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Abstract: The rapid integration of artificial intelligence (AI) in healthcare has enhanced diagnostics, predictive analytics, 
and clinical decision-making. However, AI-driven models, particularly deep learning architectures, remain highly 
vulnerable to adversarial machine learning (AML) attacks, which can result in misdiagnoses, unsafe treatment 
recommendations, and compromised patient safety. This study systematically evaluates adversarial risks in medical AI, 
quantifies their impact on model performance, and assesses the efficacy of defense mechanisms. We analyzed CNNs 
(medical imaging), RNNs (ECG analysis), and Transformer models (clinical NLP) under FGSM, PGD, and JSMA attacks. 
Results show that the CNN accuracy of 92% was reduced to 40% under JSMA, ECG-based AI performance dropped by 
42% under PGD, and Transformer-based NLP models experienced a 30% decline under FGSM. Defense mechanisms 
such as randomized smoothing and adversarial training improved accuracy by 15% and 14%, respectively, though at 
high computational costs (1.8× and 1.5× training overhead). Across five independent trials, all degradations were 
statistically significant (p< 0.01), and ANOVA with Tukey’s HSD confirmed that randomized smoothing and adversarial 
training significantly outperformed gradient masking (p< 0.01). These findings demonstrate that medical AI systems are 
highly susceptible to adversarial manipulation and underscore the necessity of robust, efficient, and regulatory-compliant 
defenses. Strengthening adversarial resilience is critical to ensuring safe, reliable, and ethically responsible deployment 
of AI in healthcare. 
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1. INTRODUCTION 

Although artificial intelligence (AI) has taken the 
world by storm, its applications have not been 
exclusive to the corporate world; AI has revolutionized 
modern healthcare and has immensely changed 
diagnostics, treatment planning, and patient care. 
Bythe demonstrated superior performance of machine 
learning (ML) models, such as deep learning, in the 
analysis of medical images, prediction of disease 
progression, and optimization of personalized 
treatment plans [1], it is only natural that ML is being 
applied to medical images for clinical applications [2]. 
Today, AI-powered systems are used in a wide range 
of medical disciplines such as radiology, cardiology, 
oncology, and pathology to make faster and more 
accurate decisions [2]. AI integration in health care 
workflows leads to greater efficiency and fewer medical 
errors, as well as better patient outcomes. 
Nevertheless, AI-based healthcare is still prone to 
security vulnerabilities, especially in the context of 
adversarial attacks whose intent is to make ML models 
behave in a way opposite to what a user expects by 
modifying the input so that predictions are wrong 
and/or misleading [3]. 

Adversarial machine learning (AML) can also be 
described as the craft of fooling an AI model by 
injecting imperceivable ones’ data as input, which 
leads to a wrong output. Adversarial attacks in the 
medical domain can be catastrophic,  as misdiagnosis  
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or wrong treatment recommendations can jeopardize 
patient safety [4]. However, as AI is becoming an 
integral part of the future of medical diagnostics, the 
risks associated with adversarial threats of AI are 
growing, and researchers, practitioners, and 
policymakers need to pay more attention to them [5]. 

Although AI for healthcare has the potential to be 
transformational, adversarial vulnerabilities of ML 
present a critical hurdle to ML-based medical 
applications' reliability and trustworthiness. A small 
perturbation in medical images will mislead an AI 
model in classifying diseases like cancer, 
cardiovascular, neurological, and so on [6]. Moreover, 
security vulnerabilities in AI healthcare infrastructure 
can also be exploited by adversarial attacks to make 
unauthorized modifications to the patient’s data, 
leading to privacy breaches and fraud [7]. 

The main issue is that adversarial threats are often 
invisible to human clinicians, so they cannot be 
detected and mitigated in real-world medical settings. 
Given that such attacks exploit the learning mechanism 
of neural networks instead of the traditional system 
vulnerabilities, they are beyond the scope of traditional 
cybersecurity measures [8]. Moreover, regulatory 
frameworks for AI in healthcare have not yet been fully 
addressed in the part of the risks introduced by 
adversarial ML, which leads to insufficient security 
protocols and risk mitigation [9]. 

Given the nascent nature of AI in healthcare, the 
risks in adversarial deployment of machine learning 
models are also increasing; therefore, we need to 
address adversarial risks in AI-driven healthcare to 
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guarantee the safe, reliable, and ethical quality of the 
deployed machine learning models in clinical settings. 
For instance, this research is significant in shedding 
light on the urgent requirement of sufficiently 
adversarial defense mechanisms specifically designed 
for medical AI applications [2]. This study investigates 
the existing challenges and considers potential 
solutions on how to develop more secure and resilient 
AI-driven diagnostics and treatment systems [5]. 

Besides technological benefits, the results of this 
work are also important for regulators, healthcare 
centers, and AI developers. Improving AI security in 
healthcare will build trust among the public, encourage 
ethical AI applications, and promote interdisciplinary 
interaction between medical professionals and AI 
researchers [7]. In addition, comprehension of 
adversarial threats to the field of ML can help 
policymakers craft regulations that enforce the same 
critical security and ethical requirements that should 
underpin the use of AI in healthcare [3]. 

To address the identified challenges, this research 
focuses on two key objectives: 

1. To analyze the impact of adversarial machine 
learning on AI-driven diagnostics and treatment 
planning, identifying key vulnerabilities in 
medical applications. 

2. To explore and evaluate potential adversarial 
defense strategies tailored for AI-powered 
healthcare systems, ensuring the robustness 
and security of ML models. 

2. LITERATURE REVIEW 

These recent years have seen great advances in 
the field of adversarial machine learning (AML) in 
healthcare. Among other areas, it is one of the most 
discussed – the susceptibility of medical AI models to 
adversarial attacks, were small, usually imperceptible 
modifications to input data cause deep learning models 
to misclassify. What makes this vulnerability even more 
dangerous is that medical imaging applications are 
susceptible to very small perturbations that could 
completely change a diagnostic outcome [10]. Many 
methods have been explored by researchers on 
multiple fronts to detect and counter adversarial threats, 
such as robust training techniques and defense 
mechanisms for healthcare systems [11]. 

Efforts to build frameworks to improve medical AI 
models’ resilience within the realm of AI-driven 
cybersecurity for healthcare have been quite 
widespread. AI-driven security strategies to protect 
patient data and the integrity of medical devices were 
highlighted by Bonagiri et al. [12] since healthcare 

records are becoming digital, and IoT-enabled medical 
devices are being used. Similarly, research on 
generative AI has been undertaken to understand the 
potential benefits and security vulnerabilities of 
AI-driven diagnostics, and need to be done on 
regulatory oversight [13]. 

Several studies have been done on the 
effectiveness of various adversarial defense strategies, 
but all come with both pros and cons. Foundational 
research on adversarial attacks in medical ML was 
accomplished by Finlayson et al., who showed how 
even very accurate AI models can be made to commit 
critical diagnostic errors [10]. Their results yielded a 
transparent warning about AI vulnerabilities, but the 
study itself concerned almost purely theoretical 
adversarial attacks and not case studies for 
implementations in the real world. 

Muoka et al. conducted another study that did a 
comprehensive review of deep learning-based medical 
image adversarial attacks and their countermeasures. 
While their work gave a taxonomy of different types of 
attacks and defense mechanisms, they pointed out that 
the existing attacks often drastically deteriorate the 
model performance or require some expensive 
computational resources, which makes them 
impractical for real-world clinical applications [11]. 

Additionally, in the same context, Dani and Wajid 
conducted studies on security risk in AI-driven 
healthcare applications, providing reinforcement 
learning-based adversary defense. Although promising, 
most of these solutions incur the cost of retraining AI 
models, which is intensive in resources and not 
practical for healthcare institutions operating under 
stringent regulatory frameworks [14]. 

While the body of research on adversarial ML in 
healthcare is growing, there are still several gaps that 
have not been filled in the study of adversarial ML in 
healthcare. Second, adversarial defense techniques 
are not tested and validated in the real world in clinical 
environments. Many of the earlier studies operate 
under simulated attack scenarios, which can be far 
from reality in terms of the full extent of the adversarial 
threats in the deployed healthcare systems [10,11]. 

Additionally, proposed robust training techniques, 
including adversarial training and input processing, are 
often accompanied by reduced interpretability of the 
model. For clinician adoption in medical diagnostics, 
model explainability is important, and tradeoffs 
between security and interpretability are still open [13]. 

Lastly, AI security and healthcare are dealing with a 
new intersection of privacy, data security, and 
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healthcare regulations that are underexplored so far. 
Several researchers have suggested different 
adversarial defense strategies, but only a few have 
evaluated how such strategies align with the current 
healthcare compliance frameworks, including HIPAA 
and GDPR [12], used to monitor and guide patient data 
security and deployment of AI in hospital settings. 

The above studies provide a solid basis for 
understanding adversarial risks in AI-driven healthcare. 
The work of this research relies on the results that exist 
in today's work, and it aims to fill the gaps that are 
currently left by the previous defense strategy against 
adversarial attacks and create a new framework that 
makes the adversarial defense strategy work by 
increasing the robustness, computational efficiency, 
and meeting the compliance with the regulations. This 
study attempts to contribute to the development of 
safer and more reliable AI-based diagnostic systems 
[10,12] by investigating the application of AI-driven 
security protocols. 

In addition to that, this research aims to close the 
gap between AI model performance and the actual 
clinic application. Existing studies are focused on 
technical implementation, but our study will extend to 
the real world (specifically, feasibility) through clinician 
(for feedback) and regulator (for opinions) perspectives. 
This is done to achieve a more holistic approach to 
adversarial defense in AI-driven diagnostics [14-16]. 

3. METHODOLOGY 

3.1. AI Models in Medical Diagnostics and their 
Attack Surfaces 

Medical AI applications rely on deep learning 
architectures trained to classify medical images, predict 
disease risks, and support clinical decision-making. 
Some key architectures include: 

• Convolutional Neural Networks (CNNs): Used in 
radiology and pathology for tumor detection and 
disease classification. 

• Recurrent Neural Networks (RNNs) and 
Transformers: Analyze time-series patient data, 
such as ECG signals. 

• Autoencoders and Generative Models: Enhance 
image quality for medical scans, but can also 
introduce vulnerabilities through data 
reconstruction. 

• Reinforcement Learning (RL): Optimizes 
personalized treatment strategies in AI-powered 
clinical recommendations. 

Each of these architectures can be exploited by 
adversarial attacks, leading to incorrect medical 
diagnoses or compromised treatment 
recommendations. 

3.2. Adversarial Attacks on Medical AI Systems 

AML exploits AI's weaknesses by introducing small 
perturbations in input data, resulting in 
misclassifications. Existing attacks include: 

3.2.1. Gradient-Based Attacks 

Attacks modify model inputs by maximizing the loss 
function: 

!∗ = arg  max
!∈!

 ℒ(!(! + !), !) 

where !Is the adversarial perturbation constrained by 
a norm?‖!‖! ≤ !. Fast Gradient Sign Method (FGSM) 

Perturbations are computed using the sign of the 
gradient: 

! = ! ⋅ sign ∇!ℒ(!(!), !)  

This attack requires only one gradient step and is 
computationally efficient. 
Projected Gradient Descent (PGD) 

PGD iteratively updates perturbations using: 

!!!! = Π! !! + ! ⋅ sign ∇!ℒ ! !! , !  

where Π!  Ensures the perturbation stays within the 
allowed space ! 

Medical Impact: 

• In radiology, FGSM and PGD attacks alter tumor 
margins, leading to false negative or positive 
diagnoses. 

• In predictive analytics, adversarial changes to 
patient biomarker inputs result in incorrect risk 
stratification. 

3.2.2. Data Poisoning Attacks 

Instead of modifying inputs at inference time, 
poisoning attacks introduce malicious samples into the 
training set: 

!(!,!)∼!poisoned [ℒ(!(!), !)] 

where !poisoned Includes a subset of adversarially 
modified training data. 

Medical Impact: 

• Poisoned datasets can bias AI models, leading 
to incorrect treatment predictions. 
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• Attackers can embed backdoors that only 
activate under specific input conditions. 

3.2.3. Transfer Attacks across Medical Models 

Adversarial samples generated for one model can 
transfer to others: 

!!! !
! ≈ !!! !

!  

where !! and !!Represent different models. 

Medical Impact: 

• An attacker designing an adversarial input 
against one AI system can effectively fool 
multiple independent medical AI models. 

• This raises risks in hospital AI deployments, 
where different institutions use pre-trained AI 
models from common vendors. 

4. EXTENDING EXISTING DEFENSE STRATEGIES 

Existing defenses harden medical AI models but 
introduce trade-offs in accuracy, interpretability, and 
computational cost. 

4.1. Adversarial Training with Adaptive 
Augmentation 

All models are trained on adversarial samples: 

min
!
 !(!,!)∼!max!∈!

 ℒ !!(! + !), !  

where adversarial noise !It is dynamically optimized 
per sample. 

How It Can Be Improved: 

• Instead of uniform perturbations, training can 
vary !Per patient type, preventing overfitting to a 
fixed adversarial strength. 

4.2. Gradient Masking and Regularization 

Models are modified to obscure gradient information, 
limiting adversarial optimization: 

∇!ℒ(!(!), !) ≈ 0, ∀! 

where ∇!It is a gradient-obscured function. 

How It Can Be Improved: 

• Current implementations fail against iterative 
attacks. Using randomized activation functions 
increases robustness. 

4.3. Certifiable Robustness with Lipschitz 
Constraints 

Ensuring bounded model sensitivity: 

!(!) − ! !! ≤ ! ! − !!  

where ! Controls the impact of perturbations. 

How It Can Be Improved: 

• Medical AI models can dynamically adjust 
!Based on image quality (e.g., lower for MRI, 
higher for X-ray). 

4.4. Secure Model Architectures: Randomized 
Smoothing 

Adding Gaussian noise to inputs: 

!(!) = !!∼! !,!!! [!(! + !)] 

How It Can Be Improved: 

• Instead of fixed noise variance, using an 
adaptive noise model per medical image type 
prevents adversarial exploitation. 

5. COMPLEXITY AND ROBUSTNESS TRADE-OFFS 

5.1. Computational Costs of Defenses 

• Adversarial training: !(!) Increase in training 
complexity. 

• Gradient masking: Adds non-differentiable layers, 
slowing optimization. 

• Lipschitz constraints: Reduce adversarial 
vulnerability but lower model accuracy. 

5.2. Theoretical Limits of Adversarial Defenses 

• Universal robustness is impossible: The 
no-free-lunch theorem states that any model is 
vulnerable under sufficient attack sophistication. 

• Practical trade-offs: Security improvements often 
result in decreased diagnostic performance. 

6. STATISTICAL EVALUATION OF ATTACK AND 
DEFENSE PERFORMANCE 

To ensure the empirical validity of the findings, all 
experiments were conducted with multiple independent 
trials. Each AI model was trained and tested on 
datasets consisting of: 

• CNNs (Medical Imaging): 10,000 radiology 
images (50% training, 25% validation, 25% 
testing). 

• RNNs (ECG Analysis): 5,000 ECG sequences 
from open-access clinical repositories. 

• Transformer Models (Clinical NLP): 8,000 
anonymized clinical notes. 
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• Autoencoders (Anomaly Detection): 6,000 
samples of diagnostic imaging scans. 

For each model, we executed adversarial attacks 
(FGSM, PGD, JSMA) in five repeated trials per dataset 
split to account for variability. We evaluated the 
statistical significance of performance differences using 
paired t-tests to compare pre- and post-attack 
accuracies, as well as one-way ANOVA with post-hoc 
Tukey’s HSD tests for comparisons across defense 
strategies. We verified the normality of accuracy 
distributions using the Shapiro-Wilk test.  

All reported accuracy values represent the mean ± 
standard deviation across trials. We also calculated 
95% confidence intervals (CIs) and effect sizes 
(Cohen’s d) for observed accuracy degradations and 
improvements. We performed a power analysis to 
confirm that our chosen sample sizes were sufficient to 
detect medium-to-large effect sizes (Cohen’s d ≥ 0.5) 
with power ≥ 0.8 at α = 0.05. 

7. REGULATORY AND CLINICAL IMPACT 

• HIPAA & GDPR Compliance: AI must remain 
secure without exposing sensitive patient data. 

• FDA AI Guidelines: Medical AI must be validated 
against adversarial robustness before clinical 
deployment. 

• Clinical Trust in AI: Models should remain 
explainable even when hardened against 
adversarial attacks. 

8. RESULTS 

8.1. Overview of Adversarial Impact on AI-Driven 
Healthcare Systems 

Adversarial attacks significantly degrade the 
classification accuracy of AI-based medical diagnostic 
systems. The severity of accuracy degradation 
depends on the attack type and model architecture. 
Figure 1 illustrates the impact of adversarial attacks on 
medical AI models. Values represent mean ± standard 
deviation across five independent trials. Error bars 
indicate variability. All attack-induced degradations 
were statistically significant (p < 0.01, paired t-tests). 

For the JSMA attack, the degradation ofthe 
CNN-based medical imaging model was the most 
severe, from 92%classification accuracy to 40%. The 
transformer models used for clinical NLP tasks were 
also vulnerable, showing an accuracy drop of nearly 
30% under FGSM and PGD attacks. These results 
support anxiety about adversarial robustness in clinical 
AI applications due to dangerous medical errors 
resulting from false diagnoses. 

 
Figure 1: Impact of adversarial attacks on classification accuracy across different AI-driven healthcare models. 
 

Table 1: Summary of Adversarial Attack Success Rates on AI Models 

AI Model FGSM Success Rate  
(%; mean ± SD, 95% CI) 

PGD Success Rate  
(%; mean ± SD, 95% CI) 

JSMA Success Rate  
(%; mean ± SD, 95% CI) 

CNN (Medical Imaging) 29 ± 2 (95% CI: 27–31) 42 ± 2.5 (95% CI: 39–45) 52 ± 3 (95% CI: 48–56) 

RNN (ECG Analysis) 18 ± 1.5 (95% CI: 16–20) 26 ± 2 (95% CI: 24–28) 33 ± 2 (95% CI: 31–35) 

Transformer (NLP) 16 ± 1.2 (95% CI: 14–18) 21 ± 1.8 (95% CI: 19–23) 28 ± 1.5 (95% CI: 26–30) 

Autoencoder (Anomaly Detection) 30 ± 2 (95% CI: 28–32) 38 ± 2.5 (95% CI: 35–41) — 
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8.2. Success Rates of Adversarial Attacks 

Table 1 shows a summary of adversarial attack 
success rates on AI-driven diagnostic models. Results 
are reported as mean ± standard deviation across five 
independent trials, with 95% confidence intervals 
shown in parentheses. All observed accuracy 
degradations relative to baseline were statistically 
significant (paired t-tests, p < 0.01). 

8.3. Statistical Significance of Attack Success 
Rates 

To strengthen the empirical interpretation of Table 1, 
statistical comparisons were performed. Across all 
models, adversarial attacks significantly reduced 
classification accuracy compared to baseline 
performance (p < 0.001 for CNNs, RNNs, and 
Transformers under FGSM, PGD, and JSMA, paired 
t-tests). 

For CNNs, the drop from 92% to 40% accuracy 
under JSMA was statistically significant (95% CI: 
−54.2% to −48.1%, Cohen’s d = 3.21, very large effect 
size). Similarly, RNNs under PGD showed a mean 
decrease of 42% (95% CI: −40.1% to −43.8%, Cohen’s 
d = 2.85). Transformer models exhibited a ~30% 
degradation (p < 0.01, 95% CI: −28.7% to −31.6%). 

All reported percentages in Table 1 represent mean 
± standard deviation across five independent trials. 
Error bars corresponding to these standard deviations 
have been added in Figure 1 to reflect performance 
variability under repeated experimentation. 

These results confirm that adversarial vulnerabilities 
are not random fluctuations but statistically robust 
degradations in diagnostic performance. 

• FGSM and PGD were more effective against 
ECG-based RNNs, with PGD achieving a 42% 
attack success rate. 

• JSMA exhibited the highest attack potency (52% 
success rate) in CNN-based systems, 
emphasizing its threat to AI-assisted radiology. 

• Transferability of attacks: AI models trained on 
separate datasets exhibited susceptibility to 
adversarial transfer, signaling cross-institutional 
vulnerabilities in medical AI deployments. 

These results indicate that standard deep learning 
models, even with high baseline accuracy, remain 
highly susceptible to adversarial manipulation. 

8.4. Computational Overhead of Defense 
Mechanisms 

Trade-offs in the degree of robustness and terms of 
computational efficiency can be introduced via 
adversarial defense strategies. Figure 2 shows the 
computational overhead of adversarial defense 
strategies. Stacked bars show relative increases in 
training and inference time. Error bars represent mean 
± standard deviation across five runs. 

• Randomized Smoothing exhibited highest 
computational overhead (+1.8× training time and 
+1.4× inference time). 

• Adversarial Training significantly increased 
model complexity, requiring an additional 1.5× 
training time due to iterative perturbation-based 
optimization. 

• Lipschitz Constraint methods provided a 
balanced trade-off, achieving robustness with 

 
Figure 2: Computational overhead comparison of adversarial defense strategies. 
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minimal computational impact (+1.1× training 
time). 

Insights are provided into which defense strategies 
are seen to reduce adversarial risk, while at the same 
time introducing their practical constraints on real-world 
deployment, especially in the case of time-sensitive 
clinical applications. 

8.5. Robustness Gains from Adversarial Defense 
Strategies 

Table 2 summarizes the Effectiveness of 
adversarial defense strategies in restoring AI model 
accuracy. Accuracy values are expressed as mean ± 
standard deviation across five independent trials, with 
95% confidence intervals shown in parentheses. A 
one-way ANOVA with Tukey’s HSD post-hoc test 
confirmed that randomized smoothing and adversarial 
training provided significantly greater accuracy 
recovery than gradient masking (p < 0.01). 

8.6. Statistical Analysis of Defense Efficacy 

Accuracy recovery following adversarial defenses 
was subjected to a one-way ANOVA to compare the 
four strategies (Adversarial Training, Gradient Masking, 
Randomized Smoothing, and Lipschitz Constraints). 
Results indicated a statistically significant difference 
between defense methods (F(3,16) = 14.72, p < 0.001). 
Post-hoc Tukey’s HSD tests revealed that both 
Randomized Smoothing and Adversarial Training 
significantly outperformed Gradient Masking (p < 0.01) 
in restoring model accuracy. No significant difference 
was found between Randomized Smoothing and 
Adversarial Training (p = 0.48), although both 
exceeded Lipschitz Constraints by a moderate margin 
(p < 0.05). 

Mean recovery rates with 95% confidence intervals 
were as follows: 

• Randomized Smoothing: +15% (95% CI: 
+13.1% to +16.9%) 

• Adversarial Training: +14% (95% CI: +12.5% to 
+15.5%) 

• Lipschitz Constraints: +10% (95% CI: +8.4% to 
+11.6%) 

• Gradient Masking: +7% (95% CI: +5.9% to 
+8.1%) 

Error bars representing ± standard deviation across 
trials have been added in Figure 2 to reflect variability 
in accuracy recovery. These results reinforce that while 
all defenses provide measurable robustness, 
Randomized Smoothing and Adversarial Training 
consistently yield the most reliable statistical 
improvements, albeit at higher computational costs. 

• Randomized Smoothing exhibited the highest 
accuracy recovery (+15%), reinforcing its 
potential for adversarial robustness in medical 
imaging. 

• Adversarial Training increased model resilience 
by +14%, but at a high computational cost. 

• Gradient Masking offered only marginal 
protection (+7%), highlighting its limitations 
against iterative attacks. 

These results suggest that while AI security 
techniques can mitigate adversarial threats, they 
require a strategic trade-off between accuracy recovery, 
computational efficiency, and real-time deployment 
feasibility. 

8.7. Clinical and Regulatory Implications 

The experimental findings have critical implications 
for the integration of adversarially robust AI models in 
healthcare: 

• Radiology AI models must be hardened against 
the gradient-based adversarial perturbations, 
given their susceptibility to the JSMA and PGD 
attacks. 

• FDA regulatory guidelines should include ad- 
versarial robustness assessments as a part of AI 
validation protocols before clinical deployment. 

Table 2: Effectiveness of Adversarial Defenses in Restoring AI Model Accuracy 

Defense 
Strategy 

Pre-Attack Accuracy 
(%; mean ± SD, 95% CI) 

Post-Attack Accuracy 
(%; mean ± SD, 95% CI) 

Post-Defense Accuracy 
(%; mean ± SD, 95% CI) 

Accuracy Improvement 
(%; mean ± SD, 95% CI) 

Adversarial 
Training 

75 ± 2 (95% CI: 73–77) 62 ± 2 (95% CI: 60–64) 89 ± 2.5 (95% CI: 86–92) +14 ± 2 (95% CI: +12–16) 

Gradient 
Masking 

78 ± 1.5 (95% CI: 76–80) 65 ± 1.2 (95% CI: 64–67) 85 ± 1.8 (95% CI: 83–87) +7 ± 1.2 (95% CI: +6–8) 

Randomized 
Smoothing 

73 ± 2 (95% CI: 71–75) 59 ± 1.5 (95% CI: 58–61) 88 ± 2 (95% CI: 86–90) +15 ± 2 (95% CI: +13–17) 

Lipschitz 
Constraints 

80 ± 1.8 (95% CI: 78–82) 68 ± 1.8 (95% CI: 66–70) 90 ± 2 (95% CI: 88–92) +10 ± 1.5 (95% CI: +8–12) 
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• Ethical considerations must be addressed, 
ensuring that AI robustness does not 
compromise explainability, a key requirement in 
medical AI adoption. 

9. DISCUSSION 

The results show that, despite a common prejudice 
that modern AI models in medicine are less vulnerable 
to such attacks than human experts, modern AI models 
suffer significantly, particularly models utilized in 
medical imaging and clinical decision support systems. 
It is shown that CNN-based medical imaging models 
can be inferred by perturbation-based adversarial 
inputs with an over 50% accuracy drop, making them 
susceptible to such attacks. In addition, Transformer 
models applied in NLP-based clinical documentation 
experienced a huge 30% accuracy reduction when 
attacked by both FGSM and PGD models, which brings 
into question the integrity of the AI-generated medical 
records. Adversarial defense strategies are analyzed, 
where Randomized Smoothing and Adversarial 
Training achieve the best robust improvement of 
accuracy, improving by 15% and 14%, respectively. 
The Randomized Smoothing approach was the largest 
source of computational overhead, and this may 
prevent it from practical application in the 
time-constrained settings of medical environments. 
Additionally, the Gradient Masking approach leads to 
marginal (+7%) improvements but is computationally 
efficient, and therefore, the results indicate that this 
approach is ineffective against adaptive adversaries, 
compared with other defenses. This work reinforces 
the tradeoff between security, interpretability, and 
computational efficiency of medical AI systems, and 
that there is not a single defense strategy to protect 
from all of these system properties. 

Besides a general accuracy degradation, 
adversarial attacks change false positive rates (FPR) 
and false negative rates (FNR) significantly, which 
have different clinical risks. In radiology models, 
adversarial perturbations caused FNRs to rise by up to 
+18% (p < 0.01) and FPRs to rise by up to +12% (p < 
0.05), respectively, which suggests the possibility of 
more missed disease diagnoses and false alarms 
resulting in unnecessary follow-up testing. PGD attacks 
raised FNRs more than FPRs in the ECG-based RNNs, 
a trend that is worrying, considering the life-threatening 
nature of undiagnosed cardiac conditions. 

Statistically, these changes in Type I (false positive) 
and Type II (false negative) errors indicate that 
adversarial manipulation does not merely decrease 
model accuracy, but biases distributions of diagnostic 
errors. The imbalance may have a systematic effect of 
weakening clinical workflows in case it goes 

undetected. Defense strategies were observed to 
partially counteract these effects, limiting FNR 
increases by up to 14% under Randomized Smoothing, 
but none fully recovered baseline sensitivity and 
specificity. These results underscore the need to report 
error rates as well as accuracy in adversarial 
robustness experiments and to make adversarial 
testing a part of medical AI validation procedures, 
where it is as essential to ensure balanced errors as it 
is to achieve high overall classification accuracy. 

This is by previous work showing that adversarial 
attacks can be devastating to AI model performance in 
healthcare. This study shows results that are in line 
with those of Finlayson et al. (2019), who also found 
that CNN-based diagnostic models are highly 
susceptible to adversarial noise, with classification 
failure of CNNs being a drastic consequence of JSMA 
attacks. Studies conducted by Muoka et al. (2023) also 
highlighted that gradient-based attacks (FGSM, PGD) 
are great threats to AI-driven medical imaging, which is 
also proved by our results with a success rate larger 
than 40%. 

Unlike previous works that mainly concentrated on 
adversarial vulnerabilities, this study additionally 
quantifies the tradeoffs of adversarial defenses, 
especially in terms of computational efficiency. Both 
adversarial training (additional 1.5× cost) and 
randomized smoothing (additional 1.8× cost) incur 
additional computation that other researchers have 
previously cited as a potential problem with 
deployability in clinical settings. This enables us to 
present a balanced take on security vs. practical 
applicability for those looking to deploy medical AI and 
determine whether theoretical adversarial robustness 
translates to real-world deployment. 

The potential findings of the study highlight the 
importance of adversarial robustness in medical AI 
models before they are adopted in clinical settings. The 
fact that CNN radiology models are vulnerable to 
gradient-based perturbations suggests that 
organizations like the FDA should require adversarial 
robustness testing as part of their AI validation 
procedures. Similarly, AI-based decision support tools 
in electronic health records (EHRs) must incorporate 
adaptive adversarial defenses to prevent the 
systematic misclassification of patient risk scores. 
Additionally, the study shows that implementing robust 
AI defenses increases computational overhead, which 
can be problematic for resource-limited hospitals by 
adding computational demands that hinder deployment. 
This underscores the need for an optimized defense 
strategy that balances security and efficiency, ensuring 
access within healthcare environments with diverse 
populations. However, the study has some limitations 
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despite its contributions. It is primarily based on 
theoretical models and simulated success rates of 
adversarial attacks rather than real-world patient data, 
offering limited empirical validation. Although CNNs, 
Transformers, and RNNs were analyzed, the 
evaluation of hybrid AI architectures was limited, 
possibly restricting the generalizability of the results. 
Finally, the study does not thoroughly explore adaptive 
adversarial threats, such as meta-learning-based 
adversarial optimizations, which could pose emerging 
security risks for medical AI. Nonetheless, the results 
provide a solid foundation for understanding how 
adversarial vulnerabilities can impact medical AI and 
establish a framework for assessing the plausibility of 
adversarial defenses in medical AI deployments. While 
further research involving real-world adversarial 
scenarios and actual patient datasets is needed, the 
adversarial testing conducted suggests that the 
proposed intervention method shows promising 
outcomes. It also opens the door to integrating 
adversarially robust AI models into regulatory 
frameworks to ensure medical AI systems meet 
security and compliance standards. Overall, these 
findings not only advance adversarial defense research 
but also enhance the reliability of statistical models by 
quantifying error distributions, confidence intervals, and 
validation protocols essential for the adoption of 
medical AI. 

10. CONCLUSION 

We provide a comprehensive study of adversarial 
vulnerabilities of AI-driven healthcare models and show 
that sacrificing a little bit of the accuracy leads to 
severe degradation of the models' ability to make 
medical diagnostics. Our results suggest that 
CNN-based radiology models are susceptible to an 
accuracy drop from 92% to 40% under JSMA attacks 
and resulting in a 42% drop in the performance of the 
ECG-based AI model under PGD attack. Like the 
transformer-based NLP models, transformer-based AI 
models suffered a 30% accuracy drop under FGSM 
attacks, which indicates that any AI-assisted clinical 
decision-making process may not be trustworthy The 
best improvements in terms of defense were obtained 
by Randomized Smoothing and Adversarial Training, 
with respective accuracy gains of 15% and 14%. 
However, although Randomized Smoothing pays 1.8× 
computational overhead for each sample, it is not 
practically applicable in real time to clinical applications. 
During training, through the use of Gradient Masking, 
which is computationally efficient, we only gained a 7% 
accuracy improvement, but were unable to defeat 
adaptive attacks. We also highlight the communication 
among these three dimensions: adversarial robustness, 
computational feasibility, and real-world applicability, 

and echo the need for developing secure, close to 
real-world, compliant, and language interpretable 
models in healthcare to prevent adversarial exploitation. 
To ascertain the reliability of our findings, post-hoc 
power analysis was performed. The statistical power 
with the observed effect sizes (Cohen d = 1.8-3.2) to 
detect the difference in accuracy between the baseline 
and attacked was greater than 0.95 at the alpha level of 
0.05. In the same way, the power values of the 
comparisons between the defense strategies were 
above 0.85, which means that the samples employed 
in this research were sufficiently sensitive. 

These findings show that the accuracy degradations 
and robustness gains reported were not only significant 
but were also backed by adequate sample sizes to 
warrant the generalizability of the conclusions. In future 
work, the adversarial robustness should be validated in 
larger multi-institutional datasets to ensure 
reproducibility across varying clinical settings. 
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