Morphological survival and subsequent in vitro maturation of denuded and cumulus compact Bubaline oocytes cryopreserved by ultra rapid cooling

Authors

  • Govind Narayan Purohit Department of Veterinary Gynecology and Obstetrics, College of Veterinary and Animal Sciences, Rajasthan University of Veterinary and Animal Science, Bikaner Rajasthan 334001, India
  • Vinoj Meena Department of Veterinary Gynecology and Obstetrics, College of Veterinary and Animal Sciences, Rajasthan University of Veterinary and Animal Science, Bikaner Rajasthan 334001, India
  • Kanika Solanki Department of Veterinary Gynecology and Obstetrics, College of Veterinary and Animal Sciences, Rajasthan University of Veterinary and Animal Science, Bikaner Rajasthan 334001, India

DOI:

https://doi.org/10.6000/1927-520X.2012.01.01.14

Keywords:

Buffalo, cumulus cells, ethylene glycol, oocytes, vitrification

Abstract

Culturable grade oocytes (n=380) recovered by aspiration of surface follicles from buffalo ovaries (n=97) were either mechanically denuded (DN) or kept cumulus compact (CC) and were vitrified in Dulbecco’s phosphate buffered saline + 0.4% sucrose, 0.4% bovine serum albumin and 6 M concentrations of either ethylene glycol (EG) or propylene glycol (PG). Oocytes were randomly allocated to four groups of vitrification (EGCC, EGDN, PGCC and PGDN) and cryostorage for 7-10 days in liquid nitrogen. They were then warmed to record morphological survival and morphologically normal oocytes were matured in vitro along with fresh oocytes (control) for 24 h in TCM-199 containing hormones (LH + FSH + estradiol) at 38.5 0C and 5% CO2 in humidified air in a CO2 incubator. The arcsine transformed data of the proportion of morphologic survival of oocytes and in vitro maturation of oocytes was compared by DNMR-test. The morphologically normal oocytes were significantly higher (P<0.05) for cumulus compact oocytes compared with denuded oocytes for both cryoprotectants EG and PG. The in vitro maturation was significantly higher (P<0.05) for non-vitrified oocytes (control) compared to vitrified oocytes. Significantly higher (P<0.05) proportion of cumulus compact oocytes matured in vitro compared to denuded oocytes for both cryoprotectants EG and PG. The differences between the cryoprotectants were non-significant. It was concluded that cryo-damage to the oocytes during vitrification can be minimized by the presence of cumulus cells with the oocyte, whereas the two cryoprotectants EG and PG are equally effective in preventing cryodamage to oocytes.

References

Lim JM, Fukui Y, Ono H. Developmental competence of bovine oocytes after cryopreservation by vitrification and in vitro fertilization. In: Proceedings 12th International Congress on Animal Reproduction, Hague The Netherlands 1992; pp. 1421-23.

Otoi T, Tachikawa S, Sondo S, Suzuki T. Developmental capacity. Theriogenol 1993; 40: 801-7. http://dx.doi.org/10.1016/0093-691X(93)90215-Q DOI: https://doi.org/10.1016/0093-691X(93)90215-Q

George MA, Johnson MH, Howlett S. Assessment of the developmental. Human Reprod 1994; 9:130-6. DOI: https://doi.org/10.1093/oxfordjournals.humrep.a138302

Cooper A, Paynter SJ, Fuller BJ, Shaw RW. Differential effects. Human Reprod 1998; 13: 971-8. http://dx.doi.org/10.1093/humrep/13.4.971 DOI: https://doi.org/10.1093/humrep/13.4.971

Abd-Allah SM. In vitro production.Veterinaria Italiana 2009; 45: 425-9.

Abd-Allah SM, Gomaa A, Abd-El-Gawad EMM, El-Nahas EM. Successful production. Asuit Vet Med J 2009; 55: 332-43.

Abd-Allah SM. Laboratory production of buffalo embryos, 1st Ed., LAP-Publishing House, Germany 2011; pp. 217.

Vajta G, Booth PJ, Holm P, Greve T, Callesen H. Successful vitrification. Cryoletters 1997; 18: 191-5. DOI: https://doi.org/10.1016/S0378-4320(96)01583-7

Vinvent C, Johnson MH. Cooling, cryoprotectants. Oxf Rev Reprod Biol 1992; 14: 73-100.

Aman RR, Parks JE. Effects of cooling. Biol Reprod 1994; 50: 103-10. http://dx.doi.org/10.1095/biolreprod50.1.103 DOI: https://doi.org/10.1095/biolreprod50.1.103

Barnes FL, Damiani P, Looney CR, Duby RT. The meiotic stage. Theriogenol 1997; 47: 183. http://dx.doi.org/10.1016/S0093-691X(97)82310-2 DOI: https://doi.org/10.1016/S0093-691X(97)82310-2

Martino A, Polland JW, Leobo SP. Effect of chilling. Mol Reprod Dev 1996; 45: 503-12. http://dx.doi.org/10.1002/(SICI)1098-2795(199612)45:4<503::AID-MRD13>3.3.CO;2-R DOI: https://doi.org/10.1002/(SICI)1098-2795(199612)45:4<503::AID-MRD13>3.0.CO;2-X

Shaw JM, Oranratncachai A, Tronson AO. Fundamental cryobiology. Theriogenol 2000; 31: 255 (Abstr).

Hyttel P. Bovine cumulus-oocyt. Anat Embryol 1987; 176:414. http://dx.doi.org/10.1007/BF00309750 DOI: https://doi.org/10.1007/BF00309750

Leibfried-Rutledge ML, Florman HM, First NL. The molecular biology of mammalian oocyte maturation. In: Schatten G ed. The Molecular Biology of Fertility. New York Academic Press, 1989; pp. 259-75. DOI: https://doi.org/10.1016/B978-0-12-622595-2.50018-8

Agarwal SK, Tomer OS. Reproductive technologies in buffalo. Indian Veterinary Research Institute Izatnagar Bareilly UP India 1998; pp. 85-92.

Totey SM, Singh G, Taneja M, Pawshe CH, Talwar GP. In vitro maturation. J Reprod Fertil 1992; 95: 597-607. http://dx.doi.org/10.1530/jrf.0.0950597 DOI: https://doi.org/10.1530/jrf.0.0950597

Dhali A, Manik RS, Das SK, Singla SK, Palta P. Vitrification of buffalo. Theriogenol 2000; 53: 1295-1303. http://dx.doi.org/10.1016/S0093-691X(00)00273-9 DOI: https://doi.org/10.1016/S0093-691X(00)00273-9

Wani NA, Maurya SN, Misra AK, Saxena VB, Lakchaura BD. Effect of cryoprotectants. Theriogenol 2004; 61: 831-42. http://dx.doi.org/10.1016/j.theriogenology.2003.06.002 DOI: https://doi.org/10.1016/j.theriogenology.2003.06.002

Sharma A, Purohit GN. Developmental competence. Reprod Fertil Dev 2007; 19: 293 (Abstr). http://dx.doi.org/10.1071/RDv19n1Ab355 DOI: https://doi.org/10.1071/RDv19n1Ab355

Yadav RC, Sharma A, Purohit GN. Morphological changes. Reprod Fertil Dev 2007; 19: 294 (Abstr). http://dx.doi.org/10.1071/RDv19n1Ab358 DOI: https://doi.org/10.1071/RDv19n1Ab358

Sharma A, Purohit GN. Vitrification of immature bubaline. Veterinarni Medicina 2008; 53: 427-33. DOI: https://doi.org/10.17221/1928-VETMED

Yadav RC, Sharma A, Garg N, Purohit GN. Survival of vitrified. Bulg J Vet Med 2008; 11: 55-64.

Purohit GN, Duggal GP, Dadarwal D, Kumar D, Yadav RC, Vyas S. Reproductive biotechnologies s. Asian Austr J Anim Sci 2003; 16: 1071-86. DOI: https://doi.org/10.5713/ajas.2003.1071

Purohit GN, Brady MS, Sharma SS. Influence of epidermal growth factor. Anim Reprod Sci 2005; 87: 229-39. http://dx.doi.org/10.1016/j.anireprosci.2004.09.009 DOI: https://doi.org/10.1016/j.anireprosci.2004.09.009

Modina S, Beretta M, Lodde V, Lauria A, Luciano AM. Cytoplasmic changes. Eur J Histochem 2004; 48: 337-46.

Men H, Monson RL, Rutledge JJ. Effect of meiotic stages. Theriogenol 57: 1095-103. DOI: https://doi.org/10.1016/S0093-691X(01)00679-3

Purohit GN, Meena H, Solanki K. Effects of Vitrification on Immature. J Reprod Infertil 2012; 13: 57-63.

Kumar D, Purohit GN. Effect of epidermal. Vet Arhiv 2004; 74: 13-25.

Wani NA, Misra AK, Maurya SN. Maturation rates of vitrified. Anim Reprod Sci 2004; 84: 327-35. http://dx.doi.org/10.1016/j.anireprosci.2004.02.007 DOI: https://doi.org/10.1016/j.anireprosci.2004.02.007

Tharasanit T, Colleon S, Galli C, Colenbrander B, Stout TA. Protective effects. Reprod 2009; 137: 391-401. DOI: https://doi.org/10.1530/REP-08-0333

Suo L, Zhou GB, Meng QG, Yan CL, Fan ZQ, Zhao XM, Fu XW, Wang YP, Zhang QJ, Zhu SE. OPS vitrification of mouse. Zygote 2009; 17: 71-7. http://dx.doi.org/10.1017/S0967199408005091 DOI: https://doi.org/10.1017/S0967199408005091

Ge L, Sui HS, Lan GC, Liu N, Wang JZ, Tan JH. Co-culture with. Fertil Steril 2008; 90:2376-88. http://dx.doi.org/10.1016/j.fertnstert.2007.10.054 DOI: https://doi.org/10.1016/j.fertnstert.2007.10.054

Le Gal F, De Roover R, Verhaghe B, Etienne D, Massip A. Development of vitrified. Vet Rec 2000; 146: 469-71. http://dx.doi.org/10.1136/vr.146.16.469 DOI: https://doi.org/10.1136/vr.146.16.469

Smith GD, Silva E, Silva CA. Developmental consequences. Reprod Biomed Online 2004; 9: 152-63. DOI: https://doi.org/10.1016/S1472-6483(10)62126-8

Miyake T, Kasai M, Zhu SF, Sakurai T, Machida T. Vitrification of mouse. Theriogenol 1993; 40: 121-34. http://dx.doi.org/10.1016/0093-691X(93)90346-7 DOI: https://doi.org/10.1016/0093-691X(93)90346-7

Delval A, Ectors FJ, Touati K, Beckers JF, Ectoss F. Vitrification of bovine. Theriogenol 1996; 45: 178 (Abstr). http://dx.doi.org/10.1016/0093-691X(96)84651-6 DOI: https://doi.org/10.1016/0093-691X(96)84651-6

Saha S, Boediono A, Sumantri E, Murakani M, Kikkawa Y, Suzuki T. Vitrification of bovine. Theriogenol 1996; 45: 179 (Abstr). http://dx.doi.org/10.1016/0093-691X(96)84652-8 DOI: https://doi.org/10.1016/0093-691X(96)84652-8

Dhali A, Manik RS, Das SK, Singla SK, Palta P. Survival and in vitro. Anim Reprod Sci 2000; 63: 159-65. http://dx.doi.org/10.1016/S0378-4320(00)00170-6 DOI: https://doi.org/10.1016/S0378-4320(00)00170-6

Le Gal F. In vitro maturation. Theriogenol 1996; 45: 1177-85. http://dx.doi.org/10.1016/0093-691X(96)00073-8 DOI: https://doi.org/10.1016/0093-691X(96)00073-8

Kharche SD, Sharma GT, Mazumdar AC. In vitro maturation. Small Rumin Res 2005; 57: 81-4. http://dx.doi.org/10.1016/j.smallrumres.2004.03.003 DOI: https://doi.org/10.1016/j.smallrumres.2004.03.003

Mahmoudzadeh AR, Van Soom A, Van Vlaenderen I, de Kruif A. A comparative study. Theriogenol 1993; 39: 1291-302. http://dx.doi.org/10.1016/0093-691X(93)90231-S DOI: https://doi.org/10.1016/0093-691X(93)90231-S

Suzuki T, Boediono A, Takagi M, Saha S, Sumantra IC. Fertilization and development Cryobiol 1996; 33: 515-24. DOI: https://doi.org/10.1006/cryo.1996.0055

Downloads

Published

2012-02-28

How to Cite

Purohit, G. N., Meena, V., & Solanki, K. (2012). Morphological survival and subsequent in vitro maturation of denuded and cumulus compact Bubaline oocytes cryopreserved by ultra rapid cooling. Journal of Buffalo Science, 1(1), 78–83. https://doi.org/10.6000/1927-520X.2012.01.01.14

Issue

Section

Articles