Expression and Role of PIWI Proteins and piRNAs in Reproduction of Water Buffalo (Bubalus bubalis, Linn.)

Authors

  • Rocelle Joy C. Hufana Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines https://orcid.org/0000-0001-9433-0729
  • Perry Lorraine D. Canare Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines
  • Evaristo A. Abella Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines
  • Peregrino G. Duran Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines and Reproduction and Physiology Section, Department of Agriculture-Philippine Carabao Center, Science City of Munoz, Nueva Ecija 3120 Philippines
  • Rakesh Kumar Animal Biotechnology Centre, ICAR-NDRI, Karnal, India
  • Danilda Hufana-Duran Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Nueva Ecija 3120, Philippines and Reproduction and Physiology Section, Department of Agriculture-Philippine Carabao Center, Science City of Munoz, Nueva Ecija 3120 Philippines https://orcid.org/0000-0002-5666-0249

DOI:

https://doi.org/10.6000/1927-520X.2022.11.11

Keywords:

PIWI proteins, piRNA, buffalo fertility, gametogenesis, reproduction, breeding

Abstract

High-fertile and productive dairy animals are important to satisfy the growing population's demand. Sire fertility is one of the essential factors that regulate the overall pregnancy rate of dairy herds. However, sire fertility varies from 10 to 90%, suggesting that male fertility largely accounts for varying fertility levels across the herd. Sub-fertile bulls and females should be identified and discarded promptly to improve the dairy herd's productivity. The most dominant factors implicated in culling are poor semen quality, poor semen freezability (<35% post-thaw motility), and poor libido for the bulls and hard breeders for females that cause huge economic loss to the raisers. Understanding the basic mechanism of male and female fertility has undergone tremendous change in recent times owing to the advancement of molecular tools judging the essential molecules responsible for fertility. Presently, a new molecular niche has surfaced in testes, strongly influencing the fertilization potential of spermatozoa. Over the last decade, there has arrived a conclusion that out of several factors, piRNA and PIWI proteins are largely implicated in regulating the vital aspects of fertility and embryogenesis. While this development is advancing in other animals, very limited information is available on PIWI protein and piRNAs in large animals. Except for a few sporadic information on PIWI protein in cattle, very limited information is available on piRNAs and PIWI protein in regulation with buffalo bull fertility and growth of embryos of buffaloes, posting a huge demand for research.

References

Hedge NG. Buffalo Husbandry for Sustainable Development of Small Farmers in India and other Developing Countries. Asian J Res Anim Vet Sci 2019; 3(1): 1-20

Tomé D, Dubarry M, Fromentin G. Nutritional value of milk and meat products derived from cloning. Cloning Stem Cells. 2004; 6(2): 172-7. https://doi.org/10.1089/1536230041372445

Toldrá F. Lawrie's meat science. 8th ed. Woodhead Publishing Series in Food Science, Technology and Nutrition; 2017.

Ritchie H, Roser M. Meat and dairy production. Our World in Data. 2017 Aug 25; [cited: November 2022]; Available from: https://ourworldindata.org/meat-production

Delgado CL. Rising consumption of meat and milk in developing countries has created a new food revolution. J Nutr 2003; 133(11): 3907S-10S. https://doi.org/10.1093/jn/133.11.3907S

FAO. Food and agriculture organization of the United Nations. Gateway to Dairy Production and Products. 2021. Available from: https://www.fao.org/dairy-production-products/en/

Sorensen Jr AM. Animal reproduction. Principles and Practices. McGraw-Hill Book Company; 1979.

Khate K. Studies on multistage selection of dairy bulls. MV Sc (Doctoral dissertation, Thesis, National Dairy Research Institute. Karnal, Haryana, India).

Mukhopadhyay CS, Gupta AK, Yadav BR, Khate K, Raina VS, Mohanty TK, Dubey PP. Subfertility in males: an important cause of bull disposal in bovines. Asian-Australasian J Anim Sci 2010; 23(4): 450-5. https://doi.org/10.5713/ajas.2010.90298

Thomson T, Lin H. The biogenesis and function PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2009; 25: 355-76. https://doi.org/10.1146/annurev.cellbio.24.110707.175327

Lin H, Spradling AC. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 1997; 124(12): 2463-76. https://doi.org/10.1242/dev.124.12.2463

Ku HY, Lin H. PIWI proteins and their interactors in piRNA biogenesis, germline development and gene expression. Nat Sci Review 2014; 1(2): 205-18. https://doi.org/10.1093/nsr/nwu014

Edge L. Molecular biology select. Cell 2006; 126: 223-5. https://doi.org/10.1016/j.cell.2006.07.012

Seto AG, Kingston RE, Lau NC. The coming of age for piwi proteins. Mol Cell 2007; 26(5): 603-9. https://doi.org/10.1016/j.molcel.2007.05.021

Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007; 128(6): 1089-103. https://doi.org/10.1016/j.cell.2007.01.043

Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, Bestor T, Hannon GJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 2008; 31(6): 785-99. https://doi.org/10.1016/j.molcel.2008.09.003

Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell 2009; 136(4): 656-68. https://doi.org/10.1016/j.cell.2009.01.045

Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 2008; 31(1): 79-90. https://doi.org/10.1016/j.molcel.2008.06.003

Klattenhoff C, Theurkauf W. Biogenesis and germline functions of piRNAs. Development 2008; 135(1): 3-9. https://doi.org/10.1242/dev.006486

Faehnle CR, Joshua-Tor L. Argonautes confront new small RNAs. Current Opinion Chem Biol 2007; 11(5): 569-77. https://doi.org/10.1016/j.cbpa.2007.08.032

Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS, Bartel DP. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 2008; 455(7217): 1193-7. https://doi.org/10.1038/nature07415

Wang G, Reinke VAC. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Cur Biol 2008; 18(12): 861-7. https://doi.org/10.1016/j.cub.2008.05.009

Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 2019; 20(2): 89-108. https://doi.org/10.1038/s41576-018-0073-3

Litwack G. Human biochemistry. 1st ed. Academic Press. 2017.

Thomas J, Ellis A. Reproductive anatomy and physiology of the cow. University of Missouri Extension. Accessed on September 11, 2022. Available from: https://extension.missouri.edu/publications/g2015

Perera BO. Reproduction in water buffalo: comparative aspects and implications for management. J Reprod Fertil Suppl 1999; 54: 157-68.

Kumar R, Datta TK, Hufana-Duran D, Saetong C. Explaining the biogenesis and interaction of piRNAs and PIWI proteins in buffalo testes in relation to bulls’ fertility. File No. IMRC/AISTDF/CRD/2019/000099, Science & Engineering Research Board (SERB), New Delhi, India. 17 July 2020.

Cox DN, Chao A, Baker J, Chang L, Qiao D, Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 1998; 12(23): 3715-27. https://doi.org/10.1101/gad.12.23.3715

Cox DN, Chao A, Lin H. Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 2000; 127(3): 503-14. https://doi.org/10.1242/dev.127.3.503

Megosh HB, Cox DN, Campbell C, Lin H. The role of PIWI and the miRNA machinery in Drosophila germline determination. Cur Biol 2006; 16(19): 1884-94. https://doi.org/10.1016/j.cub.2006.08.051

Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 2004; 131(4): 839-849. https://doi.org/10.1242/dev.00973

Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, Chien M. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 2006; 442(7099): 203-7. https://doi.org/10.1038/nature04916

Unhavaithaya Y, Hao Y, Beyret E, Yin H, Kuramochi-Miyagawa S, Nakano T, Lin H. MILI, a PIWI-interacting RNA-binding protein, is required for germline stem cell self-renewal and appears to positively regulate translation. J Biol Chem 2009; 284(10): 6507-19. https://doi.org/10.1074/jbc.M809104200

Deng W, Lin H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2002; 2(6): 819-30. https://doi.org/10.1016/S1534-5807(02)00165-X

Grivna, ST, Beyret E, Wang Z, Lin H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 2006; 20(13): 1709-1714. https://doi.org/10.1101/gad.1434406

Carmell MA, Girard A, Van De Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 2007; 12(4): 503-14. https://doi.org/10.1016/j.devcel.2007.03.001

Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 2008; 22(7): 908-17. https://doi.org/10.1101/gad.1640708

Houwing S, Berezikov E, Ketting RF. Zili is required for germ cell differentiation and meiosis in zebrafish. The EMBO J 2008; 27(20): 2702-11. https://doi.org/10.1038/emboj.2008.204

Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Alvarado AS. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Sci 2005; 310(5752): 1327-30. https://doi.org/10.1126/science.1116110

Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR. The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 2008; 14(6): 1174-86. https://doi.org/10.1261/rna.1085008

Mochizuki K, Gorovsky MA. Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev 2004; 18(17): 2068-73. https://doi.org/10.1101/gad.1219904

Aronica L, Bednenko J, Noto T, DeSouza LV, Siu KM, Loidl J, Pearlman RE, Gorovsky MA, Mochizuki K. Study of an RNA helicase implicates small RNA–non-coding RNA interactions in programmed DNA elimination in Tetrahymena. Genes Dev 22(16): 2228-41. https://doi.org/10.1101/gad.481908

Qiao D, Zeeman AM, Deng W, Looijenga LH, Lin H. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 2002; 21(25): 3988-99. https://doi.org/10.1038/sj.onc.1205505

Liu X, Sun Y, Guo J, Ma H, Li J, Dong B, Jin G, Zhang J, Wu J, Meng L, Shou C. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer 2006; 118(8): 1922-9. https://doi.org/10.1002/ijc.21575

Saffman EE, Lasko P. Germline development in vertebrates and invertebrates. Cell Mol Life Sci 1999; 55(8): 1141-63. https://doi.org/10.1007/s000180050363

Shah SM, Saini N, Manik RS, Palta P, Singla SK, Chauhan MS. Spontaneous differentiation of buffalo (Bubalus bubalis) embryonic stem cells towards germ cell lineage. J Stem Cell Res Med 2016; 1: 18-26. https://doi.org/10.15761/JSCRM.1000103

Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S, Klein PS, Rigoutsos I, Jongens TA, Mourelatos Z. Arginine methylation of Piwi proteins catalyzed by dPRMT5 is required for Ago3 and Aub stability. Nat Cell Bio 2009; 11(5): 652-8. https://doi.org/10.1038/ncb1872

Illmensee K, Mahowald AP. Transplantation of posterior polar plasm in Drosophila. Induction of germ cells at the anterior pole of the egg. Proc Nat Acad Sci 1974; 71(4): 1016-20. https://doi.org/10.1073/pnas.71.4.1016

Thomson T, Lasko P. Tudor and its domains: germ cell formation from a Tudor perspective. Cell Res 2005; 15(4): 281-91. https://doi.org/10.1038/sj.cr.7290297

Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409(6818): 363-6. https://doi.org/10.1038/35053110

Caudy AA, Myers M, Hannon GJ, Hammond SM. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 2002; 16(19): 2491-6. https://doi.org/10.1101/gad.1025202

Yin H, Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 2007; 450(7167): 304-8. https://doi.org/10.1038/nature06263

Capra E, Turri F, Lazzari B, Cremonesi P, Gliozzi TM, Fojadelli I, Stella A, Pizzi F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High-and Low-motile sperm populations. BMC Genomics 2017; 18(1): 1-2. https://doi.org/10.1186/s12864-016-3394-7

Hong Y, Wu Y, Zhang J, Yu C, Shen L, Chen H, Chen L, Zhou X, Gao F. Decreased piRNAs in infertile semen are related to downregulation of sperm MitoPLD expression. Front Endocrinol (Lausanne) 2021; 12: 696121. https://doi.org/10.3389/fendo.2021.696121

Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, Zamore PD. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat Genet 2020; 52(7): 728-39. https://doi.org/10.1038/s41588-020-0657-7

Wu X, Pan Y, Fang Y, Zhang J, Xie M, Yang F, Yu T, Ma P, Li W, Shu Y. The biogenesis and functions of piRNAs in human diseases. Mol Ther Nucleic Acids 2020; 21: 108-20. https://doi.org/10.1016/j.omtn.2020.05.023

Cao C, Wen Y, Wang X, Fang N, Yuan S, Huang X. Testicular piRNA profile comparison between successful and unsuccessful micro-TESE retrieval in NOA patients. J Assist Reprod Genet 2018; 35(5): 801-8. https://doi.org/10.1007/s10815-018-1134-4

Choi H, Wang Z, Dean J. Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA. PLoS Genet 2021; 17(4): e1009485. https://doi.org/10.1371/journal.pgen.1009485

Zhang P, Kang JY, Gou LT, Wang J, Xue Y, Skogerboe G, Dai P, Huang DW, Chen R, Fu XD, Liu MF. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res 2015; 25(2): 193-207. https://doi.org/10.1038/cr.2015.4

Batista PJ, Ruby JG, Claycomb JM, Chiang R, Fahlgren N, Kasschau KD, Chaves DA, Gu W, Vasale JJ, Duan S, Conte Jr D. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008; 31(1): 67-78. https://doi.org/10.1016/j.molcel.2008.06.002

Yang CX, Du ZQ, Wright EC, Rothschild MF, Prather RS, Ross JW. Small RNA profile of the cumulus-oocyte complex and early embryos in the pig. Biol Reprod 2012; 87(5): 117-1. https://doi.org/10.1095/biolreprod.111.096669

Kordan W, Fraser L, Wysocki P, Strzezek R, Lecewicz M, Mogielnicka-Brzozowska M, Dziekonska A, Soliwoda D, Koziorowska-Gilun M. Semen quality assessments and their significance in reproductive technology. Polish J Vet Sci 2013; 16(4). https://doi.org/10.2478/pjvs-2013-0117

Ablondi M, Gòdia M, Rodriguez‐Gil JE, Sánchez A, Clop A. Characterization of sperm piRNAs and their correlation with semen quality traits in swine. Anim Gen 2021; 52(1): 114-20. https://doi.org/10.1111/age.13022

Di Giacomo M, Comazzetto S, Saini H, De Fazio S, Carrieri C, Morgan M, Vasiliauskaite L, Benes V, Enright AJ, O’Carroll D. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol Cell 2013; 50(4): 601-8. https://doi.org/10.1016/j.molcel.2013.04.026

Güneş S, Kulaç T. The role of epigenetics in spermatogenesis. Turkish J Urol 2013; 39(3): 181-187. https://doi.org/10.5152/tud.2013.037

Guan Y, Liang G, Hawken PA, Meachem SJ, Malecki IA, Ham S, Stewart T, Martin GB. Nutrition affects sertoli cell function but not sertoli cell numbers in sexually mature male sheep. Reprod Fertil Dev 2016; 28(8): 1152-63. https://doi.org/10.1071/RD14368

Chenoweth PJ. Bull libido/serving capacity. Vet Clin North Am Food Anim Pract 1997; 13(2): 331-44. https://doi.org/10.1016/S0749-0720(15)30345-5

Gebert D, Ketting RF, Zischler H, Rosenkranz D. piRNAs from pig testis provide evidence for a conserved role of the Piwi pathway in post-transcriptional gene regulation in mammals. PloS ONE 2015; 10(5): e0124860. https://doi.org/10.1371/journal.pone.0124860

Goh WS, Falciatori I, Tam OH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJ. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev 2015; 29(10): 1032-44. https://doi.org/10.1101/gad.260455.115

Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Pons MC, Silvia F, Garrido N, Anton E. Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 2015; 104(3): 591-601. https://doi.org/10.1016/j.fertnstert.2015.06.015

Singh RK.Kumaresan A, Chillar S, Rajak AK, Tripathi UK, Nayak S, Datta TK, Mohanty TK, Malhotra R. Identification of suitable combinations of in vitro sperm-function test for the prediction of fertility in buffalo bull. Theriogenology 2016; 86(9): 2263-2271. https://doi.org/10.1016/j.theriogenology.2016.07.022

Paul N, Kumaresan A, Gupta MD, Nag P, Guvvala PR, Kuntareddi C, Sharma A, Selvaraju S, Datta TK. Transcriptomic profiling of buffalo spermatozoa reveals dysregulation of functionally relevant mRNAs in low-fertile bulls. Front Vet Sci 2020; 7: 609518. https://doi.org/10.3389/fvets.2020.609518

Barreñada O, Larriba E, Brieño-Enriquez MA, Mazo JD. piRNA-IPdb: a PIWI-bound piRNAs database to mining NGS sncRNA data and beyond. BMC genomics 2021; 22(1): 1-8. https://doi.org/10.1186/s12864-021-08071-6

Verma A, Rajput S, Kumar S, De S, Chakravarty AK, Kumar R, Datta TK. Differential histone modification status of spermatozoa in relation to fertility of buffalo bulls. J Cell Biochem 2015; 116(5): 743-53. https://doi.org/10.1002/jcb.25029

Gòdia M, Swanson G, Krawetz SA. A history of why fathers’ RNA matters. Biol Reprod 2018; 99(1): 147-59. https://doi.org/10.1093/biolre/ioy007

Selvaraju S, Parthipan S, Somashekar L, Kolte AP, Krishnan Binsila B, Arangasamy A, Ravindra JP. Occurrence and functional significance of the transcriptome in bovine (Bos taurus) spermatozoa. Sci Rep 2017; 7(1): 1-4. https://doi.org/10.1038/srep42392

Das PJ, McCarthy F, Vishnoi M, Paria N, Gresham C, Li G, Kachroo P, Sudderth AK, Teague S, Love CC, Varner DD. Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq. PloS ONE 2013; 8(2): e56535. https://doi.org/10.1371/journal.pone.0056535

Hong Y, Wang C, Fu Z, Liang H, Zhang S, Lu M, Sun W, Ye C, Zhang CY, Zen K, Shi L. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Sci Rep 2016; 6(1): 1-0. https://doi.org/10.1038/srep24229

Cui L, Fang L, Shi B, Qiu S, Ye Y. Spermatozoa expression of piR-31704, piR-39888, and piR-40349 and their correlation to sperm concentration and fertilization rate after ICSI. Reprod Sci 2018; 25(5): 733-9. https://doi.org/10.1177/1933719117725822

Kumar K, Trzybulska D, Tsatsanis C, Giwercman A, Almstrup K. Identification of circulating small non-coding RNAs in relation to male subfertility and reproductive hormones. Mol Cell Endocrinol 2019; 492: 110443. https://doi.org/10.1016/j.mce.2019.05.002

Gilchrist GC, Tscherner A, Nalpathamkalam T, Merico D, LaMarre J. MicroRNA expression during bovine oocyte maturation and fertilization. Int J Mol Sci 2016; 17(3): 396. https://doi.org/10.3390/ijms17030396

Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, de Sousa Lopes SM, van der Westerlaken LA, Zischler H, Butter F, Roelen BA, Ketting RF. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep 2015; 10(12): 2069-82. https://doi.org/10.1016/j.celrep.2015.02.062

Silva RA. PIWI proteins in mammals: a cow's perspective (Doctoral dissertation). Universidade de Lisboa. 2011. 50 pp. https://repositorio.ul.pt/bitstream/10451/4533/ 1/ulfc090919_Ricardo_Silva.pdf

Russell SJ, Stalker L, Gilchrist G, Backx A, Molledo G, Foster RA, LaMarre J. Identification of PIWIL1 isoforms and their expression in bovine testes, oocytes, and early embryos. Biol Reprod 2016; 94(4): 75-1. https://doi.org/10.1095/biolreprod.115.136721

Russell S, Patel M, Gilchrist G, Stalker L, Gillis D, Rosenkranz D, LaMarre J. Bovine piRNA-like RNAs are associated with both transposable elements and mRNAs. Reprod 2017; 153(3): 305-18. https://doi.org/10.1530/REP-16-0620

Cai X, Liu Q, Zhang X, Ren Y, Lei X, Li S, Chen Q, Deng K, Wang P, Zhang H, Shi D. Identification and analysis of the expression of microRNA from lactating and nonlactating mammary glands of the Chinese swamp buffalo. J Dairy Sci 2017; 100(3): 1971-86. https://doi.org/10.3168/jds.2016-11461

Jerome A, Thirumaran SM, Kala SN. Repertoire of non-coding RNAs in corpus luteum of early pregnancy in buffalo (Bubalus bubalis). Vet World 2017; 10(9): 1129. https://doi.org/10.14202/vetworld.2017.1129-1134

Zhu Z, Li Y, Liang M, Wang L, Wang L, Rizak JD, Han C, Zhang W. piRNAs regulated by mitochondria variation linked with reproduction and aging in Caenorhabditis elegans. Front Genet 2020; 11: 190. https://doi.org/10.3389/fgene.2020.00190

Pan Y, Hu M, Liang H, Wang JJ, Tang LJ. The expression of the PIWI family members miwi and mili in mice testis is negatively affected by estrogen. Cell Tissue Res 2012; 350(1): 177-81. https://doi.org/10.1007/s00441-012-1447-z

Wang H, Wang B, Liu J, Li A, Zhu H, Wang X, Zhang Q. Piwil1 gene is regulated by hypothalamic-pituitary-gonadal axis in turbot (Scophthalmus maximus): A different effect in ovaries and testes. Gene 2018; 658: 86-95. https://doi.org/10.1016/j.gene.2018.03.016

Basir GS, O WS, Yu Ng EH, Ho PC. Morphometric analysis of peri-implantation endometrium in patients having excessively high oestradiol concentrations after ovarian stimulation. Hum Reprod 2001; 16(3): 435-40. https://doi.org/10.1093/humrep/16.3.435

Pereira N, Hancock K, Cordeiro CN, Lekovich JP, Schattman GL, Rosenwaks Z. Comparison of ovarian stimulation response in patients with breast cancer undergoing ovarian stimulation with letrozole and gonadotropins to patients undergoing ovarian stimulation with gonadotropins alone for elective cryopreservation of oocytes. Gynecol Endocrinol 2016; 32(10): 823-6. https://doi.org/10.1080/09513590.2016.1177013

Sari I, Gumus E, Taskiran AS, Karakoc Sokmensuer L. Effect of ovarian stimulation on the expression of piRNA pathway proteins. PloS ONE 2020; 15(5): e0232629. https://doi.org/10.1371/journal.pone.0232629

Huang YL, Zhang PF, Hou Z, Fu Q, Li MX, Huang DL, Deng TX, Lu YQ, Liang XW, Zhang M. Ubiquitome analysis reveals the involvement of lysine ubiquitination in the spermatogenesis process of adult buffalo (Bubalus bubalis) testis. Biosci Rep 2020; 40(6): BSR20193537. https://doi.org/10.1042/BSR20193537

Nakamura N. Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2013; 2(4): 732-50. https://doi.org/10.3390/cells2040732

Bergink S, Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009; 458(7237): 461-7. https://doi.org/10.1038/nature07963

Ulrich HD, Walden H. Ubiquitin signaling in DNA replication and repair. Nat Rev Mol Cell Biol 2010; 11(7): 479-89. https://doi.org/10.1038/nrm2921

Chen ZJ, Sun LJ. Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 2009; 33(3): 275-86. https://doi.org/10.1016/j.molcel.2009.01.014

Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 2011; 12(5): 295-307. https://doi.org/10.1038/nrm3099

Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Nat Acad Sci 2003; 100(21): 12201-6. https://doi.org/10.1073/pnas.1635054100

Pillai RS, Chuma S. piRNAs and their involvement in male germline development in mice. Dev Growth Differ 2012; 54(1): 78-92. https://doi.org/10.1111/j.1440-169X.2011.01320.x

Kowalczykiewicz D, Pawlak P, Lechniak D, Wrzesinski J. Altered expression of porcine piwi genes and piRNA during development. PLoS ONE 2013; 39(3): 181-187.

Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic element in the germline. Sci 2006; 313(5785): 320-4. https://doi.org/10.1126/science.1129333

Yartseva V, Giraldez AJ. The maternal-to-zygotic transition during vertebrate development: a model for reprogramming. Curr Top Dev Biol 2015; 113: 191-232. https://doi.org/10.1016/bs.ctdb.2015.07.020

Jukam D, Shariati SA, Skotheim JM. Zygotic genome activation in vertebrates. Dev Cell 2017; 42(4): 316-32. https://doi.org/10.1016/j.devcel.2017.07.026

Gou LT, Dai P, Yang JH, Xue Y, Hu YP, Zhou Y, Kang JY, Wang X, Li H, Hua MM, Zhao S. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res 2014; 24(6): 680-700. https://doi.org/10.1038/cr.2014.41

Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci 2014; 149(1-2): 46-58. https://doi.org/10.1016/j.anireprosci.2014.05.016

Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10(2): 126-39. https://doi.org/10.1038/nrm2632

Simon B, Kirkpatrick JP, Eckhardt S, Reuter M, Rocha EA, Andrade-Navarro MA, Sehr P, Pillai RS, Carlomagno T. Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure 2011; 19(2): 172-80. https://doi.org/10.1016/j.str.2010.11.015

Frank F, Sonenberg N, Nagar B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 2010; 465(7299): 818-22. https://doi.org/10.1038/nature09039

Cora E, Pandey RR, Xiol J, Taylor J, Sachidanandam R, McCarthy AA, Pillai RS. The MID-PIWI module of Piwi proteins specifies nucleotide-and strand-biases of piRNAs. RNA 2014; 20(6): 773-81. https://doi.org/10.1261/rna.044701.114

Zhang GW, Wang L, Chen H, Guan J, Wu Y, Zhao J, Luo Z, Huang W, Zuo F. Promoter hypermethylation of PIWI/piRNA pathway genes associated with diminished pachytene piRNA production in bovine hybrid male sterility. Epigenetics 2020; 15(9): 914-31. https://doi.org/10.1080/15592294.2020.1738026

Downloads

Published

2022-12-23

How to Cite

Hufana, R. J. C. ., D. Canare, P. L. ., Abella, E. A. ., Duran, P. G. ., Kumar, R. ., & Hufana-Duran, D. . (2022). Expression and Role of PIWI Proteins and piRNAs in Reproduction of Water Buffalo (Bubalus bubalis, Linn.). Journal of Buffalo Science, 11, 100–111. https://doi.org/10.6000/1927-520X.2022.11.11

Issue

Section

Special issue: Fabio Napolitano 1963- 2022 (Dedicated to the Former EIC Fabio Napolitano)

Most read articles by the same author(s)