Multi-OMICS and Molecular Biology Perspective in Buffalo Genome

Authors

  • Suranjana Sikdar Department of Microbiology, University of Chittagong, Chattogram-4331, Bangladesh
  • Tuhin Das Department of Microbiology, University of Chittagong, Chattogram-4331, Bangladesh
  • Emran Hossain Sajib Faculty of Biotechnology & Genetic Engineering, Sylhet Agricultural University, Sylhet-3100, Bangladesh
  • Kazi Mahbub Ur Rahman Rahman Senior Assistant Secretary, Government of the People’s Republic of Bangladesh
  • AMAM Zonaed Siddik Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Chattogram-4202, Bangladesh; Genomic Research Group, NextGen Informatics Ltd., Chattogram-4202, Bangladesh
  • Md Bashir Uddin Department of Medicine, Sylhet Agricultural University, Sylhet-3100, Bangladesh; Genomic Research Group, NextGen Informatics Ltd., Chattogram-4202, Bangladesh

DOI:

https://doi.org/10.6000/1927-520X.2021.10.04

Keywords:

Buffalo, Genomics, Proteomics, Whole genome sequencing, SNP, Microarray, Conservation, Breed up-gradation, Gene expression, GWAS

Abstract

The bovine species buffalo was domesticated from its wild strain Bubalus arnee and is widely used livestock in southern Asia. There are two distinct types of Buffalo- the swamp buffalo (B. bubalis kerebau) and the river buffalo (B. bubalis bubalis), which diverged from the wild Asian water buffalo and then evolved in separate geographical regions. Several research studies performed on buffalo, like- characterization of trait-specific Single Nucleotide Polymorphism (SNP), genetic and phenotypic diversity, gene prediction and function annotation, mapping of the draft genome, have helped our understanding of the buffalo genome. Some advanced discovery as identification of Single Nucleotide Variant (SNVs), Simple Sequence Repeats (SSR) marker and their association with various phenotypic traits, MicroRNA's expression profiling, whole-genome sequencing, etc. have also enabled us to track the chromosomal evolution, physiological processes, and gene expression of buffalo. Proper enhancement of these traits can lead us to apply multi-omics-based tools for better animal health and production. Recent advancement in genomic research on buffalo is being accelerated with the association of modern tools like- Genome-Wide Association Study (GWAS), genotyping by sequencing, epigenomic screening, microRNA's expression profiling, microarray technology, and whole-genome sequencing. All these tools bear great significance in breed up-gradation, identification of the phylogenetic relationship between species in proteome and genomic level, study gene expression level, diagnose diseases or developmental stages, phenotypic diversity, etc. All this knowledge paved the way for better optimization of production efficiency, product quality, and resistance to certain health hazards.

References

Habib MR, Haque MN, Rahman A, Aftabuzzaman M, Ali MM, Shahjahan M. Dairy buffalo production scenario in Bangladesh: a review. Asian J Med Biol Res 2017; 3: 305-16. https://doi.org/10.3329/ajmbr.v3i3.34518 DOI: https://doi.org/10.3329/ajmbr.v3i3.34518

Arefaine H, Kashwa M. A review on strategies for sustainable buffalo milk production in Egypt. J Biol Agric Healthc 2015; 5: 63-7.

Desta TT. Introduction of domestic Buffalo (Bubalus bubalis) into Ethiopia would be feasible. Renew Agric Food Syst 2012; 27: 305-13. https://doi.org/10.1017/S1742170511000366 DOI: https://doi.org/10.1017/S1742170511000366

Chantalakhana C, Bunyavejchewin P. Buffaloes, and draught power. Outlook Agric 1994; 23: 91-5. https://doi.org/10.1177/003072709402300204 DOI: https://doi.org/10.1177/003072709402300204

Abd El-Salam MH, El-Shibiny S. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci Technol 2011; 91: 663. https://doi.org/10.1007/s13594-011-0029-2 DOI: https://doi.org/10.1007/s13594-011-0029-2

Samad MA. A systematic review of research findings on buffalo health and production published during the last six decades in Bangladesh. J Vet Med OH Res 2020; 2: 1-62. https://doi.org/10.36111/jvmohr.2020.2(1).0016 DOI: https://doi.org/10.36111/jvmohr.2020.2(1).0016

Dubey PC, Suman CL, Sanyal MK, Pandey HS, Saxena MM, Yadav PL. Factors affecting the composition of milk of buffaloes. Indian J Anim Sci 1997; 67.

Naveena BM, Kiran M. Buffalo meat quality, composition, and processing characteristics: Contribution to the global economy and nutritional security. Anim Front 2014; 4: 18-24. https://doi.org/10.2527/af.2014-0029 DOI: https://doi.org/10.2527/af.2014-0029

FAOSTAT. FAO statistics division. Rome, Italy: 2014.

Pasha TN, Hayat Z. Present situation and future perspective of buffalo production in Asia. J Anim Plant Sci 2012; 22: 250-6.

Coroian A, Erler S, Matea CT, Mireșan V, Răducu C, Bele C. Seasonal changes of buffalo colostrum: physicochemical parameters, fatty acids, and cholesterol variation. Chem Cent J 2013; 7: 40. https://doi.org/10.1186/1752-153X-7-40 DOI: https://doi.org/10.1186/1752-153X-7-40

Statistics D of L. Annual report on livestock. Dhaka, Bangladesh, 2015.

Faruque MO, Hasnath MA, Siddique NN. Present status of buffaloes and their productivity in Bangladesh. Asian-Australasian J Anim Sci 1990; 3: 287-92. https://doi.org/10.5713/ajas.1990.287 DOI: https://doi.org/10.5713/ajas.1990.287

Chakravarty AK. Strategies for genetic improvement of buffaloes through the production of quality male germplasm in SAARC countries. Semin. Pap. Present. "High Yielding Dairy Buffalo Breed Dev. SAARC Ctries., 2013.

Nations F and AO of the U. FAOSTAT Database, 2014.

Gonçalves EC, Silva A, Barbosa MSR, Schneider MPC. Isolation and characterization of microsatellite loci in Amazonian red‐handed howlers Alouatta Beelzebub (Primates, Plathyrrini). Mol Ecol Notes 2004; 4: 406-8. https://doi.org/10.1111/j.1471-8286.2004.00667.x DOI: https://doi.org/10.1111/j.1471-8286.2004.00667.x

Uenoyama Y, Pheng V, Tsukamura H, Maeda K. The roles of kisspeptin revisited: inside and outside the hypothalamus. J Reprod Dev 2016. https://doi.org/10.1262/jrd.2016-083 DOI: https://doi.org/10.1262/jrd.2016-083

Scott CJ, Rose JL, Gunn AJ, McGrath BM. Kisspeptin and the regulation of the reproductive axis in domestic animals. J Endocrinol 2019; 240: R1-16. https://doi.org/10.1530/JOE-18-0485 DOI: https://doi.org/10.1530/JOE-18-0485

Bhardwaj S, Kumar P, Jerome A, Ravesh S, Patil C, Singh P. Serum kisspeptin: New possible biomarker for sexual behaviour and sperm concentration in buffalo bulls. Reprod Domest Anim 2020; 55: 1190-201. https://doi.org/10.1111/rda.13761 DOI: https://doi.org/10.1111/rda.13761

Sikka P, Nath A, Paul SS, Andonissamy J, Mishra DC, Rao AR. Inferring relationship of blood metabolic changes and average daily gain with feed conversion efficiency in murrah heifers: machine learning approach. Front Vet Sci 2020; 7. https://doi.org/10.3389/fvets.2020.00518 DOI: https://doi.org/10.3389/fvets.2020.00518

Singh HP, Jain RK, Tiwari D, Mehta MK, Mudgal V. Strategic supplementation of antioxidant micronutrients in peri-parturient murrah buffaloes helps augment the udder health and milk production. Biol Trace Elem Res 2020; 1-9. https://doi.org/10.1007/s12011-020-02319-0 DOI: https://doi.org/10.1007/s12011-020-02319-0

Saini M, Sheoran S, Vijayalakshmy K, Rajendran R, Kumar D, Kumar P. Semen parameters and fertility potency of a cloned water buffalo (Bubalus bubalis) bull produced from a semen-derived epithelial cell. PLoS One 2020; 15: e0237766. https://doi.org/10.1371/journal.pone.0237766 DOI: https://doi.org/10.1371/journal.pone.0237766

Jan MH, Kumar H, Kumar S, Sharma RK, Gupta A, Mehrara KL. Effect of progesterone administration during the growing phase of first dominant follicle on follicular wave pattern in buffalo heifers. Trop Anim Health Prod 2020; 52: 1395-402. https://doi.org/10.1007/s11250-019-02143-2 DOI: https://doi.org/10.1007/s11250-019-02143-2

Mishra DC, Sikka P, Yadav S, Bhati J, Paul SS, Jerome A. Identification and characterization of trait-specific SNPs using ddRAD sequencing in water buffalo. Genomics 2020. https://doi.org/10.1016/j.ygeno.2020.04.012 DOI: https://doi.org/10.1016/j.ygeno.2020.04.012

Selokar NL, Dua S, Kumar D, Sharma B, Saini M. Application of nanotechnology in agricultural farm animals. Biog. Nano-Particles their Use Agro-ecosystems, Springer 2020; p. 1-8. https://doi.org/10.1007/978-981-15-2985-6_1 DOI: https://doi.org/10.1007/978-981-15-2985-6_1

Buffalo farm of Luvas declared best center of the country. Dainik Jagran. 2017 Jul. Available from: https://www.jagran.com/haryana/hisar-16429094.html

Khan MS, Ahmad N, Khan MA. Genetic resources and diversity in dairy buffaloes of Pakistan. Pak Vet J 2007; 27: 201.

Osmani A, Robertson ID, Habib I, Aslami AA. History and epidemiology of foot-and-mouth disease in Afghanistan: a retrospective study. BMC Vet Res 2019; 15: 340. https://doi.org/10.1186/s12917-019-2119-y DOI: https://doi.org/10.1186/s12917-019-2119-y

Lau SKP, Tsang AKL, Ahmed SS, Alam MM, Ahmed Z, Wong P-C. First genome sequences of buffalo coronavirus from water buffaloes in Bangladesh. New Microbes New Infect 2016; 11: 54-6. https://doi.org/10.1016/j.nmni.2016.02.011 DOI: https://doi.org/10.1016/j.nmni.2016.02.011

Mintoo AA, Zhang H, Chen C, Moniruzzaman M, Deng T, Anam M, . Draft genome of the river water buffalo. Ecol Evol 2019; 9: 3378-88. https://doi.org/10.1002/ece3.4965 DOI: https://doi.org/10.1002/ece3.4965

Dutta P, Talenti A, Young R, Jayaraman S, Callaby R, Jadhav SK. Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication. Nat Commun 2020; 11: 1-13. https://doi.org/10.1038/s41467-020-18550-1 DOI: https://doi.org/10.1038/s41467-020-18550-1

Yue X-P, Li R, Xie W-M, Xu P, Chang T-C, Liu L. Phylogeography and domestication of Chinese swamp buffalo. PLoS One 2013; 8: e56552. https://doi.org/10.1371/journal.pone.0056552 DOI: https://doi.org/10.1371/journal.pone.0056552

Yang WC, Tang KQ, Mei J, Zeng WB, Yang LG. Genetic diversity analysis of an indigenous Chinese buffalo breed and hybrids based on microsatellite data. Genet Mol Res 2011; 10: 3421-6. https://doi.org/10.4238/2011.December.5.1 DOI: https://doi.org/10.4238/2011.December.5.1

Deng T, Pang C, Lu X, Zhu P, Duan A, Tan Z. De novo transcriptome assembly of the Chinese swamp buffalo by RNA sequencing and SSR marker discovery. PLoS One 2016; 11: e0147132. https://doi.org/10.1371/journal.pone.0147132 DOI: https://doi.org/10.1371/journal.pone.0147132

Kumar S, Nagarajan M, Sandhu JS, Kumar N, Behl V, Nishanth G. Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim Genet 2007; 38: 227-32. https://doi.org/10.1111/j.1365-2052.2007.01602.x DOI: https://doi.org/10.1111/j.1365-2052.2007.01602.x

Moaeen-Ud-Din M. Buffalo genome research-a review. Anim Sci Pap Reports 2014; 32: 187-99.

Albuquerque MSM, Do Egito AA, Felipe Marques JR, Ciampi AY, Mariante ADS, Ribeiro Castro ST. Genetic variability in buffaloes estimated by RAPD markers. Brazilian Agric Res 2006; 41: 623-8. https://doi.org/10.1590/S0100-204X2006000400011 DOI: https://doi.org/10.1590/S0100-204X2006000400011

Meignanalakshmi S, Nainar AM. PCR-RFLP analysis of beta-lactoglobulin gene in Murrah buffaloes. Tamilnadu J Vet Anim Sci 2009; 5: 194-7.

Abdel-Rahman SM. Evidences reveal that cattle and Buffalo evolutionary derived from the same ancestor based on cytogenetic and molecular markers. Biotechnol Anim Husb 2006; 22: 1-9. https://doi.org/10.2298/BAH0604001A DOI: https://doi.org/10.2298/BAH0604001A

Nagarajan M, Kumar N, Nishanth G, Haribaskar R, Paranthaman K, Gupta J. Microsatellite markers of water buffalo, Bubalus bubalis-development, characterisation and linkage disequilibrium studies. BMC Genet 2009; 10: 1-7. https://doi.org/10.1186/1471-2156-10-68 DOI: https://doi.org/10.1186/1471-2156-10-68

Moolmuanga B, Srapheta S, Na-Chiangmai A, Smitha DR, Panyima S, Triwitayakorna K. Application of AFLP technique to the study of calving interval trait of Thai swamp buffalo (Bubalus bubalis). ScienceAsia 2007; 33: 161-4. https://doi.org/10.2306/scienceasia1513-1874.2007.33.161 DOI: https://doi.org/10.2306/scienceasia1513-1874.2007.33.161

Kiran M, Naveena BM, Reddy KS, Shahikumar M, Reddy VR, Kulkarni V V, . Understanding tenderness variability and ageing changes in buffalo meat: biochemical, ultrastructural and proteome characterization. Animal 2016; 10: 1007-15. https://doi.org/10.1017/S1751731115002931 DOI: https://doi.org/10.1017/S1751731115002931

Das AK, Sharma D, Kumar N. Buffalo genetic resources in India and their conservation. Buffalo Bull 2008; 27: 265-8.

Ahmed SS, Abd el Aziz KB, Hassan NA, Mabrouk DM. Genetic polymorphism of some genes related to reproductive traits and their association with calving interval in Egyptian Buffalo. GQG 2011; 3: 13-9.

Huang Y, Fu Q, Yang L, Guan J, Pan H, Chen F. Differences between high‐and low‐motility buffalo sperm identified by comparative proteomics. Reprod Domest Anim 2015; 50: 443-51. https://doi.org/10.1111/rda.12511 DOI: https://doi.org/10.1111/rda.12511

Bush WS, Moore JH. Genome-wide association studies. PLoS Comput Biol 2012; 8: e1002822. https://doi.org/10.1371/journal.pcbi.1002822 DOI: https://doi.org/10.1371/journal.pcbi.1002822

Koopaei HK, Koshkoiyeh AE. Application of genomic technologies to the improvement of meat quality in farm animals. Biotechnol Mol Biol Rev 2011; 6: 126-32.

Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011; 12: 499-510. https://doi.org/10.1038/nrg3012 DOI: https://doi.org/10.1038/nrg3012

Gore MA, Chia J-M, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL. A first-generation haplotype map of maize. Science (80- ) 2009; 326: 1115-7. https://doi.org/10.1126/science.1177837 DOI: https://doi.org/10.1126/science.1177837

De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG. Genotyping-by-sequencing (GBS): a novel, efficient, and cost-effective genotyping method for cattle using next-generation sequencing. PLoS One 2013; 8: e62137. https://doi.org/10.1371/journal.pone.0062137 DOI: https://doi.org/10.1371/journal.pone.0062137

Bartel DP. Metazoan MicroRNAs. Cell 2018; 173: 20-51. https://doi.org/10.1016/j.cell.2018.03.006 DOI: https://doi.org/10.1016/j.cell.2018.03.006

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-33. https://doi.org/10.1016/j.cell.2009.01.002 DOI: https://doi.org/10.1016/j.cell.2009.01.002

Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351-79. https://doi.org/10.1146/annurev-biochem-060308-103103 DOI: https://doi.org/10.1146/annurev-biochem-060308-103103

Singh J, Dhanoa JK, Choudhary RK, Singh A, Sethi RS, Kaur S. MicroRNA expression profiling in PBMCs of Indian water buffalo (Bubalus bubalis) infected with Brucella and Johne's disease. ExRNA 2020; 2: 8. https://doi.org/10.1186/s41544-020-00049 DOI: https://doi.org/10.1186/s41544-020-00049-y

y

Xu G, Zhang Z, Wei J, Zhang Y, Zhang Y, Guo L. MicroR-142-3p down-regulates IRAK-1 in response to Mycobac-terium Bovis BCG infection in macrophages. Tuberculosis 2013; 93: 606-11. https://doi.org/10.1016/j.tube.2013.08.006 DOI: https://doi.org/10.1016/j.tube.2013.08.006

Rani P, Onteru S, Bioscience DS-F, 2020 undefined. Genome-wide profiling and analysis of microRNA expression in buffalo milk exosomes. Elsevier n.d. https://doi.org/10.1016/j.fbio.2020.100769 DOI: https://doi.org/10.1016/j.fbio.2020.100769

Huang J, Wang S, Feng X, Liu X, Zhao J, Zheng Q. miRNA transcriptome comparison between muscle and adipose tissues indicates potential miRNAs associated with intramuscular fat in Chinese swamp buffalo. Genome 2019; 62: 729-38. https://doi.org/10.1139/gen-2018-0178 DOI: https://doi.org/10.1139/gen-2018-0178

Taub FE, Deleo JM, Thompson EB. Sequential Comparative Hybridizations Analyzed by Computerized Image Processing Can Identify and Quantitate Regulated RNAs. DNA 1983; 2: 309-27. https://doi.org/10.1089/dna.1983.2.309 DOI: https://doi.org/10.1089/dna.1983.2.309

Beena V, Pawaiya R, Gururaj K, Shivasharanappa S, Karikalan M. Application of Microarray in Animal Disease Pathogenesis and Diagnosis. J Vet Sci Technol 2016; 07. https://doi.org/10.4172/2157-7579.1000402 DOI: https://doi.org/10.4172/2157-7579.1000402

Patil M, Bhong C. Veterinary Diagnostics and DNA Microarray Technology. Int J Livest Res 2015; 5: 1. https://doi.org/10.5455/ijlr.20150330032234 DOI: https://doi.org/10.5455/ijlr.20150330032234

Yang J, Hong Y, Yuan C, Fu Z, Shi Y, Zhang M. Microarray Analysis of Gene Expression Profiles of Schistosoma japonicum Derived from Less-Susceptible Host Water Buffalo and Susceptible Host Goat. PLoS One 2013; 8. https://doi.org/10.1371/journal.pone.0070367 DOI: https://doi.org/10.1371/journal.pone.0070367

Kandil OM, Ghanem N, Abdoon ASS, Hölker M, Phatsara C, Schellander K. Transcriptional analysis of buffalo (Bubalus bubalis) oocytes during in vitro maturation using bovine cDNA microarray. Reprod Domest Anim 2010; 45: 63-74. https://doi.org/10.1111/j.1439-0531.2008.01238.x DOI: https://doi.org/10.1111/j.1439-0531.2008.01238.x

Paul N, Kumaresan A, Das Gupta M, Nag P, Guvvala PR, Kuntareddi C. Transcriptomic Profiling of Buffalo Spermatozoa Reveals Dysregulation of Functionally Relevant mRNAs in Low-Fertile Bulls. Front Vet Sci 2021; 7: 1-15. https://doi.org/10.3389/fvets.2020.609518 DOI: https://doi.org/10.3389/fvets.2020.609518

El-Ashker M, Gwida M, Monecke S, Ehricht R, Elsayed M, El-Gohary F. Microarray-based detection of resistance genes in coagulase-negative staphylococci isolated from cattle and Buffalo with mastitis in Egypt. Trop Anim Health Prod 2020; 52: 3855-62. https://doi.org/10.1007/s11250-020-02424-1 DOI: https://doi.org/10.1007/s11250-020-02424-1

Kumar P, Yadav P, Verma A, Singh D, De S, Datta TK. Identification of stable reference genes for gene expression studies using quantitative real-time PCR in buffalo oocytes and embryos. Reprod Domest Anim 2012; 47: e88-91. https://doi.org/10.1111/j.1439-0531.2012.01998.x DOI: https://doi.org/10.1111/j.1439-0531.2012.01998.x

Rana SK, Kota S, Samayam PNR, Rajan S, Srinivasan VA. Use of real-time polymerase chain reaction to detect bovine herpesvirus 1 in frozen cattle and buffalo semen in India. Vet Ital 2011; 47: 313-22.

Iannuzzi A, Perucatti A, Pauciullo A, Genualdo V, De Lorenzi L, Parma P. Fluorescent in situ hybridization mapping of three fecundity genes on cattle, river buffalo, sheep, and goat. Caryologia 2015; 68: 9-12. https://doi.org/10.1080/00087114.2014.996038 DOI: https://doi.org/10.1080/00087114.2014.996038

Eggert-Kruse W, Kiefer I, Beck C, Demirakca T, Strowitzki T. Role for tumor necrosis factor a (TNF-a) and interleukin 1-b (IL-1b) determination in seminal plasma during infertility investigation. Fertil Steril 2007; 87: 810-23. https://doi.org/10.1016/j.fertnstert.2006.08.103 DOI: https://doi.org/10.1016/j.fertnstert.2006.08.103

Koçak I, Yenisey C, Dündar M, Okyay P, Serter M. Relationship between seminal plasma interleukin-6 and tumor necrosis factor α levels with semen parameters in fertile and infertile men. Urol Res 2002; 30: 263-7. https://doi.org/10.1007/s00240-002-0269-y DOI: https://doi.org/10.1007/s00240-002-0269-y

Yang J, Kennelly JJ, Baracos VE. Physiological levels of Stat5 DNA binding activity and protein in bovine mammary gland. J Anim Sci 2000; 78: 3126-34. https://doi.org/10.2527/2000.78123126x DOI: https://doi.org/10.2527/2000.78123126x

Homer EM, Derecka K, Webb R, Garnsworthy PC. Mutations in genes involved in oestrous cycle associated expression of oestrus. Anim Reprod Sci 2013; 142: 106-12. https://doi.org/10.1016/j.anireprosci.2013.09.018 DOI: https://doi.org/10.1016/j.anireprosci.2013.09.018

Chu MX, He YQ, Cheng DX, Ye SC, Fang L, Wang JY. Association between expression of reproductive seasonality and alleles of melatonin receptor 1A in goats. Anim Reprod Sci 2007; 101: 276-84. https://doi.org/10.1016/j.anireprosci.2006.09.012 DOI: https://doi.org/10.1016/j.anireprosci.2006.09.012

Luridiana S, Mura MC, Pazzola M, Paludo M, Cosso G, Dettori ML. Association between melatonin receptor 1A (MTNR1A) gene polymorphism and the reproductive performance of Mediterranean Italian buffaloes. Reprod Fertil Dev 2012; 24: 983-7. https://doi.org/10.1071/RD11297 DOI: https://doi.org/10.1071/RD11297

Barker JSF, Moore SS, Hetzel DJS, Evans D, Byrne K, Tan SG. Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein‐coding loci. Anim Genet 1997; 28: 103-15. https://doi.org/10.1111/j.1365-2052.1997.00085.x DOI: https://doi.org/10.1111/j.1365-2052.1997.00085.x

Ritz LR, Glowatzki‐Mullis M, MacHugh DE, Gaillard C. Phylogenetic analysis of the tribe Bovini using microsatellites. Anim Genet 2000; 31: 178-85. https://doi.org/10.1046/j.1365-2052.2000.00621.x DOI: https://doi.org/10.1046/j.1365-2052.2000.00621.x

Ramadan HAI, El-Hefnawi MM. Phylogenetic analysis and comparison between cow and Buffalo (including Egyptian buffaloes) mitochondrial displacement-loop regions: Full-Length Research Paper. DNA Seq 2008; 19: 401-10. https://doi.org/10.1080/19401730802351004 DOI: https://doi.org/10.1080/19401730802351004

Kole C, Cockett NE, Kole C. Genome Mapping and Genomics in Domestic Animals. Springer, 2009. https://doi.org/10.1007/978-3-540-73835-0 DOI: https://doi.org/10.1007/978-3-540-73835-0

Amin M, Suarsini E, Azmi I, Gofur A. Phylogenetic analysis of local endemic Buffalo (Bubalus bubalis) based on cytochrome B gene in central Indonesia. J Teknol 2016; 78: 393-7. https://doi.org/10.11113/jt.v78.8343 DOI: https://doi.org/10.11113/jt.v78.8343

Lin Q, Li M-W, Wang Y-Z, Qiu H-J. Determination and phylogenetic analysis of the complete mitochondrial genome of Bubalus bubalis Linnaeus, 1758 breed Murrah (Artiodactyla: Bovidae). Mitochondrial DNA Part B 2020; 5: 432-3. DOI: https://doi.org/10.1080/23802359.2019.1704181

Downloads

Published

2021-05-27

How to Cite

Sikdar, S. ., Das, T. ., Sajib, E. H. ., Rahman, K. M. U. R., Siddik, A. Z. ., & Uddin, . M. B. . (2021). Multi-OMICS and Molecular Biology Perspective in Buffalo Genome . Journal of Buffalo Science, 10, 21–31. https://doi.org/10.6000/1927-520X.2021.10.04

Issue

Section

Articles