1466-86. https://doi.org/10.1021/bm034247a DOI: https://doi.org/10.1021/bm034247a

Albertsson AC, Varma IK. Aliphatic polyesters: synthesis, properties and applications. InDegradable Aliphatic Polyesters 2002 (pp. 1-40). Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/3-540-45734-8_1

Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC. Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides. Polymer 2005; 46(23): 9784-92. https://doi.org/10.1016/j.polymer.2005.08.009 DOI: https://doi.org/10.1016/j.polymer.2005.08.009

Gowda RR, Chakraborty D. Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. Journal of Molecular Catalysis A: Chemical 2010; 333(1-2): 167-72. https://doi.org/10.1016/j.molcata.2010.10.013 DOI: https://doi.org/10.1016/j.molcata.2010.10.013

Umare PS, Tembe GL, Rao KV, Satpathy US, Trivedi B. Catalytic ring-opening polymerization of l-lactide by titanium biphenoxy-alkoxide initiators. Journal of Molecular Catalysis A: Chemical 2007; 268(1-2): 235-43. https://doi.org/10.1016/j.molcata.2006.12.028 DOI: https://doi.org/10.1016/j.molcata.2006.12.028

Kim E, Shin EW, Yoo IK, Chung JS. Characteristics of heterogeneous titanium alkoxide catalysts for ring-opening polymerization of lactide to produce polylactide. Journal of Molecular Catalysis A: Chemical 2009; 298(1-2): 36-9. https://doi.org/10.1016/j.molcata.2008.09.029 DOI: https://doi.org/10.1016/j.molcata.2008.09.029

Stolt M, Södergård A. Use of monocarboxylic iron derivatives in the ring-opening polymerization of L-lactide. Macromolecules 1999; 32(20): 6412-7. https://doi.org/10.1021/ma9902753 DOI: https://doi.org/10.1021/ma9902753

Deng X, Yuan M, Li X, Xiong C. Polymerization of lactides and lactones: VII. Ring-opening polymerization of lactide by rare earth phenyl compounds. European Polymer Journal 2000; 36(6): 1151-6. https://doi.org/10.1016/S0014-3057(99)00172-X DOI: https://doi.org/10.1016/S0014-3057(99)00172-X

Chisholm MH, Gallucci JC, Krempner C. Ring-opening polymerization of l-lactide by organotin (IV) alkoxides, R2Sn(OPr-i) 2: Estimation of the activation parameters. Polyhedron 2007; 26(15): 4436-44. https://doi.org/10.1016/j.poly.2007.06.002 DOI: https://doi.org/10.1016/j.poly.2007.06.002

Wu J, Pan X, Tang N, Lin CC. Synthesis, characterization of aluminum complexes and the application in ring-opening polymerization of l-lactide. European Polymer Journal 2007; 43(12): 5040-6. https://doi.org/10.1016/j.eurpolymj.2007.06.041 DOI: https://doi.org/10.1016/j.eurpolymj.2007.06.041

Kricheldorf HR, Kreiser-Saunders I, Stricker A. Polylactones 48. SnOct2-initiated polymerizations of lactide: a mechanistic study. Macromolecules 2000; 33(3): 702-9. https://doi.org/10.1021/ma991181w DOI: https://doi.org/10.1021/ma991181w

Kowalski A, Libiszowski J, Biela T, Cypryk M, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate. Polymerization of ε-caprolactone and L, L-Lactide co-initiated with primary amines. Macromolecules 2005; 38(20): 8170-6. https://doi.org/10.1021/ma050752j DOI: https://doi.org/10.1021/ma050752j

Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin (II) octoate. 3. Polymerization of L, L-dilactide. Macromolecules 2000; 33(20): 7359-70. https://doi.org/10.1021/ma000125o DOI: https://doi.org/10.1021/ma000125o

Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Progress in Polymer Science 2012; 37(2): 237-80. https://doi.org/10.1016/j.progpolymsci.2011.06.004 DOI: https://doi.org/10.1016/j.progpolymsci.2011.06.004

Kimura Y, Shirotani K, Yamane H, Kitao T. Ring-opening polymerization of 3 (S)-[(benzyloxycarbonyl) methyl]-1, 4-dioxane-2, 5-dione: a new route to a poly (. alpha.-hydroxy acid) with pendant carboxyl groups. Macromolecules 1988; 21(11): 3338-40. https://doi.org/10.1021/ma00189a037 DOI: https://doi.org/10.1021/ma00189a037

Trollsås M, Lee VY, Mecerreyes D, Löwenhielm P, Möller M, Miller RD, Hedrick JL. Hydrophilic aliphatic polyesters: design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 2000; 33(13): 4619-27. https://doi.org/10.1021/ma992161x DOI: https://doi.org/10.1021/ma992161x

Gerhardt WW, Noga DE, Hardcastle KI, Garcia AJ, Collard DM, Weck M. Functional lactide monomers: Methodology and polymerization. Biomacromolecules 2006; 7(6): 1735-42. https://doi.org/10.1021/bm060024j DOI: https://doi.org/10.1021/bm060024j

Tian D, Dubois P, Grandfils C, Jérôme R. Ring-opening polymerization of 1, 4, 8-trioxaspiro [4.6]-9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 1997; 30(3): 406-9. https://doi.org/10.1021/ma961631+ DOI: https://doi.org/10.1021/ma961631+

Tian D, Dubois P, Jérôme R. Macromolecular engineering of polylactones and polylactides. 22. Copolymerization of ε-caprolactone and 1, 4, 8-trioxaspiro [4.6]-9-undecanone initiated by aluminum isopropoxide. Macromolecules 1997; 30(9): 2575-81. https://doi.org/10.1021/ma961567w DOI: https://doi.org/10.1021/ma961567w

Tian D, Dubois P, Jérôme R. Macromolecular engineering of polylactones and polylactides. 23. Synthesis and characterization of biodegradable and biocompatible homopolymers and block copolymers based on 1, 4, 8-trioxa [4.6] spiro-9-undecanone. Macromolecules 1997; 30(7): 1947-54. https://doi.org/10.1021/ma961614k DOI: https://doi.org/10.1021/ma961614k

Tian D, Halleux O, Dubois P, Jérôme R, Sobry R, Van den Bossche G. Poly (2-oxepane-1, 5-dione): A highly crystalline modified poly (ε-caprolactone) of a high melting temperature. Macromolecules 1998; 31(3): 924-7. https://doi.org/10.1021/ma970903l DOI: https://doi.org/10.1021/ma970903l

Liu XQ, Wang MX, Li ZC, Li FM. Synthesis and ring‐opening polymerization of α‐chloromethyl‐α‐methyl‐β‐propiolactone. Macromolecular Chemistry and Physics 1999; 200(2): 468-73. https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<468::AID-MACP468>3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<468::AID-MACP468>3.0.CO;2-N

Mecerreyes D, Atthoff B, Boduch KA, Trollsås M, Hedrick JL. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules 1999; 32(16): 5175-82. https://doi.org/10.1021/ma982005a DOI: https://doi.org/10.1021/ma982005a

Al-Azemi TF, Bisht KS. Novel functional polycarbonate by lipase-catalyzed ring-opening polymerization of 5-methyl-5-benzyloxycarbonyl-1, 3-dioxan-2-one. Macromolecules 1999; 32(20): 6536-40. https://doi.org/10.1021/ma990639r DOI: https://doi.org/10.1021/ma990639r

Liu ZL, Zhou Y, Zhuo RX. Synthesis and properties of functional aliphatic polycarbonates. Journal of Polymer Science Part A: Polymer Chemistry 2003; 41(24): 4001-6. https://doi.org/10.1002/pola.11001 DOI: https://doi.org/10.1002/pola.11001

Sanda F, Kamatani J, Endo T. Synthesis and anionic ring-opening polymerization behavior of amino acid-derived cyclic carbonates. Macromolecules 2001; 34(6): 1564-9. https://doi.org/10.1021/ma0013307 DOI: https://doi.org/10.1021/ma0013307

Hu X, Chen X, Xie Z, Cheng H, Jing X. Aliphatic poly (ester‐carbonate) s bearing amino groups and its RGD peptide grafting. Journal of Polymer Science Part A: Polymer Chemistry 2008; 46(21): 7022-32. https://doi.org/10.1002/pola.23008 DOI: https://doi.org/10.1002/pola.23008

Lee RS, Yang JM, Lin TF. Novel, biodegradable, functional poly (ester‐carbonate) s by copolymerization of trans‐4‐hydroxy‐L‐proline with cyclic carbonate bearing a pendent carboxylic group. Journal of Polymer Science Part A: Polymer Chemistry 2004; 42(10): 2303-12. https://doi.org/10.1002/pola.20052 DOI: https://doi.org/10.1002/pola.20052

Wang XL, Zhuo RX, Liu LJ, He F, Liu G. Synthesis and characterization of novel aliphatic polycarbonates. Journal of Polymer Science Part A: Polymer Chemistry 2002; 40(1): 70-5. https://doi.org/10.1002/pola.10088 DOI: https://doi.org/10.1002/pola.10088

Yang J, Hao Q, Liu X, Ba C, Cao A. Novel biodegradable aliphatic poly (butylene succinate-co-cyclic carbonate)s with functionalizable carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization. Biomacromolecules 2004; 5(1): 209-18. https://doi.org/10.1021/bm0343242 DOI: https://doi.org/10.1021/bm0343242

Guan HL, Xie ZG, Zhang PB, Wang X, Chen XS, Wang XH, Jing XB. Synthesis and characterization of novel biodegradable block copolymer poly (ethylene glycol)‐ block‐poly (L‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylene carbonate). Journal of Polymer Science Part A: Polymer Chemistry 2005; 43(20): 4771-80. https://doi.org/10.1002/pola.20942 DOI: https://doi.org/10.1002/pola.20942

Xie Z, Hu X, Chen X, Sun J, Shi Q, Jing X. Synthesis and characterization of novel biodegradable poly (carbonate ester) s with photolabile protecting groups. Biomacromolecules 2007; 9(1): 376-80. https://doi.org/10.1021/bm700906k DOI: https://doi.org/10.1021/bm700906k

Hu X, Chen X, Cheng H, Jing X. Cinnamate‐functionalized poly (ester‐carbonate): Synthesis and its UV irradiation‐induced photo‐crosslinking. Journal of Polymer Science Part A: Polymer Chemistry 2009; 47(1): 161-9. https://doi.org/10.1002/pola.23134 DOI: https://doi.org/10.1002/pola.23134

Xie Z, Lu C, Chen X, Chen L, Wang Y, Hu X, Shi Q, Jing X. Synthesis and characterization of novel poly (ester carbonate) s based on pentaerythritol. Journal of Polymer Science Part A: Polymer Chemistry 2007; 45(9): 1737-45. https://doi.org/10.1002/pola.21941 DOI: https://doi.org/10.1002/pola.21941

Chen X, McCarthy SP, Gross RA. Synthesis, characterization, and epoxidation of an aliphatic polycarbonate from 2, 2-(2-pentene-1, 5-diyl) trimethylene carbonate (cHTC) ring-opening polymerization. Macromolecules 1997; 30(12): 3470-6. https://doi.org/10.1021/ma961821k DOI: https://doi.org/10.1021/ma961821k

Chen X, McCarthy SP, Gross RA. Synthesis, modification, and characterization of L-lactide/2, 2-[2-pentene-1, 5-diyl] trimethylene carbonate copolymers. Macromolecules 1998; 31(3): 662-8. https://doi.org/10.1021/ma971288o DOI: https://doi.org/10.1021/ma971288o

He F, Wang YP, Liu G, Jia HL, Feng J, Zhuo RX. Synthesis, characterization and ring-opening polymerization of a novel six-membered cyclic carbonate bearing pendent allyl ether group. Polymer 2008; 49(5): 1185-90. https://doi.org/10.1016/j.polymer.2008.01.025 DOI: https://doi.org/10.1016/j.polymer.2008.01.025

Cunningham A, Ko NR, Oh JK. Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids and Surfaces B: Biointerfaces 2014; 122: 693-700. https://doi.org/10.1016/j.colsurfb.2014.08.002 DOI: https://doi.org/10.1016/j.colsurfb.2014.08.002

Xu J, Luan S, Qin B, Wang Y, Wang K, Qi P, Song S. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery. Journal of Nanoparticle Research 2016; 18(11): 316. https://doi.org/10.1007/s11051-016-3626-4 DOI: https://doi.org/10.1007/s11051-016-3626-4

Petrova S, Venturini CG, Jäger A, Jäger E, Černoch P, Kereïche S, Kováčik L, Raška I, Štěpánek P. Novel thermo-responsive double-hydrophilic and hydrophobic MPEO-b-PEtOx-b-PCL triblock terpolymers: Synthesis, characterization and self-assembly studies. Polymer 2015; 59: 215-25. https://doi.org/10.1016/j.polymer.2015.01.009 DOI: https://doi.org/10.1016/j.polymer.2015.01.009

Xiong D, Yao N, Gu H, Wang J, Zhang L. Stimuli-responsive shell cross-linked micelles from amphiphilic four-arm star copolymers as potential nanocarriers for “pH/redox-triggered” anticancer drug release. Polymer 2017; 114: 161-72. https://doi.org/10.1016/j.polymer.2017.03.002 DOI: https://doi.org/10.1016/j.polymer.2017.03.002

Wang Y, Yang J, Yang J. Synthesis and self‐assembly of novel amphiphilic copolymers poly (lactic acid)‐block‐poly (ascorbyl acrylate). Journal of Polymer Science Part A: Polymer Chemistry 2011; 49(18): 3988-96. https://doi.org/10.1002/pola.24840 DOI: https://doi.org/10.1002/pola.24840

Guo Y, Liu J, Zhang K, Zhang H, Li Y, Lei Z. Synthesis of stimuli-responsive support material for pectinase immobilization and investigation of its controllable tailoring of enzymatic activity. Biochemical Engineering Journal 2017; 121: 188-95. https://doi.org/10.1016/j.bej.2017.02.010 DOI: https://doi.org/10.1016/j.bej.2017.02.010

Kim JK, Basavaraja C, Umashankar M. Effect of honeycomb-patterned structure on electrical and magnetic behaviors of poly (ɛ-caprolactone)/capped magnetic nanoparticle composite films. Polymer 2016; 87: 138-47. https://doi.org/10.1016/j.polymer.2016.01.052 DOI: https://doi.org/10.1016/j.polymer.2016.01.052

Mao L, Liu YJ, Bai YK, Wu HQ, Liu XC. Poly (ɛ‐caprolactone) nanocomposites with layered double hydroxides modified by in situ grafting polymerization: Structure characterization and barrier properties. Journal of Applied Polymer Science 2017; 134(38): 45320. https://doi.org/10.1002/app.45320 DOI: https://doi.org/10.1002/app.45320

Park JY, Male U, Huh D. Reversible change of wettability in poly (ɛ-caprolactone/azobenzene) honeycomb-patterned films by UV and visible light illumination. Polymer Bulletin 2017; 74(10): 4235-49. https://doi.org/10.1007/s00289-017-1948-8 DOI: https://doi.org/10.1007/s00289-017-1948-8

Yuan F, Gu Z, Li L, Sha L. Novel cerium (IV)-diolate complex with a 13-nuclear cerium (IV)-oxo core: Synthesis, molecular structure and catalytic property for ε-caprolactone-polymerization. Polyhedron 2017; 133: 393-7. https://doi.org/10.1016/j.poly.2017.06.001 DOI: https://doi.org/10.1016/j.poly.2017.06.001

Njogu EM, Omondi B, Nyamori VO. Silver (I)-pyridinyl Schiff base complexes: Synthesis, structural characterization and reactivity in ring-opening polymerisation of ε-caprolactone. Inorganica Chimica Acta 2017; 457: 160-70. https://doi.org/10.1016/j.ica.2016.12.019 DOI: https://doi.org/10.1016/j.ica.2016.12.019

Roymuhury SK, Chakraborty D, Ramkumar V. Aluminium complexes bearing N, O-aminophenol ligands as efficient catalysts for the ring opening polymerization of lactide. European Polymer Journal 2015; 70: 203-14. https://doi.org/10.1016/j.eurpolymj.2015.07.025 DOI: https://doi.org/10.1016/j.eurpolymj.2015.07.025

Rosen T, Goldberg I, Venditto V, Kol M. Tailor-made stereoblock copolymers of poly (lactic acid) by a truly living polymerization catalyst. Journal of the American Chemical Society 2016; 138(37): 12041-4. https://doi.org/10.1021/jacs.6b07287 DOI: https://doi.org/10.1021/jacs.6b07287

Phillips DJ, Gibson MI. Biodegradable poly (disulfide) s derived from RAFT polymerization: monomer scope, glutathione degradation, and tunable thermal responses. Biomacromolecules 2012; 13(10): 3200-8. https://doi.org/10.1021/bm300989s DOI: https://doi.org/10.1021/bm300989s

Gatti S, Agostini A, Ferrari R, Moscatelli D. Synthesis and nanoprecipitation of HEMA-CLn based polymers for the production of biodegradable nanoparticles. Polymers 2017; 9(9): 389. https://doi.org/10.3390/polym9090389 DOI: https://doi.org/10.3390/polym9090389

Hu K, Ou EC, Xu Q, Peng C, Li L, Bao L, Xiong YQ, Xu WJ. Light-responsive and biodegradable block polymer synthesized by RAFT polymerization and its potential drug carrier properties. Chemistry Letters 2016; 45(9): 1108-10. https://doi.org/10.1246/cl.160339 DOI: https://doi.org/10.1246/cl.160339

Sponchioni M, Ferrari R, Morosi L, Moscatelli D. Influence of the polymer structure over self‐assembly and thermo‐responsive properties: The case of PEG‐b‐PCL grafted copolymers via a combination of RAFT and ROP. Journal of Polymer Science Part A: Polymer Chemistry 2016; 54(18): 2919-31. https://doi.org/10.1002/pola.28177 DOI: https://doi.org/10.1002/pola.28177

Cui L, Wang R, Ji X, Hu M, Wang B, Liu J. Template-assisted synthesis of biodegradable and pH-responsive polymer capsules via RAFT polymerization for controlled drug release. Materials Chemistry and Physics 2014; 148(1-2): 87-95. https://doi.org/10.1016/j.matchemphys.2014.07.016 DOI: https://doi.org/10.1016/j.matchemphys.2014.07.016

Guégain E, Michel JP, Boissenot T, Nicolas J. Tunable Degradation of Copolymers Prepared by Nitroxide-Mediated Radical Ring-Opening Polymerization and Point-by-Point Comparison with Traditional Polyesters. Macromolecules 2018; 51(3): 724-36. https://doi.org/10.1021/acs.macromol.7b02655 DOI: https://doi.org/10.1021/acs.macromol.7b02655

Kukut M, Karal-Yilmaz O, Yagci Y. Synthesis, characterisation and drug release properties of microspheres of polystyrene with aliphatic polyester side-chains. Journal of microencapsulation 2014; 31(3): 254-61. https://doi.org/10.3109/02652048.2013.834993 DOI: https://doi.org/10.3109/02652048.2013.834993

Gross RA, Kumar A, Kalra B. Polymer synthesis by in vitro enzyme catalysis. Chemical Reviews 2001; 101(7): 2097-124. https://doi.org/10.1021/cr0002590 DOI: https://doi.org/10.1021/cr0002590

Varma IK, Albertsson AC, Rajkhowa R, Srivastava RK. Enzyme catalyzed synthesis of polyesters. Progress in Polymer Science 2005; 30(10): 949-81. https://doi.org/10.1016/j.progpolymsci.2005.06.010 DOI: https://doi.org/10.1016/j.progpolymsci.2005.06.010

Chaudhary AK, Beckman EJ, Russell AJ. Biocatalytic polyester synthesis: Analysis of the evolution of molecular weight and end group functionality. Biotechnology and bioengineering 1997; 55(1): 227-39. https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<227::AID-BIT23>3.0.CO;2-H DOI: https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<227::AID-BIT23>3.0.CO;2-H

Uyama H, Namekawa S, Kobayash S. Mechanistic studies on the lipase-catalyzed ring-opening polymerization of lactones. Polymer journal 1997; 29(3): 299. https://doi.org/10.1295/polymj.29.299 DOI: https://doi.org/10.1295/polymj.29.299

Namekawa S, Suda S, Uyama H, Kobayashi S. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects. International journal of biological macromolecules 1999; 25(1-3): 145-51. https://doi.org/10.1016/S0141-8130(99)00028-8 DOI: https://doi.org/10.1016/S0141-8130(99)00028-8

Kobayashi S, Uyama H, Namekawa S. In vitro biosynthesis of polyesters with isolated enzymes in aqueous systems and organic solvents. Polymer degradation and stability 1998; 59(1-3): 195-201. https://doi.org/10.1016/S0141-3910(97)00178-X DOI: https://doi.org/10.1016/S0141-3910(97)00178-X

Tsujimoto T, Uyama H, Kobayashi S. Enzymatic synthesis and curing of biodegradable crosslinkable polyesters. Macromolecular Bioscience 2002; 2(7): 329-35. https://doi.org/10.1002/1616-5195(200209)2:7<329::AID-MABI329>3.0.CO;2-H DOI: https://doi.org/10.1002/1616-5195(200209)2:7<329::AID-MABI329>3.0.CO;2-H

Mahapatro A, Kumar A, Gross RA. Mild, Solvent-Free ω-Hydroxy Acid Polycondensations Catalyzed by Candida a ntarctica Lipase B. Biomacromolecules 2004; 5(1): 62-8. https://doi.org/10.1021/bm0342382 DOI: https://doi.org/10.1021/bm0342382

Iwata S, Toshima K, Matsumura S. Enzyme‐catalyzed pre-paration of aliphatic polyesters containing thioester linkages. Macromolecular rapid communications 2003; 24(7): 467-71. https://doi.org/10.1002/marc.200390070 DOI: https://doi.org/10.1002/marc.200390070

Panova AA, Taktak S, Randriamahefa S, Cammas-Marion S, Guerin P, Kaplan DL. Polymerization of Propyl Malolactonate in the Presence of Candida r ugosa Lipase. Biomacromolecules 2003; 4(1): 19-27. https://doi.org/10.1021/bm0255746 DOI: https://doi.org/10.1021/bm0255746

Uyama H, Takeya K, Hoshi N, Kobayashi S. Lipase-catalyzed ring-opening polymerization of 12-dodecanolide. Macromolecules 1995; 28(21): 7046-50. https://doi.org/10.1021/ma00125a002 DOI: https://doi.org/10.1021/ma00125a002

Kumar A, Gross RA, Wang Y, Hillmyer MA. Recognition by lipases of ω-hydroxyl macroinitiators for diblock copolymer synthesis. Macromolecules 2002; 35(20): 7606-11. https://doi.org/10.1021/ma020060k DOI: https://doi.org/10.1021/ma020060k

Dong H, Cao SG, Li ZQ, Han SP, You DL, Shen JC. Study on the enzymatic polymerization mechanism of lactone and the strategy for improving the degree of polymerization. Journal of Polymer Science Part A: Polymer Chemistry 1999; 37(9): 1265-75. https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I DOI: https://doi.org/10.1002/(SICI)1099-0518(19990501)37:9<1265::AID-POLA6>3.0.CO;2-I

Deng F, Gross RA. Ring-opening bulk polymerization of ε-caprolactone and trimethylene carbonate catalyzed by lipase Novozym 435. International journal of biological macromolecules 1999; 25(1-3): 153-9. https://doi.org/10.1016/S0141-8130(99)00029-X DOI: https://doi.org/10.1016/S0141-8130(99)00029-X

Kumar A, Gross RA. Candida a ntartica Lipase B Catalyzed Polycaprolactone Synthesis: Effects of Organic Media and Temperature. Biomacromolecules 2000; 1(1): 133-8. https://doi.org/10.1021/bm990510p DOI: https://doi.org/10.1021/bm990510p

Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews 2011; 40(7): 3941-94. https://doi.org/10.1039/c0cs00108b DOI: https://doi.org/10.1039/c0cs00108b

Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromolecular rapid communications 2000; 21(3): 117-32. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X DOI: https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X

Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. From lactic acid to poly (lactic acid)(PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 2011; 12(3): 523-32. https://doi.org/10.1021/bm101302t DOI: https://doi.org/10.1021/bm101302t

Garlotta D. A literature review of poly (lactic acid). Journal of Polymers and the Environment 2001; 9(2): 63-84. https://doi.org/10.1023/A:1020200822435 DOI: https://doi.org/10.1023/A:1020200822435

Lim LT, Auras R, Rubino M. Processing technologies for poly (lactic acid). Progress in polymer science 2008; 33(8): 820-52. https://doi.org/10.1016/j.progpolymsci.2008.05.004 DOI: https://doi.org/10.1016/j.progpolymsci.2008.05.004

Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Progress in polymer science 2010; 35(10): 1217-56. https://doi.org/10.1016/j.progpolymsci.2010.04.002 DOI: https://doi.org/10.1016/j.progpolymsci.2010.04.002

Fujimaki T. Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer degradation and stability 1998; 59(1-3): 209-14. https://doi.org/10.1016/S0141-3910(97)00220-6 DOI: https://doi.org/10.1016/S0141-3910(97)00220-6

Nofar M, Heuzey MC, Carreau PJ, Kamal MR. Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 2016; 98: 353-64. https://doi.org/10.1016/j.polymer.2016.06.044 DOI: https://doi.org/10.1016/j.polymer.2016.06.044

Harun‐or‐Rashid MD, Rahaman S, Enamul Kabir S, Khan MA. Effect of hydrochloric acid on the properties of biodegradable packaging materials of carboxymethylcellulose/poly (vinyl alcohol) blends. Journal of Applied Polymer Science 2016; 133(2). DOI: https://doi.org/10.1002/app.42870

Fasihi H, Fazilati M, Hashemi M, Noshirvani N. Novel carboxymethyl cellulose-polyvinyl alcohol blend films stabilized by Pickering emulsion incorporation method. Carbohydrate polymers 2017; 167: 79-89. https://doi.org/10.1016/j.carbpol.2017.03.017 DOI: https://doi.org/10.1016/j.carbpol.2017.03.017

Chahal S, Hussain FS, Yusoff MB. Characterization of modified cellulose (MC)/poly (vinyl alcohol) electrospun nanofibers for bone tissue engineering. Procedia Engineering 2013; 53: 683-8. https://doi.org/10.1016/j.proeng.2013.02.088 DOI: https://doi.org/10.1016/j.proeng.2013.02.088

Hameed N, Xiong R, Salim NV, Guo Q. Fabrication and characterization of transparent and biodegradable cellulose/poly (vinyl alcohol) blend films using an ionic liquid. Cellulose 2013; 20(5): 2517-27. https://doi.org/10.1007/s10570-013-0017-1 DOI: https://doi.org/10.1007/s10570-013-0017-1

Qiu K, Netravali AN. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Composites Science and Technology 2012; 72(13): 1588-94. https://doi.org/10.1016/j.compscitech.2012.06.010 DOI: https://doi.org/10.1016/j.compscitech.2012.06.010

Guzman-Puyol S, Ceseracciu L, Heredia-Guerrero JA, Anyfantis GC, Cingolani R, Athanassiou A, Bayer IS. Effect of trifluoroacetic acid on the properties of polyvinyl alcohol and polyvinyl alcohol–cellulose composites. Chemical Engineering Journal 2015; 277: 242-51. https://doi.org/10.1016/j.cej.2015.04.092 DOI: https://doi.org/10.1016/j.cej.2015.04.092

Fortunati E, Benincasa P, Balestra GM, Luzi F, Mazzaglia A, Del Buono D, Puglia D, Torre L. Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Industrial Crops and Products 2016; 92: 201-17. https://doi.org/10.1016/j.indcrop.2016.07.047 DOI: https://doi.org/10.1016/j.indcrop.2016.07.047

Quintana R, Persenaire O, Lemmouchi Y, Bonnaud L, Dubois P. Compatibilization of co-plasticized cellulose acetate/water soluble polymers blends by reactive extrusion. Polymer Degradation and Stability 2016; 126: 31-8. https://doi.org/10.1016/j.polymdegradstab.2015.12.023 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.12.023

Cano AI, Cháfer M, Chiralt A, González-Martínez C. Biodegradation behavior of starch-PVA films as affected by the incorporation of different antimicrobials. Polymer Degradation and Stability 2016; 132: 11-20. https://doi.org/10.1016/j.polymdegradstab.2016.04.014 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.04.014

Wang HF, Su W, Zhang C, Luo XH, Feng J. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone. Biomacromolecules 2010; 11(10): 2550-7. https://doi.org/10.1021/bm1001476 DOI: https://doi.org/10.1021/bm1001476

Zhang X, Cai M, Zhong Z, Zhuo R. A water‐soluble polycarbonate with dimethylamino pendant groups prepared by enzyme‐catalyzed ring‐opening polymerization. Macromolecular rapid communications 2012; 33(8): 693-7. https://doi.org/10.1002/marc.201100765 DOI: https://doi.org/10.1002/marc.201100765

Zhou Q, Gu L, Gao Y, Qin Y, Wang X, Wang F. Biodegra-dable CO2‐based polycarbonates with rapid and reversible thermal response at body temperature. Journal of Polymer Science Part A: Polymer Chemistry 2013; 51(9): 1893-8. https://doi.org/10.1002/pola.26583 DOI: https://doi.org/10.1002/pola.26583

Lee JB, Lee YK, Choi GD, Na SW, Park TS, Kim WN. Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends. Polymer degradation and stability 2011; 96(4): 553-60. https://doi.org/10.1016/j.polymdegradstab.2010.12.019 DOI: https://doi.org/10.1016/j.polymdegradstab.2010.12.019

Niu Y, Zhang W, Li H, Chen X, Sun J, Zhuang X, Jing X. Carbon dioxide/propylene oxide coupling reaction catalyzed by chromium salen complexes. Polymer 2009; 50(2): 441-6. https://doi.org/10.1016/j.polymer.2008.11.008 DOI: https://doi.org/10.1016/j.polymer.2008.11.008

Liu S, Zhao X, Guo H, Qin Y, Wang X, Wang F. Construction of Well‐Defined Redox‐Responsive CO2‐Based Polycarbonates: Combination of Immortal Copolymerization and Prereaction Approach. Macromolecular rapid communications 2017; 38(9): 1600754. https://doi.org/10.1002/marc.201600754 DOI: https://doi.org/10.1002/marc.201600754

Chang C, Qin Y, Luo X, Li Y. Synthesis and process optimization of soybean oil-based terminal epoxides for the production of new biodegradable polycarbonates via the intergration of CO2. Industrial crops and products 2017; 99: 34-40. https://doi.org/10.1016/j.indcrop.2017.01.032 DOI: https://doi.org/10.1016/j.indcrop.2017.01.032

Song P, Mao X, Zhang X, Zhu X, Wang R. A one-step strategy for cross-linkable aliphatic polycarbonates with high degradability derived from CO 2, propylene oxide and itaconic anhydride. RSC Advances 2014; 4(30): 15602-5. https://doi.org/10.1039/C4RA01514B DOI: https://doi.org/10.1039/C4RA01514B

Liu S, Wang J, Huang K, Liu Y, Wu W. Synthesis of poly (propylene-co-lactide carbonate) and hydrolysis of the terpolymer. Polymer bulletin 2011; 66(3): 327-40. https://doi.org/10.1007/s00289-010-0283-0 DOI: https://doi.org/10.1007/s00289-010-0283-0

Zhuang Y, Song W, Ning G, Sun X, Sun Z, Xu G, Zhang B, Chen Y, Tao S. 3D–printing of materials with anisotropic heat distribution using conductive polylactic acid composites. Materials & Design 2017; 126: 135-40. https://doi.org/10.1016/j.matdes.2017.04.047 DOI: https://doi.org/10.1016/j.matdes.2017.04.047

Tian X, Liu T, Yang C, Wang Q, Li D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Composites Part A: Applied Science and Manufacturing 2016; 88: 198-205. https://doi.org/10.1016/j.compositesa.2016.05.032 DOI: https://doi.org/10.1016/j.compositesa.2016.05.032

Ronca D, Langella F, Chierchia M, D’Amora U, Russo T, Domingos M, Gloria A, Bartolo P, Ambrosio L. Bone tissue engineering: 3D PCL-based nanocomposite scaffolds with tailored properties. Procedia CIRP 2016; 49: 51-4. https://doi.org/10.1016/j.procir.2015.07.028 DOI: https://doi.org/10.1016/j.procir.2015.07.028

Pei E, Shen J, Watling J. Direct 3D printing of polymers onto textiles: experimental studies and applications. Rapid Prototyping Journal 2015; 21(5): 556-71. https://doi.org/10.1108/RPJ-09-2014-0126 DOI: https://doi.org/10.1108/RPJ-09-2014-0126

Zhang B, Seong B, Nguyen V, Byun D. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. Journal of Micromechanics and Microengineering 2016; 26(2): 025015. https://doi.org/10.1088/0960-1317/26/2/025015 DOI: https://doi.org/10.1088/0960-1317/26/2/025015

Wang M, Favi P, Cheng X, Golshan NH, Ziemer KS, Keidar M, Webster TJ. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Acta biomaterialia 2016; 46: 256-65. https://doi.org/10.1016/j.actbio.2016.09.030 DOI: https://doi.org/10.1016/j.actbio.2016.09.030

Bustillos J, Montero D, Nautiyal P, Loganathan A, Boesl B, Agarwal A. Integration of graphene in poly (lactic) acid by 3D printing to develop creep and wear‐resistant hierarchical nanocomposites. Polymer Composites 2017. https://doi.org/10.1002/pc.24422 DOI: https://doi.org/10.1002/pc.24422

Sanatgar RH, Campagne C, Nierstrasz V. Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters. Applied Surface Science 2017; 403: 551-63. https://doi.org/10.1016/j.apsusc.2017.01.112 DOI: https://doi.org/10.1016/j.apsusc.2017.01.112

Dong J, Li M, Zhou L, Lee S, Mei C, Xu X, Wu Q. The influence of grafted cellulose nanofibers and postextrusion annealing treatment on selected properties of poly (lactic acid) filaments for 3D printing. Journal of Polymer Science Part B: Polymer Physics 2017; 55(11): 847-55. https://doi.org/10.1002/polb.24333 DOI: https://doi.org/10.1002/polb.24333

Su CK, Chen JC. Reusable, 3D-printed, peroxidase mimic–incorporating multi-well plate for high-throughput glucose

determination. Sensors and Actuators B: Chemical 2017; 247: 641-7. https://doi.org/10.1016/j.snb.2017.03.054 DOI: https://doi.org/10.1016/j.snb.2017.03.054

Guo Y, Chang CC, Halada G, Cuiffo MA, Xue Y, Zuo X, Pack S, Zhang L, He S, Weil E, Rafailovich MH. Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing. Polymer Degradation and Stability 2017; 137: 205-15. https://doi.org/10.1016/j.polymdegradstab.2017.01.019 DOI: https://doi.org/10.1016/j.polymdegradstab.2017.01.019

Mendoza-Buenrostro C, Lara H, Rodriguez C. Hybrid fabrication of a 3D printed geometry embedded with PCL nanofibers for tissue engineering applications. Procedia Engineering 2015; 110: 128-34. https://doi.org/10.1016/j.proeng.2015.07.020 DOI: https://doi.org/10.1016/j.proeng.2015.07.020

Muwaffak Z, Goyanes A, Clark V, Basit AW, Hilton ST, Gaisford S. Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Inter-national journal of pharmaceutics 2017; 527(1-2): 161-70. https://doi.org/10.1016/j.ijpharm.2017.04.077 DOI: https://doi.org/10.1016/j.ijpharm.2017.04.077

Wu CS, Liao HT, Cai YX. Characterisation, biodegradability and application of palm fibre-reinforced polyhydroxyalkanoate composites. Polymer Degradation and Stability 2017; 140: 55-63. https://doi.org/10.1016/j.polymdegradstab.2017.04.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2017.04.016

Kelnar I, Kratochvíl J, Kaprálková L, Zhigunov A, Nevoralová M. Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the mechanical behavior of biomedical materials 2017; 71: 271-8. https://doi.org/10.1016/j.jmbbm.2017.03.028 DOI: https://doi.org/10.1016/j.jmbbm.2017.03.028

Malinowski R. Mechanical properties of PLA/PCL blends crosslinked by electron beam and TAIC additive. Chemical Physics Letters 2016; 662: 91-6. https://doi.org/10.1016/j.cplett.2016.09.022 DOI: https://doi.org/10.1016/j.cplett.2016.09.022

Ostafinska A, Fortelný I, Hodan J, Krejčíková S, Nevoralová M, Kredatusová J, Kruliš Z, Kotek J, Šlouf M. Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity. Journal of the mechanical behavior of biomedical materials 2017; 69: 229-41. https://doi.org/10.1016/j.jmbbm.2017.01.015 DOI: https://doi.org/10.1016/j.jmbbm.2017.01.015

Wachirahuttapong S, Thongpin C, Sombatsompop N. Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia 2016; 89: 198-206. https://doi.org/10.1016/j.egypro.2016.05.026 DOI: https://doi.org/10.1016/j.egypro.2016.05.026

Navarro-Baena I, Sessini V, Dominici F, Torre L, Kenny JM, Peponi L. Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polymer Degradation and Stability 2016; 132: 97-108. https://doi.org/10.1016/j.polymdegradstab.2016.03.037 DOI: https://doi.org/10.1016/j.polymdegradstab.2016.03.037

Mofokeng JP, Luyt AS. Dynamic mechanical properties of PLA/PHBV, PLA/PCL, PHBV/PCL blends and their nanocomposites with TiO2 as nanofiller. Thermochimica Acta 2015; 613: 41-53. https://doi.org/10.1016/j.tca.2015.05.019 DOI: https://doi.org/10.1016/j.tca.2015.05.019

Li L, Huang W, Wang B, Wei W, Gu Q, Chen P. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PLA/PHBV) blend fibers. Polymer 2015; 68: 183-94. https://doi.org/10.1016/j.polymer.2015.05.024 DOI: https://doi.org/10.1016/j.polymer.2015.05.024

Xu Z, Chai X. Effect of weight ratios of PHBV/PLA polymer blends on nitrate removal efficiency and microbial community during solid-phase denitrification. International Biodeterioration & Biodegradation 2017; 116: 175-83. https://doi.org/10.1016/j.ibiod.2016.10.033 DOI: https://doi.org/10.1016/j.ibiod.2016.10.033

Yang J, Zhu H, Zhang C, Jiang Q, Zhao Y, Chen P, Wang D. Transesterification induced mechanical properties enhan-cement of PLLA/PHBV bio-alloy. Polymer 2016; 83: 230-8. https://doi.org/10.1016/j.polymer.2015.12.025 DOI: https://doi.org/10.1016/j.polymer.2015.12.025

Zembouai I, Kaci M, Bruzaud S, Dumazert L, Bourmaud A, Mahlous M, Lopez-Cuesta JM, Grohens Y. Gamma irradiation effects on morphology and properties of PHBV/PLA blends in presence of compatibilizer and Cloisite 30B. Polymer Testing 2016; 49: 29-37. https://doi.org/10.1016/j.polymertesting.2015.11.003 DOI: https://doi.org/10.1016/j.polymertesting.2015.11.003

Arrieta MP, Fortunati E, Dominici F, López J, Kenny JM. Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate polymers 2015; 121: 265-75. https://doi.org/10.1016/j.carbpol.2014.12.056 DOI: https://doi.org/10.1016/j.carbpol.2014.12.056

Arrieta MP, López J, López D, Kenny JM, Peponi L. Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products 2016; 93: 290-301. https://doi.org/10.1016/j.indcrop.2015.12.058 DOI: https://doi.org/10.1016/j.indcrop.2015.12.058

Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E. Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability 2012; 97(9): 1822-8. https://doi.org/10.1016/j.polymdegradstab.2012.05.036 DOI: https://doi.org/10.1016/j.polymdegradstab.2012.05.036

Nicosia A, Gieparda W, Foksowicz-Flaczyk J, Walentowska J, Wesołek D, Vazquez B, Prodi F, Belosi F. Air filtration and antimicrobial capabilities of electrospun PLA/PHB containing ionic liquid. Separation and Purification Technology 2015; 154: 154-60. https://doi.org/10.1016/j.seppur.2015.09.037 DOI: https://doi.org/10.1016/j.seppur.2015.09.037

Armentano I, Fortunati E, Burgos N, Dominici F, Luzi F, Fiori S, Jiménez A, Yoon K, Ahn J, Kang S, Kenny JM. Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters 2015; 9(7). https://doi.org/10.3144/expresspolymlett.2015.55 DOI: https://doi.org/10.3144/expresspolymlett.2015.55

Wang LF, Rhim JW, Hong SI. Preparation of poly (lactide)/poly (butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT-Food Science and Technology 2016; 68: 454-61. https://doi.org/10.1016/j.lwt.2015.12.062 DOI: https://doi.org/10.1016/j.lwt.2015.12.062

Lu X, Zhao J, Yang X, Xiao P. Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio. Polymer Testing 2017; 60: 58-67. https://doi.org/10.1016/j.polymertesting.2017.03.008 DOI: https://doi.org/10.1016/j.polymertesting.2017.03.008

Arruda LC, Magaton M, Bretas RE, Ueki MM. Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polymer Testing 2015; 43: 27-37. https://doi.org/10.1016/j.polymertesting.2015.02.005 DOI: https://doi.org/10.1016/j.polymertesting.2015.02.005

Al-Itry R, Lamnawar K, Maazouz A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability 2012; 97(10): 1898-914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028 DOI: https://doi.org/10.1016/j.polymdegradstab.2012.06.028

Müller P, Bere J, Fekete E, Móczó J, Nagy B, Kállay M, Gya-rmati B, Pukánszky B. Interactions, structure and properties in PLA/plasticized starch blends. Polymer 2016; 103: 9-18. https://doi.org/10.1016/j.polymer.2016.09.031 DOI: https://doi.org/10.1016/j.polymer.2016.09.031

Shirai MA, Grossmann MV, Mali S, Yamashita F, Garcia PS, Müller CM. Development of biodegradable flexible films of starch and poly (lactic acid) plasticized with adipate or citrate esters. Carbohydrate polymers 2013; 92(1): 19-22. https://doi.org/10.1016/j.carbpol.2012.09.038 DOI: https://doi.org/10.1016/j.carbpol.2012.09.038

Quintana R, Persenaire O, Lemmouchi Y, Bonnaud L, Dubois P. Grafted d/l-lactide to cellulose acetate by reactive melt processing: Its role as CA/PLA blend compatibilizer. European Polymer Journal 2014; 57: 30-6. https://doi.org/10.1016/j.eurpolymj.2014.05.003 DOI: https://doi.org/10.1016/j.eurpolymj.2014.05.003

Wang S, Li Y, Xiang H, Zhou Z, Chang T, Zhu M. Low cost carbon fibers from bio-renewable lignin/poly (lactic acid)(PLA) blends. Composites Science and Technology 2015; 119: 20-5. https://doi.org/10.1016/j.compscitech.2015.09.021 DOI: https://doi.org/10.1016/j.compscitech.2015.09.021

Shen Z, Zhou Y, Liu J, Xiao Y, Cao R, Wu F. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland. Bioresource technology 2015; 175: 239-44. https://doi.org/10.1016/j.biortech.2014.10.006 DOI: https://doi.org/10.1016/j.biortech.2014.10.006

Figueiredo AR, Silvestre AJ, Neto CP, Freire CS. In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production. Carbohydrate polymers 2015; 132: 400-8. https://doi.org/10.1016/j.carbpol.2015.06.001 DOI: https://doi.org/10.1016/j.carbpol.2015.06.001

Goonoo N, Bhaw-Luximon A, Passanha P, Esteves S, Schönherr H, Jhurry D. Biomineralization potential and cellular response of PHB and PHBV blends with natural anionic polysaccharides. Materials Science and Engineering: C 2017; 76: 13-24. https://doi.org/10.1016/j.msec.2017.02.156 DOI: https://doi.org/10.1016/j.msec.2017.02.156

Torres-Huerta AM, Palma-Ramírez D, Dominguez-Crespo MA, Del Angel-López D, De La Fuente D. Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal 2014; 61: 285-99. https://doi.org/10.1016/j.eurpolymj.2014.10.016 DOI: https://doi.org/10.1016/j.eurpolymj.2014.10.016

Madkour TM, Fadl S, Dardir MM, Mekewi MA. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids. Egyptian Journal of Petroleum 2016; 25(2): 281-91. https://doi.org/10.1016/j.ejpe.2015.09.004 DOI: https://doi.org/10.1016/j.ejpe.2015.09.004

Amirian M, Chakoli AN, Cai W, Sui J. Effect of functionalized multiwalled carbon nanotubes on thermal stability of poly (L-LACTIDE) biodegradable polymer. Scientia Iranica 2013; 20(3): 1023-7.

Sankar R, Shivashangari KS, Ravikumar V. Integrated poly-D, L-lactide-co-glycolide/silver nanocomposite: synthesis, characterization and wound healing potential in Wistar Albino rats. RSC Advances 2016; 6(27): 22728-36. https://doi.org/10.1039/C5RA23212K DOI: https://doi.org/10.1039/C5RA23212K

Herrera N, Roch H, Salaberria AM, Pino-Orellana MA, Labidi J, Fernandes SC, Radic D, Leiva A, Oksman K. Functionalized blown films of plasticized polylactic acid/chitin nanocomposite: Preparation and characterization. Materials & Design 2016; 92: 846-52. https://doi.org/10.1016/j.matdes.2015.12.083 DOI: https://doi.org/10.1016/j.matdes.2015.12.083

Samberg ME, Mente P, He T, King MW, Monteiro-Riviere NA. In vitro biocompatibility and antibacterial efficacy of a degradable poly (L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles. Annals of biomedical engineering 2014; 42(7): 1482-93. https://doi.org/10.1007/s10439-013-0929-9 DOI: https://doi.org/10.1007/s10439-013-0929-9

Moeini S, Mohammadi MR, Simchi A. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering. Bioactive materials 2017; 2(3): 146-55. https://doi.org/10.1016/j.bioactmat.2017.04.004 DOI: https://doi.org/10.1016/j.bioactmat.2017.04.004

Guarás MP, Alvarez VA, Ludueña LN. Biodegradable nanocomposites based on starch/polycaprolactone/ compatibilizer ternary blends reinforced with natural and organo‐modified montmorillonite. Journal of Applied Polymer Science 2016; 133(44). https://doi.org/10.1002/app.44163 DOI: https://doi.org/10.1002/app.44163

da Costa Reis DC, de Oliveira TA, de Carvalho LH, Soares Alves T, Barbosa R. Biodegradability of and interaction in the packaging of poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)–vermiculite bionanocomposites. Journal of Applied Polymer Science 2017; 134(15). https://doi.org/10.1002/app.44700 DOI: https://doi.org/10.1002/app.44700

Gumel AM, Annuar MS, Ishak KA, Ahmad N. Carbon nanofibers-poly-3-hydroxyalkanoates nanocomposite: ultrasound-assisted dispersion and thermostructural properties. Journal of Nanomaterials 2014; 2014: 123. https://doi.org/10.1155/2014/264206 DOI: https://doi.org/10.1155/2014/264206

Ahmadizadegan H. Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. Journal of colloid and interface science 2017; 491: 390-400. https://doi.org/10.1016/j.jcis.2016.11.043 DOI: https://doi.org/10.1016/j.jcis.2016.11.043

Winzenburg G, Schmidt C, Fuchs S, Kissel T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Advanced drug delivery reviews 2004; 56(10): 1453-66. https://doi.org/10.1016/j.addr.2004.02.008 DOI: https://doi.org/10.1016/j.addr.2004.02.008

von Burkersroda F, Schedl L, Göpferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002; 23(21): 4221-31. https://doi.org/10.1016/S0142-9612(02)00170-9 DOI: https://doi.org/10.1016/S0142-9612(02)00170-9

Tokiwa Y, Calabia BP. Biodegradability and biodegradation of polyesters. Journal of Polymers and the Environment 2007; 15(4): 259-67. https://doi.org/10.1007/s10924-007-0066-3 DOI: https://doi.org/10.1007/s10924-007-0066-3

Henton DE, Gruber P, Lunt J, Randall J. Polylactic acid technology. Natural fibers, biopolymers, and biocomposites 2005; 16: 527-77. https://doi.org/10.1201/9780203508206.ch16 DOI: https://doi.org/10.1201/9780203508206.ch16

Siepmann J, Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Advanced drug delivery reviews 2001; 48(2-3): 229-47. https://doi.org/10.1016/S0169-409X(01)00116-8 DOI: https://doi.org/10.1016/S0169-409X(01)00116-8

Elsawy MA, Kim KH, Park JW, Deep A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews 2017; 79: 1346-52. https://doi.org/10.1016/j.rser.2017.05.143 DOI: https://doi.org/10.1016/j.rser.2017.05.143

Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnology advances 2008; 26(3): 246-65. https://doi.org/10.1016/j.biotechadv.2007.12.005 DOI: https://doi.org/10.1016/j.biotechadv.2007.12.005

Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE. Polymer biodegradation: Mechanisms and estimation techniques–A review. Chemosphere 2008; 73(4): 429-42. https://doi.org/10.1016/j.chemosphere.2008.06.064 DOI: https://doi.org/10.1016/j.chemosphere.2008.06.064

Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials 1996; 17(2): 103-14. https://doi.org/10.1016/0142-9612(96)85755-3 DOI: https://doi.org/10.1016/0142-9612(96)85755-3

Rizzarelli P, Puglisi C, Montaudo G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters. Polymer degradation and stability 2004; 85(2): 855-63. https://doi.org/10.1016/j.polymdegradstab.2004.03.022 DOI: https://doi.org/10.1016/j.polymdegradstab.2004.03.022

Kijchavengkul T, Auras R, Rubino M, Alvarado E, Montero JR, Rosales JM. Atmospheric and soil degradation of aliphatic–aromatic polyester films. Polymer Degradation and Stability 2010; 95(2): 99-107. https://doi.org/10.1016/j.polymdegradstab.2009.11.048 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.11.048

Augusta J, Müller RJ, Widdecke H. A rapid evaluation plate-test for the biodegradability of plastics. Applied microbiology and biotechnology 1993; 39(4-5): 673-8. https://doi.org/10.1007/BF00205073 DOI: https://doi.org/10.1007/BF00205073

Luzi F, Fortunati E, Puglia D, Petrucci R, Kenny JM, Torre L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polymer Degradation and Stability 2015; 121: 105-15. https://doi.org/10.1016/j.polymdegradstab.2015.08.016 DOI: https://doi.org/10.1016/j.polymdegradstab.2015.08.016

Pelegrini K, Donazzolo I, Brambilla V, Coulon Grisa AM, Piazza D, Zattera AJ, Brandalise RN. Degradation of PLA and PLA in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. Journal of Applied Polymer Science 2016; 133(15). https://doi.org/10.1002/app.43290 DOI: https://doi.org/10.1002/app.43290

Zhao C, Wu H, Ni J, Zhang S, Zhang X. Development of PLA/Mg composite for orthopedic implant: Tunable degradation and enhanced mineralization. Composites Science and Technology 2017; 147: 8-15. https://doi.org/10.1016/j.compscitech.2017.04.037 DOI: https://doi.org/10.1016/j.compscitech.2017.04.037

Breche Q, Chagnon G, Machado G, Girard E, Nottelet B, Garric X, Favier D. Mechanical behaviour׳ s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation. Journal of the mechanical behavior of biomedical materials 2016; 60: 288-300. https://doi.org/10.1016/j.jmbbm.2016.02.015 DOI: https://doi.org/10.1016/j.jmbbm.2016.02.015

Huang Y, Zhang C, Pan Y, Zhou Y, Jiang L, Dan Y. Effect of NR on the hydrolytic degradation of PLA. Polymer degradation and stability 2013; 98(5): 943-50. https://doi.org/10.1016/j.polymdegradstab.2013.02.018 DOI: https://doi.org/10.1016/j.polymdegradstab.2013.02.018

Rocca-Smith JR, Chau N, Champion D, Brachais CH, Marcuzzo E, Sensidoni A, Piasente F, Karbowiak T, Debe-aufort F. Effect of the state of water and relative humidity on ageing of PLA films. Food Chemistry 2017; 236: 109-19. https://doi.org/10.1016/j.foodchem.2017.02.113 DOI: https://doi.org/10.1016/j.foodchem.2017.02.113

Iniguez-Franco F, Auras R, Burgess G, Holmes D, Fang X, Rubino M, Soto-Valdez H. Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 2016; 99: 315-23. https://doi.org/10.1016/j.polymer.2016.07.018 DOI: https://doi.org/10.1016/j.polymer.2016.07.018

Karamanlioglu M, Robson GD. The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polymer degradation and stability 2013; 98(10): 2063-71. https://doi.org/10.1016/j.polymdegradstab.2013.07.004 DOI: https://doi.org/10.1016/j.polymdegradstab.2013.07.004

Karamanlioglu M, Houlden A, Robson GD. Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly (lactic) acid (PLA) in soil and compost. International Biodeterioration & Biodegradation 2014; 95: 301-10. https://doi.org/10.1016/j.ibiod.2014.09.006 DOI: https://doi.org/10.1016/j.ibiod.2014.09.006

Meischel M, Eichler J, Martinelli E, Karr U, Weigel J, Schmöller G, Tschegg EK, Fischerauer S, Weinberg AM, Stanzl-Tschegg SE. Adhesive strength of bone-implant interfaces and in-vivo degradation of PHB composites for load-bearing applications. Journal of the mechanical behavior of biomedical materials 2016; 53: 104-18. https://doi.org/10.1016/j.jmbbm.2015.08.004 DOI: https://doi.org/10.1016/j.jmbbm.2015.08.004

Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. Journal of biomechanical engineering 1991; 113(2): 143-51. https://doi.org/10.1115/1.2891228 DOI: https://doi.org/10.1115/1.2891228

Greisler HP. Growth factor release from vascular grafts. Journal of controlled release 1996; 39(2-3): 267-80. https://doi.org/10.1016/0168-3659(95)00159-X DOI: https://doi.org/10.1016/0168-3659(95)00159-X

Greisler HP, Gosselin C, Ren D, Kang SS, Kim DU. Biointeractive polymers and tissue engineered blood vessels. Biomaterials 1996; 17(3): 329-36. https://doi.org/10.1016/0142-9612(96)85571-2 DOI: https://doi.org/10.1016/0142-9612(96)85571-2

Brekke JH, Toth JM. Principles of tissue engineering applied to programmable osteogenesis. Journal of biomedical materials research 1998; 43(4): 380-98. https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<380::AID-JBM6>3.0.CO;2-D DOI: https://doi.org/10.1002/(SICI)1097-4636(199824)43:4<380::AID-JBM6>3.0.CO;2-D

Evans GR, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gürlek A, Nabawi A. In vivo evaluation of poly (L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999; 20(12): 1109-15. https://doi.org/10.1016/S0142-9612(99)00010-1 DOI: https://doi.org/10.1016/S0142-9612(99)00010-1

Rodrı́guez FJ, Gómez N, Perego G, Navarro X. Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials 1999; 20(16): 1489-500. https://doi.org/10.1016/S0142-9612(99)00055-1 DOI: https://doi.org/10.1016/S0142-9612(99)00055-1

Jagur‐Grodzinski J. Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polymers for advanced technologies 2006; 17(6): 395-418. https://doi.org/10.1002/pat.729 DOI: https://doi.org/10.1002/pat.729

Bos RR, Rozema FB, Boering G, Nijenhius AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HW. Degradation of and tissue reaction to biodegradable poly (L-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials 1991; 12(1): 32-6. https://doi.org/10.1016/0142-9612(91)90128-W DOI: https://doi.org/10.1016/0142-9612(91)90128-W

Ishaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, Mikos AG. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials 1998; 19(15): 1405-12. https://doi.org/10.1016/S0142-9612(98)00021-0 DOI: https://doi.org/10.1016/S0142-9612(98)00021-0

Amass W, Amass A, Tighe B. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer international 1998; 47(2): 89-144. https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F DOI: https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F

Edlund U, Albertsson AC. Novel drug delivery microspheres from poly (1, 5‐dioxepan‐2‐one‐co‐L‐lactide). Journal of Polymer Science Part A: Polymer Chemistry 1999; 37(12): 1877-84. https://doi.org/10.1002/(SICI)1099-0518(19990615)37:12<1877::AID-POLA17>3.0.CO;2-4 DOI: https://doi.org/10.1002/(SICI)1099-0518(19990615)37:12<1877::AID-POLA17>3.0.CO;2-4

Rizzarelli P, Carroccio S. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Analytica chimica acta 2014; 808: 18-43. https://doi.org/10.1016/j.aca.2013.11.001 DOI: https://doi.org/10.1016/j.aca.2013.11.001

Newman D, Bello A, Laredo E. Moisture effects on dielectric relaxations of poly (ɛ-caprolactone)/starch biodegradable blends: Local, interfacial and segmental. Carbohydrate polymers 2015; 131: 15-22. https://doi.org/10.1016/j.carbpol.2015.05.056 DOI: https://doi.org/10.1016/j.carbpol.2015.05.056

Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro-and nano-structured surfaces on cell behavior. Biomaterials 1999; 20(6): 573-88. https://doi.org/10.1016/S0142-9612(98)00209-9 DOI: https://doi.org/10.1016/S0142-9612(98)00209-9

Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG. Bone formation by three‐dimensional stromal osteoblast culture in biodegradable polymer scaffolds. Journal of biomedical materials research 1997; 36(1): 17-28. https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O DOI: https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O

Agrawal CM, Best J, Heckman JD, Boyan BD. Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials 1995; 16(16): 1255-60. https://doi.org/10.1016/0142-9612(95)98133-Y DOI: https://doi.org/10.1016/0142-9612(95)98133-Y

Vunjak‐Novakovic G, Martin I, Obradovic B, Treppo S, Grodzinsky AJ, Langer R, Freed LE. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue‐engineered cartilage. Journal of Orthopaedic Research 1999; 17(1): 130-8. https://doi.org/10.1002/jor.1100170119 DOI: https://doi.org/10.1002/jor.1100170119

Xu F, Weng B, Gilkerson R, Materon LA, Lozano K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydrate polymers 2015; 115: 16-24. https://doi.org/10.1016/j.carbpol.2014.08.081 DOI: https://doi.org/10.1016/j.carbpol.2014.08.081

Ferreira A, Ferreira F, Paiva MC. Textile sensor applications with composite monofilaments of polymer/carbon nanotubes. InAdvances in Science and Technology 2013 (Vol. 80, pp. 65-70). Trans Tech Publications. DOI: https://doi.org/10.4028/www.scientific.net/AST.80.65

Kim IA, Rhee SH. Preparation of a non‐woven poly (ε‐caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly (ε‐caprolactone) fibers. Journal of Biomedical Materials Research Part A 2017; 105(7): 1973-83. https://doi.org/10.1002/jbm.a.36069 DOI: https://doi.org/10.1002/jbm.a.36069

Torres A, Ilabaca E, Rojas A, Rodríguez F, Galotto MJ, Guarda A, Villegas C, Romero J. Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. European Polymer Journal 2017; 89: 195-210. https://doi.org/10.1016/j.eurpolymj.2017.01.019 DOI: https://doi.org/10.1016/j.eurpolymj.2017.01.019

Downloads

Published

2018-07-10

How to Cite

Dhamaniya, S., Gupta, V., & Kakatkar, R. (2018). Recent Advances in Biodegradable Polymers. Journal of Research Updates in Polymer Science, 7(2). https://doi.org/10.6000/1929-5995.2018.07.02.3

Issue

Section

Articles