Metagenomic Analysis during Co-Digestion Buffalo Sludge and Tomato Pomace Post Thermal Stress: A Case Study

Authors

  • Maria Chiara La Mantia CREA, Research Center for Animal Production and Aquaculture, via Salaria 31, 00015 Monterotondo, Italy
  • Massimo Calì CREA, Research Center for Animal Production and Aquaculture, via Salaria 31, 00015 Monterotondo, Italy
  • Emanuela Rossi CREA, Research Center for Animal Production and Aquaculture, via Salaria 31, 00015 Monterotondo, Italy
  • Antonella Signorini Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
  • Enrico Santangelo CREA, Research Centre for Engineering and Agro-Food Processing, Via della Pascolare, 16, 00015 Monterotondo, Italy https://orcid.org/0000-0001-5156-9430
  • Antonella Chiariotti CREA, Research Center for Animal Production and Aquaculture, via Salaria 31, 00015 Monterotondo, Italy

DOI:

https://doi.org/10.6000/1927-520X.2024.13.12

Keywords:

Biogas, agricultural by-products, anaerobic digestion, next generation sequencing

Abstract

The tomato industry and buffalo farming generate waste, including sludge (BS) and tomato pomace (TP), which can significantly impact their economic and environmental sustainability. The case study tracked changes in microflora composition after a thermal shock during anaerobic co-digestion. The inoculum-to-substrate ratio was 0.5 based on volatile solid content under mesophilic conditions. An Automatic Methane Potential Test System was used to monitor the process before and after thermal stress (50°C) occurred for three days. Next-generation sequencing analyzed the bacterial and archaeal communities. The pH decreased, and methane production plateaued due to the high volatile solid content (87 g/L). After thermal stress, the pH returned to neutral, and the batch resumed biogas production. The cumulative CH4 production reached 3,115 Nml. The biogas had a maximum methane peak of 78.5% compared to 58.4% in BS. The taxonomic classification showed that Firmicutes (51.7%) and Bacteroidetes (29.9%) represented 81.6% of the total OTUs among the bacteria. Fonticella, the most abundant Clostridiaceae (average 4.3%), was absent in BS and increased (up to 17.1%) in TP during methane production. Methanocorpusculum was the most abundant in the archaeal community. However, Metanosarcina showed a stronger correlation with methane production. Brief thermal stress significantly altered bacterial and archaeal populations and allowed to resume biogas production.

References

Bacenetti J, Duca D, Negri M, Fusi A, Fiala M. Mitigation strategies in the agro-food sector: The anaerobic digestion of tomato purée by-products. An Italian case study. Sci Total Environ 2015; 526: 88-97. https://doi.org/10.1016/j.scitotenv.2015.04.069 DOI: https://doi.org/10.1016/j.scitotenv.2015.04.069

Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V. Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. Biomed Res Int 2017; 1-19. https://doi.org/10.1155/2017/2370927 DOI: https://doi.org/10.1155/2017/2370927

The 2023 Processed Tomato Yearbook. Special issue of www.tomato.news.com Edited by Tomato News sas 2024; ISSN 1145-96.

FAOSTAT, 2024. https://www.fao.org/faostat/en/#data (accessed February 2024)

Boccia F, Di Donato P, Covino D, Poli A. Food waste and bio-economy: A scenario for the Italian tomato market. J Clean Prod 2019; 227: 424-433. https://doi.org/10.1016/j.jclepro.2019.04.180 DOI: https://doi.org/10.1016/j.jclepro.2019.04.180

Calabrò PS, Greco R, Evangelou A, Komilis D. Anaerobic digestion of tomato processing waste: Effect of alkaline pretreatment. J Environ Manage 2015; 163: 49-52. https://doi.org/10.1016/j.jenvman.2015.07.061 DOI: https://doi.org/10.1016/j.jenvman.2015.07.061

Del Valle M, Cámara M, Torija ME. Chemical characterization of tomato pomace. J Sci Food Agric 2006; 86: 1232-1236. FAOSTAT, 2019. http://www.fao.org/faostat/en/#data/QA (accessed January 10, 2021). https://doi.org/10.1002/jsfa.2474 DOI: https://doi.org/10.1002/jsfa.2474

Lu Z, Wang J, Gao R, Ye F, Zhao G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci Technol 2019; 86: 172-187. https://doi.org/10.1016/j.tifs.2019.02.020 DOI: https://doi.org/10.1016/j.tifs.2019.02.020

Li Y, Xu F, Li Y, Lu J, Li S, Shah A, Zhang X, Zhang H, Gong X, Li G. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues. Waste Manag 2018; 73: 130-139. https://doi.org/10.1016/j.wasman.2017.11.041 DOI: https://doi.org/10.1016/j.wasman.2017.11.041

Faugno S, Pindozzi S, Infascelli R, Okello C, Ripa MN, Boccia L. Assessment of nitrogen content in buffalo manure and land application costs. Journal of Agricultural Engineering 2012; 43(2): e13. https://doi.org/10.4081/jae.2012.18 DOI: https://doi.org/10.4081/jae.2012.18

Li Y, Chen Y, Wu J. Enhancement of methane production in anaerobic digestion process: A review. Appl Energy 2019; 240: 120-137. https://doi.org/10.1016/j.apenergy.2019.01.243 DOI: https://doi.org/10.1016/j.apenergy.2019.01.243

Hoyos-Sebá JJ, Arias NP, Salcedo-Mendoza J, Aristizábal-Marulanda V. Animal manure in the context of renewable energy and value-added products: A review. Chemical Engineering and Processing-Process Intensification 2024; 196: 109660. https://doi.org/10.1016/j.cep.2023.109660 DOI: https://doi.org/10.1016/j.cep.2023.109660

Kougias PG, Angelidaki I. Biogas and its opportunities—A review. Front Environ Sci Eng 2018; 12-14. https://doi.org/10.1007/s11783-018-1037-8 DOI: https://doi.org/10.1007/s11783-018-1037-8

Santangelo E, Calì M, Rossi E, Scalella R, La Mantia MC, Chiariotti A. Anaerobic co-digestion of tomato pomace and buffalo slurry. Procedia Environmental Science, Engineering and Management 2022; 9(4): 979-985.

Calì M, Rossi E, Scalella R, La Mantia MC, Santangelo E, Chiariotti A. Thermophilic anaerobic codigestion of tomato pomace and buffalo slurry. European Biomass Conference and Exhibition Proceedings 2022; 581-584.

Manfredini A, Chiariotti A, Santangelo E, Rossi E, Renzi G, Dell’Abat, MT. Assessing the Biological Value of Soluble Organic Fractions from Tomato Pomace Digestates. J Soil Sci Plant Nutr 2020; 21: 301-314. https://doi.org/10.1007/s42729-020-00361-4 DOI: https://doi.org/10.1007/s42729-020-00361-4

APAT IRSA-CNR, 2003. Analytical methods for waters. Manual and Guideline 2003; vol III.

van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci 1991; 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Martillotti F, Antongiovanni M, Rizzi L, Santi E, Bittante G. Analysis methods to evaluate animal feeds. CNR, IPRA, Rome, Italy 1987.

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA. QIIME allows the analysis of high-throughput community sequencing data. Nature Methods 2010; 7(5): 335-6. https://doi.org/10.1038/nmeth.f.303 DOI: https://doi.org/10.1038/nmeth.f.303

Coelho MC, Rodrigues AS, Teixeira JA, Pintado ME. Integral valorization of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chemistry 2023; 410: 135319. https://doi.org/10.1016/j.foodchem.2022.135319 DOI: https://doi.org/10.1016/j.foodchem.2022.135319

Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology 2011; 102(20): 9395-9402. https://doi.org/10.1016/j.biortech.2011.07.026 DOI: https://doi.org/10.1016/j.biortech.2011.07.026

Ziembińska-Buczyńska A, Banach A, Bacza T, Pieczykolan M. Diversity and variability of methanogens during the shift from mesophilic to thermophilic conditions while biogas production. World Journal of Microbiology and Biotechnology 2014; 30: 3047-3053. https://doi.org/10.1007/s11274-014-1731-z DOI: https://doi.org/10.1007/s11274-014-1731-z

Kabaivanova L, Petrova P, Hubenov V, Simeonov I. Biogas production potential of thermophilic anaerobic biodegradation of organic waste by a microbial consortium identified with metagenomics. Life 2022; 12(5): 702. https://doi.org/10.3390/life12050702 DOI: https://doi.org/10.3390/life12050702

Ning X, Shixun L, Fengxue X, Jie Z, Honghua J, Jiming X, Min J, Weilian, D. Biomethane Production From Lignocellulose: Biomass Recalcitrance and Its Impacts on Anaerobic Digestion. Front Bioeng Biotechnol 2019; 7: 191. https://doi.org/10.3389/fbioe.2019.00191 DOI: https://doi.org/10.3389/fbioe.2019.00191

Zhu N, Gao J, Liang D, Zhu Y, Li B, Jin H. Thermal pretreatment enhances the degradation and humification of lignocellulose by stimulating thermophilic bacteria during dairy manure composting. Bioresource Technology 2021; 319: 124-149. https://doi.org/10.1016/j.biortech.2020.124149 DOI: https://doi.org/10.1016/j.biortech.2020.124149

Tu M, Pa X, Saddler JN. Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 2009; 57: 7771-7778. https://doi.org/10.1021/jf901031m DOI: https://doi.org/10.1021/jf901031m

Cazaudehore G, Monlau F, Gassie C, Lallement A, Guyoneaud R. Methane production and active microbial communities during anaerobic digestion of three commercial biodegradable coffee capsules under mesophilic and thermophilic conditions. Science of The Total Environment 2021; 784: 146972. https://doi.org/10.1016/j.scitotenv.2021.146972 DOI: https://doi.org/10.1016/j.scitotenv.2021.146972

Carotenuto C, Guarino G, Morrone B, Minale M. Temperature and pH effect on methane production from buffalo manure anaerobic Digestion. Int J Heat Technol 2016; 34: S425-S429. https://doi.org/10.18280/ijht.34S233 DOI: https://doi.org/10.18280/ijht.34S233

Zhang C, Su H, Baeyens J, Tan T. Reviewing the anaerobic digestion of food waste for biogas production, Renew. Sustain. Energy Rev 2014; 38: 383-392. https://doi.org/10.1016/j.rser.2014.05.038 DOI: https://doi.org/10.1016/j.rser.2014.05.038

Yang L, Huang Y, Zhao M, Huang Z, Miao H, Xu Z, Ruan W. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. Int Biodeterior Biodegrad 2015; 105: 153-159. https://doi.org/10.1016/j.ibiod.2015.09.005 DOI: https://doi.org/10.1016/j.ibiod.2015.09.005

Almeida PV, Rodrigues RP, Gaspar MC, Braga ME, Quina MJ. Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. Journal of Environmental Management 2021; 299: 113505. https://doi.org/10.1016/j.jenvman.2021.113505 DOI: https://doi.org/10.1016/j.jenvman.2021.113505

Saghouri M, Mansoori Y, Rohani A, Khodaparast MHH, Sheikhdavoodi MJ. Modelling and evaluation of anaerobic digestion process of tomato processing wastes for biogas generation. J Mater Cycles Waste Manag 2018; 20: 561-567. https://doi.org/10.1007/s10163-017-0622-4 DOI: https://doi.org/10.1007/s10163-017-0622-4

Weiland P. Biogas production: current state and perspectives. Applied Microbiology and Biotechnology 2010; 85: 849-860. https://doi.org/10.1007/s00253-009-2246-7 DOI: https://doi.org/10.1007/s00253-009-2246-7

Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresource Technology 2011; 102(18): 8582-8588. https://doi.org/10.1016/j.biortech.2011.03.102 DOI: https://doi.org/10.1016/j.biortech.2011.03.102

Satpathy P, Steinigeweg S, Siefert E, Cypionka H. Effect of lactate and starter inoculum on biogas production from fresh maize and maize silage. Advances in Microbiology 2017; 7(5): 358-76. https://doi.org/10.4236/aim.2017.75030 DOI: https://doi.org/10.4236/aim.2017.75030

Daeschel MA, Andersson RE, Fleming HP. Microbial ecology of fermenting plant materials. FEMS Microbiol Lett 1987; 46: 357-367. https://doi.org/10.1111/j.1574-6968.1987.tb02472.x DOI: https://doi.org/10.1111/j.1574-6968.1987.tb02472.x

Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, et al. Towards a standardization of biomethane potential tests. Water Sci Technol 2016; 74: 2515-2522. https://doi.org/10.2166/wst.2016.336 DOI: https://doi.org/10.2166/wst.2016.336

Bernardet JF, Bowman JP. The genus flavobacterium. The prokaryotes 2006; 7: 481-531. https://doi.org/10.1007/0-387-30747-8_17 DOI: https://doi.org/10.1007/0-387-30747-8_17

Slepechy RA, Hemphill HE. The genes Bacillus- non medical. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K (ed.), The Procaryotes, Springer, New York, NY 1992; II: 1663-1896.

Wiegel J, Tanner RA, Rainey FA. An introduction to the family Clostridiaceae. Prokaryotes 2006; 4: 654-78. https://doi.org/10.1007/0-387-30744-3_20 DOI: https://doi.org/10.1007/0-387-30744-3_20

Abendroth C, Vilanova C, Günther T, Luschnig O, Porcar M. Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnology Biofuels 2015; 8(87). https://doi.org/10.1186/s13068-015-0271-6 DOI: https://doi.org/10.1186/s13068-015-0271-6

Bassani I, Kougias PG, Treu L, Angelidaki I. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environmental Science & Technology 2015; 49(20): 12585-12593. https://doi.org/10.1021/acs.est.5b03451 DOI: https://doi.org/10.1021/acs.est.5b03451

Duda R M, da Silva Vantini J Martins SL, de Mello Varani A, Lemons MVF, Ferro MIT, et al. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater. Biores Technol 2015; 197: 152-160. https://doi.org/10.1016/j.biortech.2015.08.004 DOI: https://doi.org/10.1016/j.biortech.2015.08.004

Goux X, Calusinska M, Lemaigre S, Marynowska M, Klocke M, Udelhoven T, Benizri E, Delfosse P. Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnology for Biofuels 2015; 8: 1-8. https://doi.org/10.1186/s13068-015-0309-9 DOI: https://doi.org/10.1186/s13068-015-0309-9

Riviere D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal 2009; 3(6): 700-714. https://doi.org/10.1038/ismej.2009.2 DOI: https://doi.org/10.1038/ismej.2009.2

St-Pierre B, Wright AD. Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Applied Microbiology and Biotechnology 2014; 98: 2709-2717. https://doi.org/10.1007/s00253-013-5220-3 DOI: https://doi.org/10.1007/s00253-013-5220-3

Campanaro S, Treu L, Kougias PG, De Francisci D, Valle G, Angelidaki I. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnology for Biofuels 2016; 9: 1-7. https://doi.org/10.1186/s13068-016-0441-1 DOI: https://doi.org/10.1186/s13068-016-0441-1

Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J, Tomazetto G, Huang L, Bunk B, Spröer C, Benndorf D, et al. The Role of Petrimonas Mucosa ING2-E5AT in Mesophilic Biogas Reactor Systems as Deduced from Multiomics Analyses. Microorganisms 2020; 8(12): 2024. https://doi.org/10.3390/microorganisms8122024

Chen L, Xu D, Liang J, Zhang Y, Fang W, Zhang P, Zhang G. New insight into effects of waste scrap iron on sludge anaerobic digestion: Performances, microbial community, and potential metabolic functions. Journal of Water Process Engineering 2023; 55: 104230. https://doi.org/10.1016/j.jwpe.2023.104230 DOI: https://doi.org/10.1016/j.jwpe.2023.104230

Nabi M, Gao, Liang J, Cai Y, Zhang P. Combining high-pressure homogenization with free nitrous acid pretreatment to improve anaerobic digestion of sewage sludge. J Environ Manag 2022; 318: 115635. https://doi.org/10.1016/j.jenvman.2022.115635 DOI: https://doi.org/10.1016/j.jenvman.2022.115635

Wang J, Liu X, He J, Cheng G, Xu J, Lu M, Shangguan Y, Zhang A. Mechanism of dielectric barrier discharge plasma technology to improve the quantity of short-chain fatty acids in anaerobic fermentation of waste active sludge Front. Microbiol 2022; 13: Article 963260. https://doi.org/10.3389/fmicb.2022.963260 DOI: https://doi.org/10.3389/fmicb.2022.963260

Shiratori H, Ohiwa H, Ikeno H, et al. Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. Int J Syst Evol Microbiol 2008; 58: 964-969. https://doi.org/10.1099/ijs.0.65490-0 DOI: https://doi.org/10.1099/ijs.0.65490-0

Ecem Öner B, Akyol Ç, Bozan M, Ince O, Aydin S, Ince B. Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. Bioresour Technol 2018; 249: 620-625. https://doi.org/10.1016/j.biortech.2017.10.040 DOI: https://doi.org/10.1016/j.biortech.2017.10.040

Song C, Li W, Cai F, Liu G, Chen C. Anaerobic and microaerobic pretreatment for improving methane production from paper waste in anaerobic digestion. Frontiers in Microbiology 2021; 12: 688290. https://doi.org/10.3389/fmicb.2021.688290 DOI: https://doi.org/10.3389/fmicb.2021.688290

Rettenmaier R, Schneider M, Munk B, Lebuhn M, Jünemann S, Sczyrba A, Maus I, Zverlov V, Liebl W. Importance of Defluviitalea raffinosedens for hydrolytic biomass degradation in co-culture with Hungateiclostridium thermocellum. Microorganisms 2020; 8(6): 915. https://doi.org/10.3390/microorganisms8060915 DOI: https://doi.org/10.3390/microorganisms8060915

Zhang J, Loh KC, Lee J, Wang CH, Dai Y, Wah Tong Y. Three-stage anaerobic co-digestion of food waste and horse manure. Scientific Reports 2017; 7(1): 1269. https://doi.org/10.1038/s41598-017-01408-w DOI: https://doi.org/10.1038/s41598-017-01408-w

Sun L, Pope PB, Eijsink VG, Schnürer A. Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microbial Biotechnology 2015; 8(5): 815-27. https://doi.org/10.1111/1751-7915.12298 DOI: https://doi.org/10.1111/1751-7915.12298

Moset V, Poulsen M, Wahid R, Højberg O, Møller HB. Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microbial Biotechnology 2015; 8(5): 787-800. https://doi.org/10.1111/1751-7915.12271 DOI: https://doi.org/10.1111/1751-7915.12271

Maus I, Tubbesing T, Wibberg D, Heyer R, Hassa J, Tomazetto G, Huang L, Bunk B, Spröer C, Benndorf D, et al. The Role of Petrimonas Mucosa ING2-E5AT in Mesophilic Biogas Reactor Systems as Deduced from Multiomics Analyses. Microorganisms 2020; 8(12): 2024. https://doi.org/10.3390/microorganisms8122024 DOI: https://doi.org/10.3390/microorganisms8122024

Müller B, Sun L, Westerholm M, Schnürer A. Bacterial Community Composition and Fhs Profiles of Low- and High-Ammonia Biogas Digesters Reveal Novel Syntrophic Acetate-Oxidising Bacteria. Biotechnol Biofuels 2016; 9: 48. https://doi.org/10.1186/s13068-016-0454-9 DOI: https://doi.org/10.1186/s13068-016-0454-9

Li X, Li Q, He J, Zhang YF, Zhu NM. Application of activated carbon to enhance biogas production rate of Flammulina velutipes residues with composting pretreatment. Waste and Biomass Valorization 2021; 12: 823-831. https://doi.org/10.1007/s12649-020-01039-9 DOI: https://doi.org/10.1007/s12649-020-01039-9

Pan X, Angelidaki I, Alvarado-Morales M, Liu H, Liu Y, Huang X, Zhu G. Methane production from a formate, acetate, and H2/CO2; focusing on kinetics and microbial characterization. Bioresource Technology 2016; 218: 796-806. https://doi.org/10.1016/j.biortech.2016.07.032 DOI: https://doi.org/10.1016/j.biortech.2016.07.032

Karakashev D, Batstone DJ, Angelidaki I. Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Applied and Environmental Microbiology 2005; 71(1): 331-338. https://doi.org/10.1128/AEM.71.1.331-338.2005 DOI: https://doi.org/10.1128/AEM.71.1.331-338.2005

Downloads

Published

2024-09-19

How to Cite

La Mantia, M. C. ., Calì, M. ., Rossi, E. ., Signorini, A. ., Santangelo, E. ., & Chiariotti, A. . (2024). Metagenomic Analysis during Co-Digestion Buffalo Sludge and Tomato Pomace Post Thermal Stress: A Case Study. Journal of Buffalo Science, 13, 104–115. https://doi.org/10.6000/1927-520X.2024.13.12

Issue

Section

Editorial: Dedicated to Articles Presented at the World Buffalo Congress, Caracas, Venezuela, 2023, November 22-24

Most read articles by the same author(s)