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Abstract: This study assessed the functionality of metallic iron (Fe0) filtration systems using porous iron composite (PIC) 
as an alternative to granular Fe0/aggregate mixtures. The usage of PIC for water treatment has many challenges which 
are related to the well-drained nature of highly porous filters and the corresponding increase in hydraulic conductivity 
(shorter contact time). In this article, the extent of (i) iron exhaustion and (ii) porosity loss in four filtration systems are 
critically discussed. The considered filtration systems are: (i) Fe0 alone, (ii) PIC alone, (iii) Fe0/sand and (iv) Fe0/pumice. 
In all four systems, mono-sized granular spherical particles are assumed. Sand and Fe0 are compact (  = 0 %) whereas 
PIC and pumice are porous (e.g.  = 40 %). Results demonstrated that under anoxic conditions (Fe3O4 as major 
corrosion products) Fe0 depletion is possible in all systems except Fe0 alone. Under oxic conditions (e.g. formation of 
Fe(OH)3), the PIC system exhibited the highest level of Fe0 depletion (58 %). The increasing order of sustainability was: 
Fe0 < Fe0/sand < Fe0/PM < PIC. These results suggested that manufacturing PIC with defined porosity and intrinsic 
reactivity is the key for more efficient usage of Fe0 for environmental remediation and water treatment. 
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1. INTRODUCTION 

The suitability of metallic iron (Fe0) for water 
treatment has motivated a great deal of work on the 
development of Fe0-based filtration systems during the 
past two decades [1-19]. Within the remediation 
community, metallic iron is commonly termed as zero-

valent iron (ZVI). Fe0-based filtration has been 
demonstrated an affordable, applicable and efficient 
water treatment system. Fe0 has been successfully 
used in environmental remediation during the past two 
decades [3,11,13,20-22]. There are currently more than 
200 subsurface Fe0-based permeable reactive barriers 

(Fe0 PRBs) installed worldwide [11,16]. Despite the 
large volume of work done on ‘using Fe0 for 
environmental remediation’, progress towards the 
understanding of involved processes is slow. Recent 
progress in understanding the operating mode of Fe0 
filtration systems has revolutionized the design of 
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Fe0-based filters for safe drinking water provision and 
wastewater treatment [10,16,18,23-33]. The achieved 
progresses are mainly based on theoretical 
considerations [8,23,27,34-39]. 

There is a broad consensus in the technical 

literature that Fe0 is a reducing agent under 
experimental conditions [3,12]. However, there is little 
agreement on the interpretation of experimental data 
on all the pertinent variables which have decisive 
influence on the reduction process. Also, because 
primary Fe0 oxidation products (FeII and H/H2) are 

reducing agents, the reactions investigated are 
inherently complex [18, 34-37]. The complexity of the 
Fe0/H2O system has exacerbated the search for Fe0 
filter designs that provide sustainable water treatment 
with low maintenance [40-44]. The significant 
importance of admixing granular compact Fe0 with non 

expansive materials (e.g. gravel, MnO2, pumice, sand) 
has recently been demonstrated [37,38,45-51]. The 
usage of porous, non-expansive materials (e.g. 
anthracite, pumice) as admixing agents for Fe0 was 
experimentally demonstrated beneficial for filter’s 



166    Journal of Applied Solution Chemistry and Modeling, 2013 Volume 2, No. 3 Rahman et al. 

sustainability [15,32,52-54]. The sustainability’s 
characteristic was attributed to the availability of intra-

particular spaces (pores) within pumice particles for 
storage of in-situ generated iron corrosion products 
[54]. However, in comparison to Fe0/sand systems, 
more permeable Fe0/pumice systems were less 
efficient for contaminant removal [32]. This observation 
demonstrated the crucial challenge of concealing two 

controversial issues in designing sustainable Fe0 filters: 
(i) increased contaminant removal efficiency (as much 
Fe0 as possible) and (ii) increased system permeability 
(as less Fe0 as possible). The introduction of a Fe0-
based porous composite (termed composite iron matrix 
- CIM) as reactive material [6,17,55-57] in a sustainable 

filter (SONO filter) suggests that Fe0-based porous 
composites should be regarded as the next generation 
filter materials.  

Another CIM-like material termed as SIM (sulfur-
modified iron) has been recently presented by Allred 
[10,24,25] as reactive material in filters for agricultural 
drainage water treatment. Direct reduced iron (DRI or 
‘sponge iron’) was also tested as an alternative to 

conventional compact Fe0 for wastewater treatment 
[19, 58-64]. DRI results from direct reduction of iron ore 
by a reducing gas produced from natural gas or coal 
[64]. DRI resembles a honey comb structure and is 
spongy in texture. DRI may react differently in many 
ways when compared to compact iron (  = 0). Inherent 

characteristics of DRI are high porosity (   0), low 
density and high surface area. Sponge iron is a 
traditional water treatment material [65-67], but its 
application in passive filters is regarded as a new 
research field. For example, the ‘sponge iron’ tested by 
Yi et al. [19] is a commercial material which is 

conventionally used as oxygen scavenger for water 
treatment. This material exhibits a density of 2.2 g/cm3 
and a specific surface area of 85 m2/g. In essence, 
conventional DRI can be properly micro-alloyed to 

manufacture various CIM-like materials. It should be 
noticed that the original CIM material is a porous matrix 

produced by in-situ processing inside the filter. The 
starting materials termed as CIG (composite iron 
granules) have a porosity ranges between 8 % and 20 
% [56]. In this article, all porous CIM-like materials are 
collectively termed as PIC (Table 1). 

This article applies a theoretical approach to 
discuss the suitability of PIC on the performance of Fe0 
filters. The sustainability of Fe0, PIC, Fe0/sand and 

Fe0/pumice systems are comparatively discussed. 
Systems are compared in terms of (i) the extent of Fe0 
exhaustion and (ii) the extent of porosity loss. 

2. FUNDAMENTAL ASPECTS OF CLOGGING OF 
GRANULAR Fe

0
 FILTERS 

Gradual decrease of the hydraulic conductivity 

(permeability loss) of granular Fe0 filters as water 
passes through them has been intensively investigated 
during the last two decades [1,3,11,20-22,44,68-71]. 
The reason for the permeability loss is certainly the 
deposition of precipitates in the voids between granular 
Fe0 particles (inter-granular porosity). However, a 

comparative performance analysis of published data is 
almost impossible because important media 
characteristics such as shape, surface smoothness and 
Fe0 intrinsic reactivity have not been well documented 
or were documented in a limited way [15,30,32,33]. 
Moreover, the crucial importance of the expansive 

nature of iron corrosion [72-74] to fill the initial porosity 
was not properly considered [38,39,45-51]. 
Accordingly, it is important to consider ‘endogen’ 
causes (e.g. grain’s shape and surface smoothness, 
porosity of grains, changes in size of Fe0 grains, nature 
of packing arrangement) for clogging of granular Fe0 

filters in more details. Only once these ‘endogen’ 
parameters are properly considered, an accurate 
evaluation of the impacts of external factors (e.g. 

Table 1: Some characteristics of two compact Fe
0
 and three selected porous iron composites from the literature. The 

paucity of data relevant for proper discussion on Fe
0
 reactivity is obvious. The characteristics of the PIC 

(SMI) introduced by Allred [10,24,25] are not specified. n.s. stands for not specified 

Material Fe density Mn S P Cu Sn Bi Ref. 

 (%) (g/cm
3
) (%) (%) (%) (%) (%) (%)  

CIM 68 - 92 2.4 0.3 - 3.0 <0.002 0.05 - 2.0 <0.002 <0.002 <0.002 [56] 

DRI 98.0 2.2 n.s. 0.03 n.s. 0.002 0.002 0.002 [19] 

ZVIa 96.7 n.s. 0.46 0.09 n.s. n.s. n.s. n.s. [58] 

ZVIb 91.5 n.s. 3.06 0.08 n.s. 0.31 n.s. n.s. [58] 

SMI n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. [25] 
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precipitation of foreign species including CaCO3 and 
FeCO3) would be adequate. 

Despite two decades of intensive researches on 
granular Fe0 filters for water treatment, limited works 

have been done to understand filter clogging 
phenomenon as impacted by expansive iron corrosion 
[15,32,45-54]. The inter-relationship between 
permeability loss and treatment performance has been 
mostly investigated on a pragmatic basis. Many 
researches performed ‘with sufficient Fe0 to remove all 

of the aqueous contaminants’ until/before system 
clogging. Evidently this approach is less useful when it 
comes to search for generalized design criteria like 
optimal filter depth or Fe0 ratio in a reactive zone. As 
an example, the following volumetric (v/v) or weight 
(w/w) Fe0:sand ratios were tested by various 

investigators such as: 22:78 (w/w) [3], 50:50 (w/w) 
[29,66], 15:85 (v/v) [31]. The question arises how to 
compare such results where each study targeted on 
different contaminants while using columns of different 
dimensions. 

Recently, it has been demonstrated that using small 
Fe0 quantities in laboratory columns would enable the 
characterization of involved processes within a 

reasonable experimental time (up to 4 months) 
[30,33,75-77]. In such type of experiments, the goal is 
not 'no breakthrough', but rather the characterization of 
Fe0 reactivity and the resulting efficiency of the reactive 
system despite breakthrough. The results of such 
experiments could be ‘transposed’ to cases where a 

tolerable level of contamination is needed. Additionally, 
these systems give a realistic image of the kinetics of 

iron corrosion over the initial stage of increased 
reactivity. This ‘residual reactivity stage’ is a key stage 

to assess if reliable results for long term performance 
prediction are sought. 

The present study comparatively characterizes the 
evolution of the porosity in four Fe0-based filtration 
systems as Fe0 is progressively consumed at the 
‘residual reactivity stage’. It is certain that compact Fe0 
and (porous) PIC will corrode under different kinetics 
but these kinetic aspects are not addressed here. 

3. THE PROCESS OF POROSITY LOSS IN VARIOUS 
Fe

0
 FILTERS  

In this section, an evaluation of porosity loss in a 
series of four Fe0 filters is given. The four reactive 
systems are: (b) ‘Fe0 alone’, (d) ‘PIC alone’, (e) 
‘Fe0/sand’ and (f) ‘Fe0/PM’ (Figure 1). Two mono-

aggregate systems ((a) ‘sand alone’ and (c) ‘pumice 
alone’) are considered as operational references. 

3.1. Equation of the Filters 

The equations of Fe0 filters have been recently 

established [38,47,48,51]. These equations are based 
on the volumetric fraction of voids (pores) in a filter and 
its evolution with time. The fundamental equations are: 

Vsolid
0

+Vpore
0

= Vfilter           (1) 

solid + pore = 1            (2) 

Where V°solid is the volume occupied by compact 
(non porous) solid particles, V°pore the volume of the 

 

Figure 1: Schematic layout of the six systems discussed in this study. All particles are assumed spherical, the resulting columns 
are of similar compactness. The initial inter-granular porosity (V°pore) is the same for all the systems. Considered materials are: 
sand (compact), metallic iron (ZVI - compact), pumice (PM - porous), and porous iron composite (PIC). 
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inter-granular voids, and Vfilter the total volume of the 
filter (or a reactive zone within a filter). solid and pore 
are the corresponding volumetric fractions. 

Per definition, solid = C is the compaction coefficient 

(compactness) and pore = 0 = 1 - C is the initial 
porosity. For a centred cubic arrangement of compact 
(non porous) spherical particles, C = 0.64 and 0 = 
0.36. These ideal values will be considered during the 
estimations of this study. For porous particles with an 
internal porosity , Vsolid and Vpore values should be 
corrected. Eq. 1 can be rewritten as follows: 

(Vsolid
0 *Vsolid

0 ) + (Vpore
0

+ *Vsolid
0 ) = Vfilter         (3) 

If the filter is made up of several solids, their 
volumes (V°,i

solid), their proportions in the solid phase i, 
and their porosities ( i) should be considered. Eq. 3 is 
then rewritten to: 

(Vsolid
0 vi * i *Vsolid

0,i ) + (Vpore
0

+ vi * i *Vsolid
0,i ) = Vfilter  (4) 

Equation 4 is the general equation of filtration 
systems of granular particles. For i = 0 (no porous 
material), the basic form (Eq. 1) is restored. 

The application of Eq. 4 to the six systems of this 
study is summarized as follows: 

System 1: Vsand
0

+Vpore
0

= Vfilter  

System 2: VZVI
0

+Vpore
0

= Vfilter  

System 3: VPM
0

PM *VPM
0

+ (Vpore
0

+ PM *VPM
0 ) = Vfilter  

System 4: (VPIC
0

PIC *VPIC
0 ) + (Vpore

0
+ PIC *VPIC

0 ) = Vfilter   

System 5: vsand *Vsand
0

+ vZVI *VZVI
0

+Vpore
0

= Vfilter  

System 6: 
vZVI *VZVI

0
+ vPM * (VPM

0
PM *VPM

0 ) +

(Vpore
0

+ vPM * PM *VPM
0 ) = Vfilter

 

In the systems 5 and 6, ZVI = PM = sand (= 0.5) is 
added to account for the 1:1 dual mixture nature. The 

next important feature is the estimation of the initial 
volume of Fe0 (V°ZVI) in individual systems. The 
application of Eq. 4 restricted to Fe0 yields: 

System 1 and 3: VZVI
0

= 0   

System 2: VZVI
0

= (1 0 )*Vfilter  

System 4: VZVI
0

= (1 0 )*Vfilter PIC *VPIC
0  

System 5 and 6: VZVI
0

= vZVI * (1 0 )*Vfilter (vZVI = 0.5)  

The density of Fe0 ( ZVI) is supposed invariable in 
compact ZVI and porous PIC. The mass of Fe0 in each 
system is deduced from Eq. 5: 

mZVI = ZVI *VZVI
0            (5) 

For the calculations of this study, the following 
numerical values are considered: Vfilter = 1000 mL; ZVI 

= 7.8 g/cm3; C = 0.64; 0 = 0.36; PIC = PM = 0.40. The 
critical porosity of sand [78] is arbitrarily considered for 
both porous media. The ZVI value (2.2 g/cm3) of the 
sponge iron tested by Yi et al. [19] is inferior to the 
average density of sand (2.6 g/cm3) and shows that a 
PIC porosity of 40 % is a realistic value. The porosity of 

PIC used in SONO filters (CIM) varies between 30 and 
35 % [57]. 

3.2. Descriptive Aspects 

The initial pore volume corresponding to a filter 

described above is V°pore = *Vfilter = 360 mL. The 
corresponding volume of solid is V°solid = 640 mL. For 
porous materials like PIC and pumice, a fraction of 
V°solid is also a part of the total porosity. With a granular 
porosity of 40 % (  = 0.4), the additional pore volume 
(V’p) in systems containing porous materials is *V°solid 

= 256 mL. In order words the systems with 100 % PIC 
or pumice result in an initial total pore volume of 360 + 
256 = 616 mL. For dual 1:1 systems involving porous 
pumice ( ZVI = PM = 0.5), the V’p value is one half of 
256 mL and the corresponding V°p value is 488 mL. 

As concerning the solid fraction, Vsolid is maximal in 

systems with compact materials (Fe0 and sand; V°solid = 

640 mL). The Fe0 fraction in the pure PIC system is 

V’solid = (1 - )*V°solid = 384 mL. In the dual Fe0 systems 

(Fe0/pumice and Fe0/sand), VZVI is one half of V°solid 

(VZVI = 320 mL). VZVI is essential to discuss the extent 

of Fe0 depletion and the corresponding porosity loss. 

VZVI can be occupied by 2.5 to 5.0 kg of Fe0 (density: 

7.8 g/cm3) (Table 2). 

The values in Table 2 confirm that the initial porosity 

is minimal (36.0 %) for systems containing compact 

particles (Fe0 and sand) and maximal (61.6 %) in 

systems containing porous particles (PIC and PM). In 

1:1 mixing (vol/vol) a compact and a porous material, 

the initial porosity is 48.8 %. The next section will 

discuss the extent of Fe0 depletion as expansive iron 

corrosion is limited by the available pore volume. 
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3.3. Fe
0
 Depletion and Porosity Loss 

Section 3.2 has determined the mass of Fe0 

contained in individual systems (Table 2). For the 
economy of the systems, it is essential to know the 
proportion at which the available Fe0 amount can be 
depleted. Iron corrosion is a volumetric expansive 
process. The volume of the corrosion product is higher 
than that of the original metal. The volumetric ratio ( ) 

between the expansive corrosion product (Vox) and the 
iron consumed (VZVI) in the corrosion process is called 
‘‘rust expansion coefficient” [73,74]. Basically, iron 
corrosion stops when there is no free space for 
expansive iron oxidation. That is when the excess 
volume (Vexcess = Vox - VZVI) occupied by corrosion 
products is equal to the initial pore volume (V°pore). 

The excess volume contributing to filter clogging is 
given by Vexcess in Eq. 6 [38,48,51].  

( 1)VZVI = Vexcess           (6) 

Where,  (2.08    6.4) is the coefficient of 
volumetric expansion [73]. 

The Fe0 filtration system is clogged when the 
volume Vexcess is equal to the initial inter-granular voids 
(V°pore). The corresponding Fe0 volume (V ZVI) is given 
by Eq. 7: 

VZVI =
Vexcess
( 1)

           (7) 

The percentage of Fe0 depletion (PZVI, Table 2) is 
given by Eq. 8: 

PZVI =
VZVI
Vexcess

*100           (8) 

PZVI  100 % indicates that V ZVI  V°p and Fe0 

depletion occurs before or just at complete clogging. 
Table 2 summarized the results of PZVI values for two 
different conditions: (i) anoxic conditions where Fe3O4 
(  = 2.08) is the main corrosion product, and (ii) oxic 
conditions where Fe(OH)3 (  = 4.2) is the main 
corrosion product. For reference purpose, the 

coefficient of relative reactivity under oxic conditions 
(Rox) is also given. The PIC system served as the 
operational reference. Results indicate that under 
anoxic conditions, the pure Fe0 system is clogged 
when only 52 % of Fe0 is depleted. These results 
confirm the previous findings of Noubactep and 

colleagues [38,45-51], and reiterate that pure Fe0 filters 
are not sustainable under oxic conditions [55]. 
Accordingly, efforts should be directed at lowering 
dissolved O2 level on top of the Fe0 filter (e.g. using a 
biosand filter). Under oxic conditions, all systems will 
experience clogging before iron depletion. The 

increasing order of Fe0 depletion is: Fe0 < Fe0/sand < 
Fe0/PM < PIC. These results (i) support the suitability 
of sand to sustain Fe0 filtration efficiency, (ii) 
corroborate the superiority of PM over sand in 
sustaining Fe0 filtration efficiency, and (iii) demonstrate 
the particular suitability of PIC for sustainable Fe0 
filters. 

Actually, various PICs have been presented (Table 

1). The PIC (termed as CIM) presented by Hussam and 
colleagues [6,17,55-57] is clearly the most intensively 
tested (over the past 8 years). Several other non 
porous composites have been presented, including 
nano-scale multi-metallic systems [13,37,79,80]. In 
particular, Bojic and colleagues [81-84] developed an 

Al0-based composite (micro-alloyed aluminium 
composite - MAlC) which was efficient to remove 
aqueous biological (e.g. Escherichia coli) and chemical 
(e.g. CrVI, CuII, trihalomethanes) contamination. 

Table 2: Evaluation of the initial Fe
0
 volume and the initial porosity in the five investigated systems. Calculations are 

made for a filter compactness of 64 % (C = 0.64 or 0 = 0.36) and a granular porosity of 40 % ( 0 = 0.40) for 

the composite iron material (CIM) and pumice (PM). R
ox

 is the relative reactivity factor under oxic conditions. 

System V°solid V°pore V°ZVI 0 m°ZVI V ZVI P
anox

ZVI P
ox

ZVI R
ox 

 (mL) (mL) (mL) (%) (kg) (mL) (%) (%) (-) 

Sand 640 360 0 36.0 0.00 0 - - - 

ZVI 640 360 640 36.0 4.99 333.3 52.1 17.6 0.35 

Pumice 384 616 0 61.6 0.00 0 - - - 

CIM 384 616 384 61.6 3.00 570.4 100.0 50.1 1.00 

ZVI/sand 640 360 320 36.0 2.50 333.3 100.0 35.2 0.70 

ZVI/PM 512 488 320 48.8 2.50 541.9 100.0 47.7 0.95 
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Keeping in mind that Al0 is almost ‘inert’ under 
environmental conditions (PCO2 = 0.035 %, T < 30 °C), 

it seems that micro-alloying is the key to manufacture 
reactive materials with controllable reactivity. The need 
of materials with controllable reactivity is urgent 
because most of the available commercial materials 
are mixture of scrap material (e.g. Connelly, Peerless, 
Rheinfelden) whose final composition is even unknown 
from the ‘manufacturers’ [85-89]. 

4. DISCUSSION 

4.1. Lessons from SONO filters 

The presentation, until now, has demonstrated the 
urgent necessity of using highly porous systems for 

sustainable Fe0-based filtration systems. While highly 
inter-connected porous systems offer certainly 
sustained permeability, the efficiency for contaminant 
removal should be considered as well [15,32,54]. The 
calculations in Table 2 have rationalized the observed 
long term functionality (> 8 years) of efficient SONO 

arsenic filters containing a pure layer of porous CIM (5 
to 10 kg making up a material layer of about 13 cm) 
[17]. Using the same design parameters with only 3 kg 
of iron chips (pure compact Fe0) lost its porosity within 
6 months [6,55]. These results equally question the 
current rationale behind the functionality of subsurface 

Fe0 PRBs made up of 100 % Fe0 layers that have been 
working for more that 8 years [12]. A plausible 
explanation is the limited level of O2 in the subsurface. 
Another plausible explanation is the fact that used 
materials were not spherical and the initial porosity was 
larger than 36 % used in the calculations of this study 

[38,51]. For a traceable discussion, the intrinsic 
characteristics of the used materials, the initial 
subsurface conditions and their time-dependant 
variability should have been documented. 

4.2. The Porosity of Tested Systems 

The evolution of the porosity of the six systems [(a) 
to (f)], presented in Figure 1, is discussed in this 
section (Figure 2). 

The first 3 systems (sand, ZVI and PM) are 
reference systems. The pure Fe0 system (ZVI) is a 
negative reference aiming at attesting that expansive 

iron corrosion causes system clogging in the short term 
(Rox values, Table 2). System (a) and system (c) 
document the difference in using compact or porous 
materials. In both cases the particles are inert in water 
under environmental conditions. A porosity loss can 

only result from accumulation or precipitation of 
inflowing species and/or contaminants within the 

(interconnected) pores. The discussion of porosity loss 
due to the accumulation of foreign precipitates is out of 
the scope of this study. Such systems have been used 
in water and wastewater treatment for decades [90-
100]. 

The remaining systems [(d), (e) and (f)] are reactive 
systems in which Fe0 sustainability (long term 
efficiency) is supported by (i) using granular porous 

CIM, or (ii) admixing granular compact Fe0 to inert 
species (compact sand and porous pumice). As 
discussed above, system (d) (pure PIC) is the most 
sustainable system in terms of delay in porosity loss. It 
is essential to notice that the space occupied by sand 
in system (e) (Fe0/sand) is totally lost as it neither 

contributes to water flow nor stores fouling agents (iron 
corrosion products) (Figure 3). The intra-particle pore 
space in system (f) (Fe0/PM) may be accessibile to 
store iron corrosion products. However, quantitative 
transport of dissolved and colloidal iron species into the 
porous structure of pumice can not be garanteed, even 

in case they are really interconnected. Therefore, the 
extent of occupation of the pores of pumice by iron 
corrosion products is difficult to assess. 

Another important feature favoring the application of 
porous PIC is that the internal surface of the grains is in 
contact with water and do corrode [10,59,60]. This 
phemenon has two advantages: (i) contaminant 
removal by size-exclusion occurs also within the intra-
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Figure 2: Comparison of the evolution of the relative porosity 
due to expansive iron corrosion under oxic conditions (  = 
4.2). The reference system (sand or pumice) experiences no 
porosity loss. For the Fe0-based systems, the relative 
porosity is normalized by the extend of Fe0 depletion (PZVI) 
using the PIC system as reference. The suitability of porous 
materials (e.g. PIC, PM) for sustainable permeable systems 
is corroborated. 
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granular porosity and (ii) the probability of porous Fe0 
(  = 0.4) depletion increases as the corrosion kinetics 
are increased comparatively to the case of a compact 
Fe0 material (  = 0). For this reason, it is likely that the 
order of sustainability obtained here by comparing the 

extent of porosity loss (Figure 2) is replicated in 
contaminant removal experiments. However, the 
evolution of individual systems will depend on two 
fundamental parameters: (i) intrinsic reactivity of Fe0 
materials, and (ii) the water flow velocity. Hence, the 
objective of this article is to motivate the manufacture 

of various porous composites for site-specific 
applications. 

While existing approaches mostly collectively earn 
for more reactive materials (including nano-scale 
composites) [37,80], the present study advocates for 
manufacturing appropriate (porous) materials for site-
specific applications. To the best of the author’s 
knowledge, only Li et al. [101] have intentionally 

alloyed Fe0 to decrease its reactivity. However the 
objective of the authors [101] was to reduce the iron 
level in the filter effluent. As experimentally 
demonstrated by several authors [15,30,32,33] this 
increased iron level is the expression of initial 
increased reactivity. The iron level was lowered to 

values less than 1 mg/L within some 6 weeks. In other 
words, properly micro-alloying Fe0 alone will not solve 

the clogging problem. Therefore, reactive porous iron 
composites are urgently needed. 

4.3. Designing the Next Generation Fe
0
 Filter 

Metallic iron is the reactive material in Fe0-based 
filters. Fe0 oxidizes to produce iron hydroxides and 
oxides for the elimination of biological and chemical 
contamination by adsorption, co-precipitation and size-
exclusion [79,102-107]. The process of progressive 

transformation of Fe0 to iron oxides is well-described in 
the literature and will not be repeated here [8,108-112]. 
It is just to recall that strictly compact Fe0 is 
transformed through several steps of porous iron 
hydroxides (e.g. Fe(OH)2, Fe(OH)3) to almost compact 
oxides (e.g. Fe3O4, Fe2O3, FeOOH) [34-36]. During this 

dynamic process nascent iron hydroxides adsorb and 
co-precipitate contaminants while less reactive oxides 
just adsorb dissolved species. All types of iron species 
(reactive and less reactive) contribute to contaminant 
removal by size-exclusive filtration as their formation 
occupies the inter-particular voids [34]. 

The present study has demonstrated the crucial 
importance of developing more efficient Fe0 materials: 

porous iron composites. Once a new Fe0 material is 
developed (e.g. micro-alloyed PIC), four scientific 
aspects need to be understood: (i) the long-term 
behaviour of iron corrosion (corrosion kinetics at 

 

     (a)       (b) 

Figure 3: Schematic layout of water flow: (a) around a compact particle and (b) through a porous particle. The space occupied 
by a compact particle is ‘lost’ whereas the intra-granular porosity of porous particles can be exploited as space for expansive 
iron corrosion. 
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pseudo-equilibrium), (ii) the kinetics of contaminant 

removal at pseudo-equilibrium of iron corrosion, (iii) the 
water flow velocity compatible with satisfactorily water 
treatment, and (iv) the time-dependant evolution of the 
filter permeability as impacted by expansive iron 
corrosion. The profound knowledge of these four key 
aspects determines the mass of Fe0 needed to 

manufacture a filter with a specific capacity for a certain 
group of contaminants. The contaminant affinity to iron 
oxides significantly determines the filter design 
[32,33,77]. Contaminants with low affinities to iron 
corrosion products must be removed before the Fe0 
filter. The in-depth knowledge of the nature and the 

extent of contamination determine the physical designs 
of a treatment system. These design efforts could be 
supported by modern numerical modelling algorithms 
and tools, including finite element methods for the 
solution of mass-transport equations [57]. 

Fe0-based filters have been suggested as a stand-
alone technology for the treatment of waters with 
unknown chemical and microbial quality [8,23,34,36]. 

Therefore, beside Fe0, water filters require active 
adsorbents to accumulate species with low affinity to 

iron oxides (e.g. cationic dyes) and species exceeding 

the Fe0 unit. Relevant adsorbents include sand, 
activated carbon, and wood charcoal. The presentation 
above suggests that for a sustainable Fe0 unit, the level 
of dissolved O2 should be considerably reduced. 
Therefore, a biosand filter or any other O2-scavenging 
unit is necessary on top of the Fe0-unit. Figure 4 

depicts the general sequence of efficient Fe0-based 
water treatment plants. 

The Fe0-unit, which is the heart of the filtration 
system can advantageously contain several inert 
granular materials including anthracite, blast furnace 
slug, brick chips, crushed stones, gravel, pumice or 
sand to impart mechanical stability and/and regulate 
the hydraulic conductivity. The role of these species in 

sustaining iron corrosion has already been discussed 
above, such as sand and pumice as admixing agent or 
dispersant in Fe0/PM and Fe0/sand systems. Figure 5 
presents some schematic representations of possible 
configurations of the Fe0 unit. It is expected that by 
varying the granulometry and the thickness of the inert 

material layer (PM or sand), various levels/scales of the 
hydraulic conductivities can be achieved. Another 

 

Figure 4: Concept of treatment train combining contaminant removal in Fe0/H2O systems and successive systems containing 
adsorbents. The primary aim of the O2-scavenger is to create anoxic conditions for sustainable Fe0 filtration. 

 

Figure 5: Schematic layout of six possible embodiments of Fe0-based materials for sustainable filtration systems. Depending on 
the site of the treatment systems individual layers could be contained in separated beds.  
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possible advantage of sandwiching pumice layer 
between reactive zones is the accumulation of iron 

corrosion. So that short-distance transport of iron 
(hydr)oxides is more likely to occur than in thicker 
beds. It must be noted that SONO filters was 
developed on the basic idea of using Fe0 as generator 
of soluble Fe species to favour As removal in sand 
filters [113-116]. 

5. CONCLUDING REMARKS 

There are some evidences that porous composites 
improve the performance of Fe0-based filtration 

systems. The extent of material exhaustion is optimal in 
these systems as well. Whilst the demonstrated 
principle of the fundamental suitability of porous 
composites has a universal validity, target experiments 
with well characterized (new) materials are needed to 
understand more precisely the clogging phenomenon 

in granular Fe0-based filters. Relevant experiments will 
assess the influence of (i) composite type (intrinsic 
reactivity), (ii) composite porosity, (iii) composite 
particle size, (iv) general filter design (depth of filter, 
layering arrangement with particles of different sizes, 
compaction of the media during construction), (v) 

chemistry of inflowing water (nature and concentration 
of dissolved species, turbidity) and (v) the frequency of 
filtration events (intermittent filters).  

The overall results of these investigations will 
improve the understanding of the efficiency of Fe0 
filters as impacted by the clogging phenomenon. The 
ultimate aim is to build a sound basis for a system-
independent design of Fe0 filters. Once a reliable 

design guidance is available, predicting site-specific 
filter’s hydraulic and treatment performances along with 
their lifespan could be fine-tuned by pilot studies. One 
of the main applications of such a tool would be an 
improved design of above-ground water treatment 
systems for decentralized safe drinking water provision 
(Figure 4). 
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