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Abstract: The rapid integration of artificial intelligence (Al) in healthcare has enhanced diagnostics, predictive analytics,
and clinical decision-making. However, Al-driven models, particularly deep learning architectures, remain highly
vulnerable to adversarial machine learning (AML) attacks, which can result in misdiagnoses, unsafe treatment
recommendations, and compromised patient safety. This study systematically evaluates adversarial risks in medical Al,
quantifies their impact on model performance, and assesses the efficacy of defense mechanisms. We analyzed CNNs
(medical imaging), RNNs (ECG analysis), and Transformer models (clinical NLP) under FGSM, PGD, and JSMA attacks.
Results show that the CNN accuracy of 92% was reduced to 40% under JSMA, ECG-based Al performance dropped by
42% under PGD, and Transformer-based NLP models experienced a 30% decline under FGSM. Defense mechanisms
such as randomized smoothing and adversarial training improved accuracy by 15% and 14%, respectively, though at
high computational costs (1.8x and 1.5x training overhead). Across five independent trials, all degradations were
statistically significant (p< 0.01), and ANOVA with Tukey’s HSD confirmed that randomized smoothing and adversarial
training significantly outperformed gradient masking (p< 0.01). These findings demonstrate that medical Al systems are
highly susceptible to adversarial manipulation and underscore the necessity of robust, efficient, and regulatory-compliant
defenses. Strengthening adversarial resilience is critical to ensuring safe, reliable, and ethically responsible deployment

of Al in healthcare.

Keywords: Adversarial Machine Learning, Medical Al Security, Deep Learning Vulnerabilities, Healthcare Al,

Adversarial Defense Mechanisms, Al-driven Diagnostics.

1. INTRODUCTION

Although artificial intelligence (Al) has taken the
world by storm, its applications have not been
exclusive to the corporate world; Al has revolutionized
modern healthcare and has immensely changed
diagnostics, treatment planning, and patient care.
Bythe demonstrated superior performance of machine
learning (ML) models, such as deep learning, in the
analysis of medical images, prediction of disease
progression, and optimization of personalized
treatment plans [1], it is only natural that ML is being
applied to medical images for clinical applications [2].
Today, Al-powered systems are used in a wide range
of medical disciplines such as radiology, cardiology,
oncology, and pathology to make faster and more
accurate decisions [2]. Al integration in health care
workflows leads to greater efficiency and fewer medical
errors, as well as better patient outcomes.
Nevertheless, Al-based healthcare is still prone to
security vulnerabilities, especially in the context of
adversarial attacks whose intent is to make ML models
behave in a way opposite to what a user expects by
modifying the input so that predictions are wrong
and/or misleading [3].

Adversarial machine learning (AML) can also be
described as the craft of fooling an Al model by
injecting imperceivable ones’ data as input, which
leads to a wrong output. Adversarial attacks in the
medical domain can be catastrophic, as misdiagnosis
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or wrong treatment recommendations can jeopardize
patient safety [4]. However, as Al is becoming an
integral part of the future of medical diagnostics, the
risks associated with adversarial threats of Al are
growing, and researchers, practitioners, and
policymakers need to pay more attention to them [5].

Although Al for healthcare has the potential to be
transformational, adversarial vulnerabilites of ML
present a critical hurdle to ML-based medical
applications' reliability and trustworthiness. A small
perturbation in medical images will mislead an Al
model in classifying diseases like cancer,
cardiovascular, neurological, and so on [6]. Moreover,
security vulnerabilities in Al healthcare infrastructure
can also be exploited by adversarial attacks to make
unauthorized modifications to the patient's data,
leading to privacy breaches and fraud [7].

The main issue is that adversarial threats are often
invisible to human clinicians, so they cannot be
detected and mitigated in real-world medical settings.
Given that such attacks exploit the learning mechanism
of neural networks instead of the traditional system
vulnerabilities, they are beyond the scope of traditional
cybersecurity measures [8]. Moreover, regulatory
frameworks for Al in healthcare have not yet been fully
addressed in the part of the risks introduced by
adversarial ML, which leads to insufficient security
protocols and risk mitigation [9].

Given the nascent nature of Al in healthcare, the
risks in adversarial deployment of machine learning
models are also increasing; therefore, we need to
address adversarial risks in Al-driven healthcare to
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guarantee the safe, reliable, and ethical quality of the
deployed machine learning models in clinical settings.
For instance, this research is significant in shedding
light on the urgent requirement of sufficiently
adversarial defense mechanisms specifically designed
for medical Al applications [2]. This study investigates
the existing challenges and considers potential
solutions on how to develop more secure and resilient
Al-driven diagnostics and treatment systems [5].

Besides technological benefits, the results of this
work are also important for regulators, healthcare
centers, and Al developers. Improving Al security in
healthcare will build trust among the public, encourage
ethical Al applications, and promote interdisciplinary
interaction between medical professionals and Al
researchers [7]. In addition, comprehension of
adversarial threats to the field of ML can help
policymakers craft regulations that enforce the same
critical security and ethical requirements that should
underpin the use of Al in healthcare [3].

To address the identified challenges, this research
focuses on two key objectives:

1. To analyze the impact of adversarial machine
learning on Al-driven diagnostics and treatment
planning, identifying key vulnerabilities in
medical applications.

2. To explore and evaluate potential adversarial
defense strategies tailored for Al-powered
healthcare systems, ensuring the robustness
and security of ML models.

2. LITERATURE REVIEW

These recent years have seen great advances in
the field of adversarial machine learning (AML) in
healthcare. Among other areas, it is one of the most
discussed — the susceptibility of medical Al models to
adversarial attacks, were small, usually imperceptible
modifications to input data cause deep learning models
to misclassify. What makes this vulnerability even more
dangerous is that medical imaging applications are
susceptible to very small perturbations that could
completely change a diagnostic outcome [10]. Many
methods have been explored by researchers on
multiple fronts to detect and counter adversarial threats,
such as robust training techniques and defense
mechanisms for healthcare systems [11].

Efforts to build frameworks to improve medical Al
models’ resilience within the realm of Al-driven
cybersecurity for healthcare have been quite
widespread. Al-driven security strategies to protect
patient data and the integrity of medical devices were
highlighted by Bonagiri et al. [12] since healthcare

records are becoming digital, and loT-enabled medical
devices are being used. Similarly, research on
generative Al has been undertaken to understand the
potential benefits and security vulnerabilities of
Al-driven diagnostics, and need to be done on
regulatory oversight [13].

Several studies have been done on the
effectiveness of various adversarial defense strategies,
but all come with both pros and cons. Foundational
research on adversarial attacks in medical ML was
accomplished by Finlayson et al., who showed how
even very accurate Al models can be made to commit
critical diagnostic errors [10]. Their results yielded a
transparent warning about Al vulnerabilities, but the
study itself concerned almost purely theoretical
adversarial attacks and not case studies for
implementations in the real world.

Muoka et al. conducted another study that did a
comprehensive review of deep learning-based medical
image adversarial attacks and their countermeasures.
While their work gave a taxonomy of different types of
attacks and defense mechanisms, they pointed out that
the existing attacks often drastically deteriorate the
model performance or require some expensive
computational resources, which makes them
impractical for real-world clinical applications [11].

Additionally, in the same context, Dani and Wajid
conducted studies on security risk in Al-driven
healthcare applications, providing reinforcement
learning-based adversary defense. Although promising,
most of these solutions incur the cost of retraining Al
models, which is intensive in resources and not
practical for healthcare institutions operating under
stringent regulatory frameworks [14].

While the body of research on adversarial ML in
healthcare is growing, there are still several gaps that
have not been filled in the study of adversarial ML in
healthcare. Second, adversarial defense techniques
are not tested and validated in the real world in clinical
environments. Many of the earlier studies operate
under simulated attack scenarios, which can be far
from reality in terms of the full extent of the adversarial
threats in the deployed healthcare systems [10,11].

Additionally, proposed robust training techniques,
including adversarial training and input processing, are
often accompanied by reduced interpretability of the
model. For clinician adoption in medical diagnostics,
model explainability is important, and tradeoffs
between security and interpretability are still open [13].

Lastly, Al security and healthcare are dealing with a
new intersection of privacy, data security, and
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healthcare regulations that are underexplored so far.
Several researchers have suggested different
adversarial defense strategies, but only a few have
evaluated how such strategies align with the current
healthcare compliance frameworks, including HIPAA
and GDPR [12], used to monitor and guide patient data
security and deployment of Al in hospital settings.

The above studies provide a solid basis for
understanding adversarial risks in Al-driven healthcare.
The work of this research relies on the results that exist
in today's work, and it aims to fill the gaps that are
currently left by the previous defense strategy against
adversarial attacks and create a new framework that
makes the adversarial defense strategy work by
increasing the robustness, computational efficiency,
and meeting the compliance with the regulations. This
study attempts to contribute to the development of
safer and more reliable Al-based diagnostic systems
[10,12] by investigating the application of Al-driven
security protocols.

In addition to that, this research aims to close the
gap between Al model performance and the actual
clinic application. Existing studies are focused on
technical implementation, but our study will extend to
the real world (specifically, feasibility) through clinician

(for feedback) and regulator (for opinions) perspectives.

This is done to achieve a more holistic approach to
adversarial defense in Al-driven diagnostics [14-16].

3. METHODOLOGY

3.1. Al Models in Medical Diagnostics and their
Attack Surfaces

Medical Al applications rely on deep learning
architectures trained to classify medical images, predict
disease risks, and support clinical decision-making.
Some key architectures include:

. Convolutional Neural Networks (CNNs): Used in
radiology and pathology for tumor detection and
disease classification.

. Recurrent Neural Networks (RNNs) and
Transformers: Analyze time-series patient data,
such as ECG signals.

. Autoencoders and Generative Models: Enhance
image quality for medical scans, but can also

introduce vulnerabilities through data
reconstruction.
. Reinforcement Learning (RL):  Optimizes

personalized treatment strategies in Al-powered
clinical recommendations.

Each of these architectures can be exploited by

adversarial attacks, leading to incorrect medical
diagnoses or compromised treatment
recommendations.

3.2. Adversarial Attacks on Medical Al Systems

AML exploits Al's weaknesses by introducing small
perturbations in input data, resulting in
misclassifications. Existing attacks include:

3.2.1. Gradient-Based Attacks

Attacks modify model inputs by maximizing the loss
function:

6" = arg maxL(f(x +6),y)

where §ls the adversarial perturbation constrained by
anorm?||§||, < e. Fast Gradient Sign Method (FGSM)

Perturbations are computed using the sign of the
gradient:

§ =€ - sign(V,.L(f (x),¥))

This attack requires only one gradient step and is
computationally efficient.
Projected Gradient Descent (PGD)

PGD iteratively updates perturbations using:
Xepr = Il (xt ta- Sign(vx‘c(f(xt)’y)))

where II; Ensures the perturbation stays within the
allowed space S

Medical Impact:

. In radiology, FGSM and PGD attacks alter tumor
margins, leading to false negative or positive
diagnoses.

. In predictive analytics, adversarial changes to
patient biomarker inputs result in incorrect risk
stratification.

3.2.2. Data Poisoning Attacks

Instead of modifying inputs at inference time,
poisoning attacks introduce malicious samples into the
training set:

E (x.)~Dpoisonea LU (XD, )]

where D cneq INCludes a subset of adversarially
modified training data.

Medical Impact:

. Poisoned datasets can bias Al models, leading
to incorrect treatment predictions.
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. Attackers can embed backdoors that only
activate under specific input conditions.

3.2.3. Transfer Attacks across Medical Models

Adversarial samples generated for one model can
transfer to others:

fo,(x") = fo,(x")
where 6; and 6,Represent different models.
Medical Impact:

. An attacker designing an adversarial input
against one Al system can effectively fool
multiple independent medical Al models.

. This raises risks in hospital Al deployments,
where different institutions use pre-trained Al
models from common vendors.

4. EXTENDING EXISTING DEFENSE STRATEGIES

Existing defenses harden medical Al models but
introduce trade-offs in accuracy, interpretability, and
computational cost.

41. Adversarial with

Augmentation

Training Adaptive

All models are trained on adversarial samples:

meinIE(x,y)~Dnslgg(L(f9 (x + 5)1 )’)

where adversarial noise §lt is dynamically optimized
per sample.

How It Can Be Improved:

. Instead of uniform perturbations, training can
vary ePer patient type, preventing overfitting to a
fixed adversarial strength.

4.2. Gradient Masking and Regularization

Models are modified to obscure gradient information,
limiting adversarial optimization:

Vo L(f(x),¥) = 0,Vx
where VIt is a gradient-obscured function.
How It Can Be Improved:

. Current implementations fail against iterative
attacks. Using randomized activation functions
increases robustness.

4.3. Certifiable
Constraints

Robustness with Lipschitz

Ensuring bounded model sensitivity:

If () = FGDI < Lllx — xll

where L Controls the impact of perturbations.
How It Can Be Improved:

. Medical Al models can dynamically adjust
LBased on image quality (e.g., lower for MRI,
higher for X-ray).

4.4. Secure Model
Smoothing

Architectures: Randomized

Adding Gaussian noise to inputs:
f@) = Eyon(oo2nlf (x +m)]
How It Can Be Improved:

. Instead of fixed noise variance, using an
adaptive noise model per medical image type
prevents adversarial exploitation.

5. COMPLEXITY AND ROBUSTNESS TRADE-OFFS

5.1. Computational Costs of Defenses

. Adversarial training: O(n) Increase in training
complexity.
. Gradient masking: Adds non-differentiable layers,

slowing optimization.

i Lipschitz  constraints: Reduce adversarial
vulnerability but lower model accuracy.

5.2. Theoretical Limits of Adversarial Defenses

. Universal robustness is impossible: The
no-free-lunch theorem states that any model is
vulnerable under sufficient attack sophistication.

. Practical trade-offs: Security improvements often
result in decreased diagnostic performance.

6. STATISTICAL EVALUATION OF ATTACK AND
DEFENSE PERFORMANCE

To ensure the empirical validity of the findings, all
experiments were conducted with multiple independent
trials. Each Al model was trained and tested on
datasets consisting of:

. CNNs (Medical Imaging): 10,000 radiology
images (50% training, 25% validation, 25%
testing).

. RNNs (ECG Analysis): 5,000 ECG sequences
from open-access clinical repositories.

. Transformer Models (Clinical 8,000

anonymized clinical notes.

NLP):



Adversarial Machine Learning in Healthcare

International Journal of Statistics in Medical Research, 2025, Vol. 14 789

. Autoencoders  (Anomaly Detection):
samples of diagnostic imaging scans.

6,000

For each model, we executed adversarial attacks
(FGSM, PGD, JSMA) in five repeated trials per dataset
split to account for variability. We evaluated the
statistical significance of performance differences using
paired t-tests to compare pre- and post-attack
accuracies, as well as one-way ANOVA with post-hoc
Tukey’'s HSD tests for comparisons across defense
strategies. We verified the normality of accuracy
distributions using the Shapiro-Wilk test.

All reported accuracy values represent the mean +
standard deviation across trials. We also calculated
95% confidence intervals (Cls) and effect sizes
(Cohen’s d) for observed accuracy degradations and
improvements. We performed a power analysis to
confirm that our chosen sample sizes were sufficient to
detect medium-to-large effect sizes (Cohen’s d = 0.5)
with power = 0.8 at a = 0.05.

7. REGULATORY AND CLINICAL IMPACT

. HIPAA & GDPR Compliance: Al must remain
secure without exposing sensitive patient data.

. FDA Al Guidelines: Medical Al must be validated
against adversarial robustness before clinical
deployment.

Models should remain
when hardened against

. Clinical Trust in Al:
explainable even
adversarial attacks.

8. RESULTS

8.1. Overview of Adversarial Impact on Al-Driven
Healthcare Systems

Adversarial attacks significantly degrade the
classification accuracy of Al-based medical diagnostic
systems. The severity of accuracy degradation
depends on the attack type and model architecture.
Figure 1 illustrates the impact of adversarial attacks on
medical Al models. Values represent mean + standard
deviation across five independent trials. Error bars
indicate variability. All attack-induced degradations
were statistically significant (p < 0.01, paired t-tests).

For the JSMA attack, the degradation ofthe
CNN-based medical imaging model was the most
severe, from 92%classification accuracy to 40%. The
transformer models used for clinical NLP tasks were
also vulnerable, showing an accuracy drop of nearly
30% under FGSM and PGD attacks. These results
support anxiety about adversarial robustness in clinical
Al applications due to dangerous medical errors
resulting from false diagnoses.
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Figure 1: Impact of adversarial attacks on classification accuracy across different Al-driven healthcare models.

Table 1:

Summary of Adversarial Attack Success Rates on Al Models

Al Model FGSM Success Rate

(%; mean * SD, 95% Cl)

PGD Success Rate
(%; mean * SD, 95% ClI)

JSMA Success Rate
(%; mean * SD, 95% ClI)

CNN (Medical Imaging) 29 + 2 (95% CI: 27-31)

42 + 2.5 (95% Cl: 39-45) 52 + 3 (95% Cl: 48-56)

RNN (ECG Analysis) 18 + 1.5 (95% Cl: 16-20)

26 + 2 (95% Cl: 24-28) 33 £ 2 (95% Cl: 31-35)

Transformer (NLP) 16 £ 1.2 (95% Cl: 14-18)

21+ 1.8 (95% Cl: 19-23) 28 + 1.5 (95% Cl: 26-30)

Autoencoder (Anomaly Detection) 30 + 2 (95% Cl: 28-32)

38 +2.5 (95% ClI: 35-41) —
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8.2. Success Rates of Adversarial Attacks

Table 1 shows a summary of adversarial attack
success rates on Al-driven diagnostic models. Results
are reported as mean + standard deviation across five
independent trials, with 95% confidence intervals
shown in parentheses. All observed accuracy
degradations relative to baseline were statistically
significant (paired t-tests, p < 0.01).

8.3. Statistical Significance of Attack Success
Rates

To strengthen the empirical interpretation of Table 1,
statistical comparisons were performed. Across all
models, adversarial attacks significantly reduced
classification accuracy compared to baseline
performance (p < 0.001 for CNNs, RNNs, and
Transformers under FGSM, PGD, and JSMA, paired
t-tests).

For CNNs, the drop from 92% to 40% accuracy
under JSMA was statistically significant (95% ClI:
-54.2% to -48.1%, Cohen’s d = 3.21, very large effect
size). Similarly, RNNs under PGD showed a mean
decrease of 42% (95% CIl: —40.1% to —43.8%, Cohen’s
d = 2.85). Transformer models exhibited a ~30%
degradation (p < 0.01, 95% CI: —28.7% to —31.6%).

All reported percentages in Table 1 represent mean
+ standard deviation across five independent ftrials.
Error bars corresponding to these standard deviations
have been added in Figure 1 to reflect performance
variability under repeated experimentation.

These results confirm that adversarial vulnerabilities
are not random fluctuations but statistically robust
degradations in diagnostic performance.

3.5

Relative Computational Overhead (Multiplier)

N
o o\
&)
el®

po S

" ‘u\aé‘\“q

. FGSM and PGD were more effective against
ECG-based RNNs, with PGD achieving a 42%
attack success rate.

. JSMA exhibited the highest attack potency (52%
success rate) in CNN-based systems,
emphasizing its threat to Al-assisted radiology.

. Transferability of attacks: Al models trained on
separate datasets exhibited susceptibility to
adversarial transfer, signaling cross-institutional
vulnerabilities in medical Al deployments.

These results indicate that standard deep learning
models, even with high baseline accuracy, remain
highly susceptible to adversarial manipulation.

8.4. Computational Overhead of Defense

Mechanisms

Trade-offs in the degree of robustness and terms of
computational efficiency can be introduced Vvia
adversarial defense strategies. Figure 2 shows the
computational overhead of adversarial defense
strategies. Stacked bars show relative increases in
training and inference time. Error bars represent mean
+ standard deviation across five runs.

. Randomized Smoothing exhibited highest
computational overhead (+1.8x training time and
+1.4% inference time).

Adversarial Training significantly increased
model complexity, requiring an additional 1.5x
training time due to iterative perturbation-based
optimization.

Lipschitz Constraint methods provided a
balanced trade-off, achieving robustness with

EEm Training Time Increase
B Inference Time Increase

Figure 2: Computational overhead comparison of adversarial defense strategies.
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minimal computational impact (+1.1x ftraining
time).

Insights are provided into which defense strategies
are seen to reduce adversarial risk, while at the same
time introducing their practical constraints on real-world
deployment, especially in the case of time-sensitive
clinical applications.

8.5. Robustness Gains from Adversarial Defense
Strategies

Table 2 summarizes the Effectiveness of
adversarial defense strategies in restoring Al model
accuracy. Accuracy values are expressed as mean %
standard deviation across five independent trials, with
95% confidence intervals shown in parentheses. A
one-way ANOVA with Tukey’s HSD post-hoc test
confirmed that randomized smoothing and adversarial
training provided significantly greater accuracy
recovery than gradient masking (p < 0.01).

8.6. Statistical Analysis of Defense Efficacy

Accuracy recovery following adversarial defenses
was subjected to a one-way ANOVA to compare the
four strategies (Adversarial Training, Gradient Masking,
Randomized Smoothing, and Lipschitz Constraints).
Results indicated a statistically significant difference
between defense methods (F(3,16) = 14.72, p < 0.001).
Post-hoc Tukey’'s HSD tests revealed that both
Randomized Smoothing and Adversarial Training
significantly outperformed Gradient Masking (p < 0.01)
in restoring model accuracy. No significant difference
was found between Randomized Smoothing and
Adversarial Training (p = 0.48), although both
exceeded Lipschitz Constraints by a moderate margin
(p <0.05).

Mean recovery rates with 95% confidence intervals
were as follows:

. Randomized Smoothing: +15%

+13.1% to +16.9%)

(95% Cl:

. Adversarial Training: +14% (95% CI: +12.5% to
+15.5%)

. Lipschitz Constraints: +10% (95% CI: +8.4% to
+11.6%)

. Gradient Masking: +7% (95% CI: +5.9% to
+8.1%)

Error bars representing + standard deviation across
trials have been added in Figure 2 to reflect variability
in accuracy recovery. These results reinforce that while
all defenses provide measurable robustness,
Randomized Smoothing and Adversarial Training
consistently yield the most reliable statistical
improvements, albeit at higher computational costs.

. Randomized Smoothing exhibited the highest
accuracy recovery (+15%), reinforcing its
potential for adversarial robustness in medical
imaging.

. Adversarial Training increased model resilience
by +14%, but at a high computational cost.

. Gradient Masking offered only marginal
protection (+7%), highlighting its limitations
against iterative attacks.

These results suggest that while Al security
techniques can mitigate adversarial threats, they
require a strategic trade-off between accuracy recovery,
computational efficiency, and real-time deployment
feasibility.

8.7. Clinical and Regulatory Implications

The experimental findings have critical implications
for the integration of adversarially robust Al models in
healthcare:

. Radiology Al models must be hardened against
the gradient-based adversarial perturbations,
given their susceptibility to the JSMA and PGD
attacks.

. FDA regulatory guidelines should include ad-
versarial robustness assessments as a part of Al
validation protocols before clinical deployment.

Table 2: Effectiveness of Adversarial Defenses in Restoring Al Model Accuracy

Defense Pre-Attack Accuracy Post-Attack Accuracy Post-Defense Accuracy Accuracy Improvement
Strategy (%; mean * SD, 95% CI) (%; mean * SD, 95% CI) (%; mean * SD, 95% CI) (%; mean * SD, 95% CI)
Adversarial 75+ 2 (95% CI: 73-77) 62 £ 2 (95% Cl: 60-64) 89 £ 2.5 (95% CI: 86-92) +14 + 2 (95% CI: +12-16)
Training
Gradient 78 £ 1.5 (95% Cl: 76-80) 65 £ 1.2 (95% Cl: 64-67) 85 £ 1.8 (95% CI: 83-87) +7 £1.2 (95% CI: +6-8)
Masking
Randomized 73 £2(95% CI: 71-75) 59 £ 1.5 (95% CI: 58-61) 88 £ 2 (95% ClI: 86-90) +15 + 2 (95% CI: +13-17)
Smoothing
Lipschitz 80 £ 1.8 (95% CI: 78-82) 68 £ 1.8 (95% ClI: 66-70) 90 £ 2 (95% ClI: 88-92) +10 £ 1.5 (95% CI: +8-12)
Constraints
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. Ethical considerations must be addressed,
ensuring that Al robustness does not
compromise explainability, a key requirement in
medical Al adoption.

9. DISCUSSION

The results show that, despite a common prejudice
that modern Al models in medicine are less vulnerable
to such attacks than human experts, modern Al models
suffer significantly, particularly models utilized in
medical imaging and clinical decision support systems.
It is shown that CNN-based medical imaging models
can be inferred by perturbation-based adversarial
inputs with an over 50% accuracy drop, making them
susceptible to such attacks. In addition, Transformer
models applied in NLP-based clinical documentation
experienced a huge 30% accuracy reduction when
attacked by both FGSM and PGD models, which brings
into question the integrity of the Al-generated medical
records. Adversarial defense strategies are analyzed,
where Randomized Smoothing and Adversarial
Training achieve the best robust improvement of
accuracy, improving by 15% and 14%, respectively.
The Randomized Smoothing approach was the largest
source of computational overhead, and this may
prevent it from practical application in the
time-constrained settings of medical environments.
Additionally, the Gradient Masking approach leads to
marginal (+7%) improvements but is computationally
efficient, and therefore, the results indicate that this
approach is ineffective against adaptive adversaries,
compared with other defenses. This work reinforces
the tradeoff between security, interpretability, and
computational efficiency of medical Al systems, and
that there is not a single defense strategy to protect
from all of these system properties.

Besides a general accuracy degradation,
adversarial attacks change false positive rates (FPR)
and false negative rates (FNR) significantly, which
have different clinical risks. In radiology models,
adversarial perturbations caused FNRs to rise by up to
+18% (p < 0.01) and FPRs to rise by up to +12% (p <
0.05), respectively, which suggests the possibility of
more missed disease diagnoses and false alarms
resulting in unnecessary follow-up testing. PGD attacks
raised FNRs more than FPRs in the ECG-based RNNs,
a trend that is worrying, considering the life-threatening
nature of undiagnosed cardiac conditions.

Statistically, these changes in Type | (false positive)
and Type Il (false negative) errors indicate that
adversarial manipulation does not merely decrease
model accuracy, but biases distributions of diagnostic
errors. The imbalance may have a systematic effect of
weakening clinical workflows in case it goes

undetected. Defense strategies were observed to
partially counteract these effects, limiting FNR
increases by up to 14% under Randomized Smoothing,
but none fully recovered baseline sensitivity and
specificity. These results underscore the need to report
error rates as well as accuracy in adversarial
robustness experiments and to make adversarial
testing a part of medical Al validation procedures,
where it is as essential to ensure balanced errors as it
is to achieve high overall classification accuracy.

This is by previous work showing that adversarial
attacks can be devastating to Al model performance in
healthcare. This study shows results that are in line
with those of Finlayson ef al. (2019), who also found
that CNN-based diagnostic models are highly
susceptible to adversarial noise, with classification
failure of CNNs being a drastic consequence of JSMA
attacks. Studies conducted by Muoka et al. (2023) also
highlighted that gradient-based attacks (FGSM, PGD)
are great threats to Al-driven medical imaging, which is
also proved by our results with a success rate larger
than 40%.

Unlike previous works that mainly concentrated on
adversarial vulnerabilities, this study additionally
quantifies the tradeoffs of adversarial defenses,
especially in terms of computational efficiency. Both
adversarial training (additional 1.5x cost) and
randomized smoothing (additional 1.8x cost) incur
additional computation that other researchers have
previously cited as a potential problem with
deployability in clinical settings. This enables us to
present a balanced take on security vs. practical
applicability for those looking to deploy medical Al and
determine whether theoretical adversarial robustness
translates to real-world deployment.

The potential findings of the study highlight the
importance of adversarial robustness in medical Al
models before they are adopted in clinical settings. The
fact that CNN radiology models are vulnerable to
gradient-based perturbations suggests that
organizations like the FDA should require adversarial
robustness testing as part of their Al validation
procedures. Similarly, Al-based decision support tools
in electronic health records (EHRs) must incorporate
adaptive adversarial defenses to prevent the
systematic misclassification of patient risk scores.
Additionally, the study shows that implementing robust
Al defenses increases computational overhead, which
can be problematic for resource-limited hospitals by
adding computational demands that hinder deployment.
This underscores the need for an optimized defense
strategy that balances security and efficiency, ensuring
access within healthcare environments with diverse
populations. However, the study has some limitations



Adversarial Machine Learning in Healthcare

International Journal of Statistics in Medical Research, 2025, Vol. 14 793

despite its contributions. It is primarily based on
theoretical models and simulated success rates of
adversarial attacks rather than real-world patient data,
offering limited empirical validation. Although CNNs,
Transformers, and RNNs were analyzed, the
evaluation of hybrid Al architectures was limited,
possibly restricting the generalizability of the results.
Finally, the study does not thoroughly explore adaptive
adversarial threats, such as meta-learning-based
adversarial optimizations, which could pose emerging
security risks for medical Al. Nonetheless, the results
provide a solid foundation for understanding how
adversarial vulnerabilities can impact medical Al and
establish a framework for assessing the plausibility of
adversarial defenses in medical Al deployments. While
further research involving real-world adversarial
scenarios and actual patient datasets is needed, the

adversarial testing conducted suggests that the
proposed intervention method shows promising
outcomes. It also opens the door to integrating
adversarially robust Al models into regulatory

frameworks to ensure medical Al systems meet
security and compliance standards. Overall, these
findings not only advance adversarial defense research
but also enhance the reliability of statistical models by
quantifying error distributions, confidence intervals, and
validation protocols essential for the adoption of
medical Al.

10. CONCLUSION

We provide a comprehensive study of adversarial
vulnerabilities of Al-driven healthcare models and show
that sacrificing a little bit of the accuracy leads to
severe degradation of the models' ability to make
medical diagnostics. Our results suggest that
CNN-based radiology models are susceptible to an
accuracy drop from 92% to 40% under JSMA attacks
and resulting in a 42% drop in the performance of the
ECG-based Al model under PGD attack. Like the
transformer-based NLP models, transformer-based Al
models suffered a 30% accuracy drop under FGSM
attacks, which indicates that any Al-assisted clinical
decision-making process may not be trustworthy The
best improvements in terms of defense were obtained
by Randomized Smoothing and Adversarial Training,
with respective accuracy gains of 15% and 14%.
However, although Randomized Smoothing pays 1.8%
computational overhead for each sample, it is not
practically applicable in real time to clinical applications.
During training, through the use of Gradient Masking,
which is computationally efficient, we only gained a 7%
accuracy improvement, but were unable to defeat
adaptive attacks. We also highlight the communication
among these three dimensions: adversarial robustness,
computational feasibility, and real-world applicability,

and echo the need for developing secure, close to
real-world, compliant, and language interpretable
models in healthcare to prevent adversarial exploitation.
To ascertain the reliability of our findings, post-hoc
power analysis was performed. The statistical power
with the observed effect sizes (Cohen d = 1.8-3.2) to
detect the difference in accuracy between the baseline
and attacked was greater than 0.95 at the alpha level of
0.05. In the same way, the power values of the
comparisons between the defense strategies were
above 0.85, which means that the samples employed
in this research were sufficiently sensitive.

These findings show that the accuracy degradations
and robustness gains reported were not only significant
but were also backed by adequate sample sizes to
warrant the generalizability of the conclusions. In future
work, the adversarial robustness should be validated in

larger  multi-institutional  datasets to  ensure
reproducibility across varying clinical settings.
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