Standardization of a SYBR Green Based Real-Time PCR System for Detection and Molecular Quantification of Babesia bovis and B. bigemina in Water Buffaloes (Bubalus bubalis)

Authors

  • Dasiel Obregón Universidad Agraria de La Habana, Carretera de Tapaste y Autopista Nacional, CP 32700, Apartado Postal 18-19, San José de Las Lajas, Mayabeque, Cuba
  • Marcio D. Rabelo Embrapa Pecuária Sudeste, Rodovia Washington Luiz, km 234 - CEP 13560-970, Caixa Postal 339, São Carlos, São Paulo, Brasil
  • Rodrigo Giglioti Embrapa Pecuária Sudeste, Rodovia Washington Luiz, km 234 - CEP 13560-970, Caixa Postal 339, São Carlos, São Paulo, Brasil
  • Thalita B. Bilhassi Universidade Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, 14884-900, Jaboticabal, São Paulo, Brasil
  • Thalita A. Néo Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 - CEP 13565-905, Caixa Postal 310, São Carlos - São Paulo - Brasil
  • Belkis Corona Centro Nacional de Sanidad Agropecuaria, Carretera de Jamaica y Autopista Nacional, CP 32700, Apartado Postal 10, San José de Las Lajas, Mayabeque, Cuba
  • Pastor Alfonso Centro Nacional de Sanidad Agropecuaria, Carretera de Jamaica y Autopista Nacional, CP 32700, Apartado Postal 10, San José de Las Lajas, Mayabeque, Cuba
  • Rosangela Z. Machado Universidade Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, 14884-900, Jaboticabal, São Paulo, Brasil
  • Marcia C.S. Oliveira Embrapa Pecuária Sudeste, Rodovia Washington Luiz, km 234 - CEP 13560-970, Caixa Postal 339, São Carlos, São Paulo, Brasil

DOI:

https://doi.org/10.6000/1927-520X.2016.05.02.4

Keywords:

Babesia bovis, B. bigemina, water buffalo, parasitemia, qPCR, standardization.

Abstract

Water buffalo (Bubalus bubalis) is a potential reservoir for Babesia bovis and B. bigemina in tropical regions, but the epidemiological evidence of their reservoir competence is limited, especially due to the lack of diagnostic tests capable of detecting and quantifying the low-level parasitemia present in the carrier animals. In this paper we present the standardization process of a SYBR Green based real-time PCR system (qPCR), consisting of two single qPCR assays, for the detection and quantification of B. bovis and/or B. bigemina. Both assays were optimized in similar protocols, including reagent concentrations and thermocycling parameters, so it is possible its use as a multiple qPCR in a single run. Both single assays showed a suitable analytical performance, especially by allowing detection of a greater number of carrier animals when compared with nested PCR assays (nPCR) against a reference panel of 60 DNA samples extracted from blood of both, infected- and non-infected buffaloes. Furthermore, a mathematical algorithm to convert the qPCR outcomes in percent of infected red blood cell was used, and was found that the estimated parasitemia in carrier buffaloes within the reference sample panels were close to those described in carrier cattle. This method could be a useful tool for epidemiological studies on the participation of the bubaline specie in the epidemic process of bovine babesiosis.

References

Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol 2011; 180(1-2): 109-125. http://dx.doi.org/10.1016/j.vetpar.2011.05.032 DOI: https://doi.org/10.1016/j.vetpar.2011.05.032

OIE. Babesiosis bovina. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2012. Paris, France: World Organization for Animal Health 2012; 1-16.

Jonsson NN, Bock RE, Jorgensen WK, Morton JM, Stear MJ. Is endemic stability of tick-borne disease in cattle a useful concept? Trends Parasitol 2012; 28(3): 85-89. http://dx.doi.org/10.1016/j.pt.2011.12.002 DOI: https://doi.org/10.1016/j.pt.2011.12.002

Goff WL, Johnson WC, Molloy JB, et al. Validation of a competitive enzyme-linked immunosorbent assay for detection of Babesia bigemina antibodies in cattle. Clin Vaccine Immunol 2008; 15(9): 1316-1321. http://dx.doi.org/10.1128/CVI.00150-08 DOI: https://doi.org/10.1128/CVI.00150-08

Bock R, Jackson L, Vos A, Jorgensen W. Babesiosis of cattle. Parasitology 2004; 129 (7): S247-S269. http://dx.doi.org/10.1017/S0031182004005190 DOI: https://doi.org/10.1017/S0031182004005190

Cantu A, Ortega-S JA, Mosqueda J, Garcia-Vazquez Z, Henke SE, George JE. Immunologic and molecular identification of Babesia bovis and Babesia bigemina in free-ranging white-tailed deer in northern Mexico. J Wildl Dis 2007; 43(3): 504-507. http://dx.doi.org/10.7589/0090-3558-43.3.504 DOI: https://doi.org/10.7589/0090-3558-43.3.504

Iseki H, Alhassan A, Ohta N, et al. Development of a multiplex loop-mediated isothermal amplification (mLAMP)

method for the simultaneous detection of bovine Babesia parasites. J Microbiol Methods 2007; 71(3): 281-287. http://dx.doi.org/10.1016/j.mimet.2007.09.019 DOI: https://doi.org/10.1016/j.mimet.2007.09.019

Obregón D, Oliveira MCS, Tizioto P, et al. Diagnóstico de Babesia bovis en búfalos de la región occidental de Cuba a través de un ensayo de nPCR. Rev Salud Anim 2012; 34(2): 101-108.

Chauvin AC, Oreau EM, Onnet SB, et al. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res 2009; 40(2): 37. http://dx.doi.org/10.1051/vetres/2009020 DOI: https://doi.org/10.1051/vetres/2009020

Terkawi MA, Huyen NX, Shinuo C, et al. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the northeast region of Thailand. Vet Parasitol 2011; 178(3-4): 201-207. http://dx.doi.org/10.1016/j.vetpar.2011.01.041 DOI: https://doi.org/10.1016/j.vetpar.2011.01.041

Silva JB, André MR, da Fonseca AH, et al. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the north region of Brazil. Vet Parasitol 2013; 197(3-4): 678-681. http://dx.doi.org/10.1016/j.vetpar.2013.05.020 DOI: https://doi.org/10.1016/j.vetpar.2013.05.020

Benitez D, Cetrá B, Florin-christensen M. Rhipicephalus (Boophilus) microplus ticks can complete their life cycle on the water buffalo (Bubalus bubalis). J Buffalo Sci 2012; 1(2): 193-197. http://dx.doi.org/10.6000/1927-520X.2012.01.02.11 DOI: https://doi.org/10.6000/1927-520X.2012.01.02.11

Obregón D, Rodríguez JD, Roque E, Alemán Y. Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) en búfalos (Bubalus bubalis), en Cuba. Rev Salud Anim 2010; 32(2): 132-134.

Ferreri L, Benitez D, Dominguez M, et al. Water buffalos as carriers of Babesia bovis in Argentina. Ann N Y Acad Sci 2008; 1149: 149-151. http://dx.doi.org/10.1196/annals.1428.036 DOI: https://doi.org/10.1196/annals.1428.036

Oliveira-Sequeira TCG, Oliveira MCS, Araujo JP, Amarante FT. PCR-based detection of Babesia bovis and Babesia bigemina in their natural host Boophilus microplus and cattle. Int J Parasitol 2005; 35(1): 105-111. http://dx.doi.org/10.1016/j.ijpara.2004.09.002 DOI: https://doi.org/10.1016/j.ijpara.2004.09.002

Miller E, Huppert A. The effects of host diversity on vector-borne disease: The conditions under which diversity will amplify or dilute the disease risk. PLoS One 2013; 8(11). http://dx.doi.org/10.1371/journal.pone.0080279 DOI: https://doi.org/10.1371/journal.pone.0080279

Miller E, Warburg A, Novikov I, et al. Quantifying the contribution of hosts with different parasite concentrations to the transmission of visceral leishmaniasis in Ethiopia. PLoS One 2014; 8(10): 1-8. http://dx.doi.org/10.1371/journal.pntd.0003288 DOI: https://doi.org/10.1371/journal.pntd.0003288

Fahrimal Y, Goff WL, Jasmerl DP. Detection of Babesia bovis carrier cattle by using polymerase chain reaction amplification of parasite DNA. J Clin Microbiol 1992; 30(6): 1374-1379. DOI: https://doi.org/10.1128/jcm.30.6.1374-1379.1992

Bose R, Jorgensen WK, Dalgliesh RJ, Friedhoff KT. Current state and future trends in the diagnosis of babesiosis. Vet Parasitol 1995; 57: 61-74. http://dx.doi.org/10.1016/0304-4017(94)03111-9 DOI: https://doi.org/10.1016/0304-4017(94)03111-9

Ramos CN, Araújo FR, Souza IIF, et al. Real-time poly-merase chain reaction based on msa2c gene for detection of Babesia bovis. Vet Parasitol 2011; 176(1): 79-83. http://dx.doi.org/10.1016/j.vetpar.2010.10.035 DOI: https://doi.org/10.1016/j.vetpar.2010.10.035

Kim C, Iseki H, Herbas MS, et al. Development of TaqMan-based real-time PCR assays for diagnostic detection of Babesia bovis and Babesia bigemina. Am J Trop Med Hyg 2007; 77(5): 837-841. DOI: https://doi.org/10.4269/ajtmh.2007.77.837

Buling A, Criado-Fornelio A, Asenzo G, Benitez D, Barba-Carretero JC, Florin-Christensen M. A quantitative PCR assay for the detection and quantification of Babesia bovis and B. bigemina. Vet Parasitol 2007; 147(1-2): 16-25. http://dx.doi.org/10.1016/j.vetpar.2007.03.031 DOI: https://doi.org/10.1016/j.vetpar.2007.03.031

Bilhassi TB, Oliveira HN, Ibelli AM, et al. Quantitative study of Babesia bovis infection in beef cattle from São Paulo state, Brazil. Ticks Tick Borne Dis 2014; 5: 234-238. http://dx.doi.org/10.1016/j.ttbdis.2013.11.002 DOI: https://doi.org/10.1016/j.ttbdis.2013.11.002

Guerrero FD, Bendele KG, Davey RB, George JE. Detection of Babesia bigemina infection in strains of Rhipicephalus (Boophilus) microplus collected from outbreaks in south Texas. Vet Parasitol 2007; 145(1-2): 156-163. http://dx.doi.org/10.1016/j.vetpar.2006.11.014 DOI: https://doi.org/10.1016/j.vetpar.2006.11.014

Machado RZ, Montassier HJ, Pinto A, et al. An enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against Babesia bovis in cattle. Vet Parasitol 1997; 71(1): 17-26. http://dx.doi.org/10.1016/S0304-4017(97)00003-4 DOI: https://doi.org/10.1016/S0304-4017(97)00003-4

OIE. Selection and use of reference samples and panels. In: OIE Validation Guidelines 2014. Paris, France: World Organization for Animal Health 2014; 1-9.

Ke GM, Cheng HL, Ke LY, et al. Development of a quantitative Light Cycler real-time RT-PCR for detection of avian reovirus. J Virol Methods 2006; 133(1): 6-13. http://dx.doi.org/10.1016/j.jviromet.2005.09.011 DOI: https://doi.org/10.1016/j.jviromet.2005.09.011

Mueller R, Padmabandu G, Taylor RH. Standarization of qPCR and qRT-PCR assays. In: Bustin S, ed. A- Z Quantitative PCR. La Jolla, California, USA: International University Line 2004; 577.

OIE. Principles and methods of validation of diagnostic assays for infectious diseases. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2014 2013th ed. Paris, France: World Organization for Animal Health 2013; 1-8.

OIE. Developmen and optimisation of nucleic acid detection assays. In: OIE Validation Guidelines 2014. Paris, France: World Organization for Animal Health 2014; 1-11.

Caraguel CGB, Stryhn H, Gagné N, Dohoo IR, Hammell KL. Selection of a cutoff value for real-time polymerase chain reaction results to fit a diagnostic purpose: analytical and epidemiologic approaches. J Vet Diagn Invest 2011; 23(1): 2-15. http://dx.doi.org/10.1177/104063871102300102 DOI: https://doi.org/10.1177/104063871102300102

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159-174. http://dx.doi.org/10.2307/2529310 DOI: https://doi.org/10.2307/2529310

Ros-García A, Nicolás A, García-pérez AL, Juste RA, Hurtado A. Development and evaluation of a real-time PCR assay for the quantitative detection of Theileria annulata in cattle. Parasit Vectors 2012; 5: 171. http://dx.doi.org/10.1186/1756-3305-5-171 DOI: https://doi.org/10.1186/1756-3305-5-171

Salem GH, Liu X, Johnsrude JD, Dame JB, Roman Reddy G. Development and evaluation of an extra chromosomal DNA-based PCR test for diagnosing bovine babesiosis. Mol Cell Probes. 1999; 13(2): 107-113. http://dx.doi.org/10.1006/mcpr.1998.0223 DOI: https://doi.org/10.1006/mcpr.1998.0223

Wills BT. Hematology of water buffalo (Bubalus bubalis). In: Weiss DJ, Wardrop KJ, eds. Schalm’s Veterinary Hematology. Ed. 6th. Ames, Iowa, USA: Blackwell Publishing Ltd. 2010; 927-930.

Bustin A, Nolan T. Data analysis interpretation. In: Bustin A., ed. A- Z Quantitative PCR 2004th ed. La Jolla, California. USA: International University Line 2004; 378-381

Bastien P, Procop GW, Reischl U. Quantitative real-time PCR is not more sensitive than conventional PCR. J Clin Microbiol 2008; 46(6): 1897-1900. http://dx.doi.org/10.1128/JCM.02258-07 DOI: https://doi.org/10.1128/JCM.02258-07

Kim EJ, Bauer C, Grevelding CG, Quack T. Improved PCR/nested PCR approaches with increased sensitivity and specificity for the detection of pathogens in hard ticks. Ticks Tick Borne Dis 2013; 4(5): 409-416. http://dx.doi.org/10.1016/j.ttbdis.2013.04.004 DOI: https://doi.org/10.1016/j.ttbdis.2013.04.004

Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison D. Babesia: a world emerging. Infect Genet Evol 2012; 12(8): 1788-1809. http://dx.doi.org/10.1016/j.meegid.2012.07.004 DOI: https://doi.org/10.1016/j.meegid.2012.07.004

Mahmmod Y. Natural Babesia bovis infection in water buffaloes (Bubalus bubalis) and crossbred cattle under field conditions in Egypt : a preliminary study. J Arthropod-Borne Dis 2014; 8(1): 1-9.

Downloads

Published

2016-08-19

How to Cite

Obregón, D., Rabelo, M. D., Giglioti, R., Bilhassi, T. B., Néo, T. A., Corona, B., Alfonso, P., Machado, R. Z., & Oliveira, M. C. (2016). Standardization of a SYBR Green Based Real-Time PCR System for Detection and Molecular Quantification of Babesia bovis and B. bigemina in Water Buffaloes (Bubalus bubalis). Journal of Buffalo Science, 5(2), 44–52. https://doi.org/10.6000/1927-520X.2016.05.02.4

Issue

Section

Articles