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Abstract: In this paper, we apply a two-step dimension reduction method, PCA-t-SNE to a real gene expression dataset
as case study. It turns out that the PCA--SNE can signigicantly improve the visualization and cluster separation of high-
dimensional biological data. While -SNE alone often fails to reveal clear cluster structures in complex datasets, our
approach first applies Principal Component Analysis (PCA) to reduce noise and dimensionality, followed by -SNE to
condense the data into a two-dimensional space and then apply the k-means to clustering the two-dimensional data. We
demonstrate that PCA--SNE produces more distinct and interpretable clusters compared to the standard #-SNE.
Statistical validation via a projected F-test for MANOVA confirms that clusters derived from PCA--SNE exhibit
significantly greater mean separation, with lower p-values, underscoring the enhanced discriminative power of the
method. The proposed PCA-t-SNE plot proves particularly effective for nonlinear data where conventional ~-SNE
performs poorly, offering a robust visualization tool and supporting the utility of sequential dimension reduction in
exploratory data analysis for biological and medical research.

Purpose: This study aims to evaluate the effect from a combination of the classical PCA and the modern -SNE
technique for dimension reduction in clustering of high-dimensional gene expression data from the aspects of both
visualization and MANOVA.

Methods: This paper presents a combined approach to dimension reduction for high-dimensional gene expression data.
The effect of the visual approach is re-enhanced by the classical MANOVA method for large sample sizes (n > p) and
the newly developed MANOVA method for small sample sizes (n < p).

Results: The proposed PCA -SNE approach significantly improves the pure -SNE approach for the selected gene
expression dataset in the sense of clearer classification of the data from both visual observation and statistical
significance tests. This provides a pre-processing of high-dimensional gene expression data before implementing the
nonlinear dimension reduction, making the -SNE approach more effective.

Contribution: We carry out a successful application of the two-step dimension reduction method PCA-t-SNE to a real
gene expression dataset as case study. The idea of the PCA-t-SNE approach to visualizing high-dimensional gene
expression data, enhanced by the projection-type MANOVA tests, opens a new way to discrimination of complex high-
dimensional with statistical significance in the case of high dimension with a small sample size (n < p). It enhances the
clustering of those nonlinear-type of data where the pure -SNE almost fails to discriminate the clusters, and provides
insight into a two-step dimension reduction approach.

Keywords: Clustering, Gene expression data, k-means algorithm, Principal component analysis, projected F-test,

t-SNE plot.
1. INTRODUCTION

With the rapid development of high-throughput
sequencing technology (e.g., RNA-seq), high-
dimensional gene expression data have become

increasingly important for studying tumor mechanisms,
characterizing cellular heterogeneity, and identifying
functional genes. However, such data are typically
characterized by extremely high dimensionality, a
limited number of samples, and complex noise
structures, forming a typical (small n, large p)
analysis scenario [20, 21]. In such cases, traditional
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statistical methods are often difficult to apply
directly.Therefore, how to effectively reduce
dimensionality, reveal latent structures, and achieve
reliable interpretation while retaining essential
information has become a central challenge in modern
biostatistics and data science [21, 22].

Principal Component Analysis (PCA) is one of the
most widely used linear dimensionality reduction
techniques. By identifying orthogonal directions that
maximize global variance, PCA compresses high-
dimensional data and is frequently employed in
genomics and transcriptomics for noise reduction,
identification of major sources of variation, and data
visualization [2, 3, 10]. Due to its computational
efficiency and geometrically interpretable results, PCA
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is often used as a preliminary step in analyzing high-
dimensional gene expression data. However, as a
linear method, PCA primarily captures global structures
and often performs poorly when facing with complex
nonlinear-manifold-type of data, local heterogeneity, or
fine-grained cluster boundaries [2, 10, 12]. Although
several PCA variants have been proposed in recent
years such as FeatPCA [4], which relies on feature
subspaces or improved projection strategies they
fundamentally inherit the limitations of linear
dimensionality reduction.

In contrast, the r-distributed Stochastic Neighbor
Embedding (7-SNE, [23, 24]) is a nonlinear technique
that emphasizes the preservation of local neighborhood
relationships. It has shown considerable promise in
visualizing high-dimensional biological data, such as
single-cell RNA-seq data [5-8, 19]. By constructing
probability distributions in both high- and low-
dimensional spaces and minimizing their divergence,
the 7-SNE ensures that similar samples in the original
space remain proximate in the embedded space,
thereby revealing potential cell subpopulations [5, 7].
Nevertheless, studies have also highlighted ¢-SNE’s
tendency to distort global geometry, its high sensitivity
to hyperparameters and initialization, and the difficulty
of quantitatively comparing embeddings across
different runs [15, 17]. Moreover, the 7-SNE lacks a
built-in statistical inference framework to assess
whether clusters observed in low-dimensional
visualizations correspond to statistically significant
differences in the original high-dimensional space [8,
9].

Existing research indicates that PCA and the -
SNE each possess distinct strengths in analyzing high-
dimensional gene expression data, yet each exhibits
clear limitations when used alone: PCA reliably
captures global variation but often fails to reflect
nonlinear local structures; the 7-SNE can reveal local
neighborhood patterns but depends heavily on high-
quality input representations and may sacrifice global
structural consistency [7, 15]. Both theoretical and
empirical studies emphasize that the t-SNE’s
performance is highly influenced by preprocessing and
denoising steps, and inadequate input can lead to
unstable or even misleading embeddings [7, 16, 17].
Consequently, designing a dimensionality reduction
pipeline that balances global stability with local
expressive power has emerged as a key
methodological  challenge in high-dimensional
biological data analysis.

Motivated by these considerations, this paper
investigates an integrated dimensionality reduction and
clustering framework that combines PCA and the -
SNE. The approach aims to stabilize the global
geometric structure through linear dimensionality
reduction (PCA) and enhance local neighborhood
representation via nonlinear embedding (7-SNE),
thereby producing more robust and interpretable low-
dimensional visualizations. Furthermore, we introduce
a projection-based multivariate statistical testing
procedure inspired by classical and projection-type
MANOVA (multivariate analysis of variance) to
statistically validate whether cluster structures
observed in the low-dimensional embedding reflect a
significant separation in the original high-dimensional
space [9, 13, 14]. The remainder of this paper is
organized as follows. Section 2 describes the gene
expression dataset and preprocessing steps. Section 3
gives details about the methodology, including the
selection of the number of clusters and the comparative
clustering analysis based on standard :-SNE and
PCA-enhanced 7-SNE. Section 4 compares the
clustering effects from the standard 7-SNE and the
PCA-t-SNE and evaluates their statistical significance
using a projected F -test [9]. Some concluding remarks
are given in the last section.

2. MATERIALS AND METHODS

2.1. The ¢ -SNE Plot

The t -distributed  Stochastic =~ Neighborhood
Embedding (7-SNE) is a non-linear dimensionality
reduction technique designed to visualize high-
dimensional data in a low-dimensional space while
preserving local neighborhood relationships between
observations. This study employs the 7-SNE as an
exploratory visualization tool to analyze latent
clustering structures within high-dimensional gene
expression data. It is known [23, 24] that the ¢-SNE
plot possesses the following characteristics in
visualizing high-dimensional data: [label=)]

1. Preservation of local neighborhood structures:
the 7-SNE emphasizes pairwise local similarity,
enabling the visualization of fine-scale structures
and latent clusters that may not be captured by
linear dimensionality reduction techniques.

2. Non-linear  representational capability: by
permitting non-linear mappings from the original
data space to the embedded space, the 7-SNE
adapts to the complex data geometries
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commonly encountered in
environments.

high-dimensional

Despite these advantages, the direct use of 7-SNE
in high-dimensional settings is accompanied by several
well-recognized limitations [7]: [label=)]

1. Sensitivity to noise and parameter adjustment
parameters: When the dimension of the data is
too high relative to the available sample size, the
t-SNE embedding may be significantly affected
by noise and parameter modulation parameters
such as confusion and initialization. Therefore,
multiple runs may produce significantly different
embedding, which makes the evaluation of
cluster stability complicated.

2. The interpretability of geometric structure is
limited: The distance, relative cluster size and
separation  observed in low-dimensional
embedding are not directly quantitatively
explained in the original characteristic space.
Therefore, the visualization results of ¢-SNE
usually show a large central cluster area or a
smooth transition pattern between different
groups, which makes it difficult to objectively
quantify the boundaries of the cluster.

3. Lack of formal inference framework: the 7-SNE
is mainly designed as a visualization tool, not a
method for statistical inference. Therefore, the
obvious cluster pattern revealed by embedding
needs to be independently verified by
appropriate statistical procedures formulated in
the original high-dimensional space.

These considerations show that when the 7-SNE is
directly applied to high-dimensional data, appropriate
preprocessing steps are usually required to achieve
better results. Specifically, retaining the main global
source of change while reducing the dimension helps
to reduce the impact of noise and redundant
characteristics, and can generate more stable and
easy-to-understand low-dimensional representations.

2.2. PCA for Initial Dimension Reduction

Principal component analysis (PCA) is a classic
linear dimension reduction technique that projects high-
dimensional observations onto a low-dimensional
subspace composed of mutually orthogonal directions.
The construction of these directions aims to capture the
largest possible variation in the data, thus providing a
compact representation that can not only retain the

main global structure, but also discard subtle changes
and noise. In a high-dimensional environment, PCA
provides many practical advantages for subsequent
data analysis [2]: [label=)]

1. Extract the main global changes: by sorting the
components according to the differences in
interpretation, PCA concentrates the main
sources of global change in a few major
components. This feature enables PCA to
effectively summarize the overall data structure
when the original dimension is large.

2. Noise reduction and de-redundancy processing:
high-dimensional data usually contains related
variables and noise characteristics, which
contribute little to system changes. Retaining
only the main components can weaken such
effects, thus providing a more stable
representation for subsequent analysis.

3. Projection  with  determinism and  high
computational efficiency: for a given dataset,
PCA can generate a unique projection, which is
not affected by random initialization. This
certainty and computational efficiency make PCA
a reliable preprocessing tool in high-dimensional
analysis.

At the same time, PCA as an independent data
visualization tool also has its own limitations: [label=)]

1. Restrictions on linear structure: Since this is a
linear method, PCA cannot clearly simulate the
possible nonlinear relationships in complex high-
dimensional data.

2. Limited sensitivity to local regional patterns:
Because PCA focuses on overall variance, fine
local structure or fine cluster separation may not
be clearly reflected in low-dimensional PCA
representation.

Overall, these characteristics show that the principal
component analysis method is very suitable for
capturing the main structure of the global situation and
reducing the dimension, but when used alone, it may
not be enough to reveal the detailed local pattern in the
high-dimensional data.

2.3. The PCA-Enhanced r-SNE

The PCA t-SNE is motivated by the guidelines for
appropriate use of r-SNE in high-dimensional data
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analysis elaborated by Kobak and Berens [7]. These
guidelines emphasize that the 7-SNE should be
regarded as an exploratory visualization tool, and
proper pretreatment can significantly improve the
quality and interpretability of the obtained embedding.
Based on this principle, a unified framework is
constructed, integrating PCA and 7-SNE to solve the
complementarity problem of high-dimensional
structures.

One of the core design options of the framework is
to apply PCA before r-SNE embedding. This sorting
reflects the different goals of these two methods. PCA
acts directly on the original data space and generates a
linear and deterministic projection, which can
summarize the main global changes. In contrast, ¢-
SNE constructs a nonlinear embedding, and its
geometric structure is optimized for the retention and
visualization of local neighborhoods, not for
representing variance. Therefore, the application of
PCA after applying 7-SNE is equivalent to linear
transformation of embedding that has undergone
nonlinear deformation, which cannot restore the
meaningful global structure. The selected sorting
ensures that the dimension reduction operation is
carried out in an environment that can explain global
changes. Under this framework, the functions of PCA
and the 7-SNE are complementary but independent of
each other. As a preprocessing step, PCA projects
high-dimensional data into a medium-dimensional
subspace, which can retain major global changes while
suppressing noise and redundancy. This intermediate
representation provides a structured input for
subsequent embedding and reduces the impact of
high-dimensional features that may cover up local
neighborhood relationships. Then, the representation
after the reduction of the PCA dimension is applied to
t-SNE to build a low-dimensional embedding that
emphasizes the local structure, so as to facilitate
visualization and clustering.

By combining PCA and 7-SNE in this gradual way,
the framework makes full use of the advantages of
these two methods while overcoming their respective
limitations. Compared with the direct application of the
t -SNE, the method of enhancing PCA is to operate on
a more stable and informative representation, so the
generated embedding is less sensitive to false
changes. Compared with using only PCA, the
framework retains the ability to reveal nonlinear local
patterns that are not well captured by linear projection.
Therefore, the proposed PCA ¢-SNE provides a
coherent and principle-based method for exploratory

analysis, clustering and subsequent statistical
verification in a high-dimensional environment.

3. A PRACTICAL COMPARISON BETWEEN THE -
SNE AND THE PCA ¢-SNE

3.1. Data Description and Preprocessing

This study is based on a publicly available high-
dimensional gene expression dataset. Let

e Rnxp

denote the gene expression data matrix, where n is
the sample size, which is the number of biological
samples , p denotes dimension, which is the number
of measured gene-expression variables. For the
dataset studied in this paper, the data matrix has the
dimension:

nxp __ 29x22447
ER" =R ,

corresponding to 29 samples with expression
measurements for approximately 22,447 genes per
sample. Therefore, each line of the matrix stands for
a gene expression pattern. The data matrix
demonstrates the characteristics of high dimension with
a small sample size, which is commonly encountered in
medical and biological research when the number of
patients is limited or the limited number of genes with
large-scale expression by modern DNA-RNA
sequencing technology. The dataset was downloaded
from the ArrayExpress repository maintained by the
European Bioinformatics Institute (EBI), available at
https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/
E-MTAB-9428?query=carrer%20RNA-Seq with the
data file provided as MTAB-9428.zip. This dataset
serves as the basis for all subsequent clustering and
visualization analyses.

Before dimension reduction and clustering, the
standard preprocessing steps were applied. All non-
human genes are eliminated to avoid cross-species
contamination, and genes with missing values are also
excluded. The original RNA-sequencing counting data
is standardized using the M-value mean (TMM) method
in the edgeR framework and converted to count per
million (CPM) to ensure comparability between
samples with different sequencing depths. Then, the
processed data is sorted into a sample matrix of genes
for subsequent analysis. Since the original data set
contains more than 20,000 gene expression variables,
a feature selection step was carried out to reduce high-
dimensional noise and improve the stability of nonlinear
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embedding and clustering. Specifically, only the first
2,000 genes with the highest expression variability
were retained as input characteristics for all
subsequent analyses. This step significantly reduces
the computational complexity while retaining the main
biological signals, thus providing a stable data basis for
the selection of the number of clusters through the
elbow diagram and the comparative analysis of the 1 -
SNE and PCA 7 -SNE.

3.2. Determination of the Number of Clusters

Prior to applying dimension reduction and clustering
methods, the number of clusters was assessed using
the elbow method based on within-cluster dispersion.
Specifically, k-means clustering was performed for a
range of candidate cluster numbers, and the
corresponding within-cluster sum of squares was
examined as a function of the number of clusters. The
elbow method [6] provides a visual observation for
determining a suitable cluster number by locating a
point at which the marginal decrease in within-cluster
dispersion begins to diminish, indicating a trade-off
between model complexity and goodness of fit.

As illustrated in the elbow plot shown in Figure 1 the
curve exhibits a clear change in slope in the region
corresponding to three to five clusters. In particular, the
reduction in within-cluster dispersion is substantial
when increasing the number of clusters up to this
range, while further increases lead to comparatively
smaller gains. Based on this observed pattern, the
values k= 3, 4, 5 are selected as candidate cluster
numbers for subsequent analyses. These choices allow
for a visualization-based comparison of clustering
behavior across different levels of granularity and
provide a practical basis for evaluating the stability and
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3.3. Clustering Based on Pure ¢ -SNE

Figures 2-4 present the r-SNE-based clustering
results obtained using k-means for three candidate
numbers of clusters, k = 3, 4, 5. For each value of &,
the 7-SNE embeddings were computed using
perplexity values of 10, 20, 30, and 40, and the overall
clustering patterns were compared across these
settings. While changes in perplexity lead to moderate
variations in the geometric layout of the embedding, the
main clustering characteristics remain similar and are
therefore discussed with respect to the number of
clusters. Here we employ the R package Rtsne
(https://cran.r-project.org/web/packages/Rtsne/index.
html to do all #-SNE plots and follow the idea in [5, 15,
17] to adjust the perplexity parameter to obtain a
desirable ¢ -SNE plot for each case.

For k =3 in Figure 2, the clustering results exhibit a
pronounced imbalance in cluster sizes. One of the
clusters occupies an absolute dominant position in the
sample, containing about 93% of the observation
points, and forming a large and continuous curved
structure in the embedded space. In contrast, the
smallest cluster accounts for less than 1% of the total,
mainly composed of a small number of samples at the
embedded edge, while the remaining clusters present a
narrow band distribution adjacent to the dominant
structure. The division essentially reflects the
separation of a very small number of marginal samples
from a large-scale and continuously changing subject
group, rather than forming three relatively balanced
clusters with sample support.

Elbow Method
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Figure 1: Number of clusters.
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Figure 2: Traditional ¢ -SNE plots under different perplexity values (k=3).

When k = 4 in Figure 3, the dominant structure
observed for k£ = 3 is further subdivided. However, this
subdivision still mainly occurs on the same continuous
surface, and each cluster is more like a local cut along
a continuous trajectory than an independent area that
is clearly separated in space. Under this configuration,
the largest cluster still contains more than 80% of the
samples, while the sample ratio of the smallest cluster
is still less than 1%. The rest of the samples are mainly
distributed in one to two medium-sized clusters. On the
whole, the cluster results still show the structural
characteristics of a highly dominant cluster + several
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extremely small clusters, and there is an obvious
continuous transition between different clusters.

A similar pattern is observed for k = 5 in Figure 4.
With the further increase in the number of clusters, the
embedded structure is further divided, but this division
still mainly affects the original continuous structure. At
this time, the largest cluster accounts for about 77% of
the total sample, while the smallest cluster still
accounts for less than 1%. Although the cluster particle
size has improved, the new cluster does not
correspond to the obviously independent area in the
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Figure 3: Traditional ¢ -SNE plots under different perplexity values (k=4).
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Figure 4: Traditional ¢ -SNE plots under different perplexity values (k=5).

embedded space, but is a further refinement of the
dominant structure. As a result, the overall clustering
results are still highly uneven in the distribution of
samples, and the spatial differentiation of each cluster
is limited.

Overall, across k= 3, 4, 5, the results obtained from
clustering directly based on the ¢-SNE embedding
generally show obvious cluster size imbalances, that is,
there are clusters with extremely small sample
proportions and large clusters that dominate at the
same time. In addition, clusters are often divided along
continuous structures instead of forming groups that
are clearly separated in space. These phenomena
show that in the current research context of high-

dimensional and small samples, it is difficult to provide
sufficient structured and stable input for the k-means
clusters by relying only on the low-dimensional
representation obtained by the 7-SNE, thus limiting the
interpretability of clustering results.

3.4. Clustering Based on PCA 7 -SNE

When PCA preprocessing is introduced prior to the
t-SNE, the resulting embeddings and clustering
outcomes exhibit noticeably different structures
compared with those obtained from direct 7-SNE
embeddings. Figures 5-7 shows the clustering results
based on PCA-enhanced the ¢-SNE representations
for k = 3, 4, 5, where the k-means is applied to the
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Figure 5: PCA- -SNE plots under different perplexity values (k=3).
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Figure 6: PCA-r -SNE plots under different perplexity values (k =4).

dimension-reduced data from PCA with reduced

dimension p =50 and coefficient of variation
explanation [2] 100% from the selected principal
components.

For k=3 in Figure 5, the PCA ¢-SNE yields three
clusters that are more evenly populated than those
obtained from the 7 -SNE alone. Each cluster occupies
a distinct region of the embedding, and none of the
clusters is reduced to only a few isolated points.
Although the overall structure still reflects a curved
geometry, the partition no longer corresponds to
separating a small set of peripheral samples from a
single dominant group. Instead, the three clusters are
supported by substantial numbers of observations,
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which improves the interpretability of the clustering
result.

For k=4 in Figure 6, the PCA t-SNE plots display
clearer separation among clusters. The four clusters
are distributed more uniformly across the embedding
space, with reduced overlap at their boundaries.
Compared with the ¢-SNE-alone clustering, the
subdivision of the data is less driven by local distortions
in the low-dimensional representation and more closely
aligned with visually distinct regions. As a result, the
clusters appear more coherent and balanced,
facilitating a clearer interpretation of the four-group
structure.
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PCA- 1 -SNE plots under different perplexity values (k=5).
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When k=5 in Figure 7, the PCA r-SNE
representation provides the most structured clustering
outcome. The five clusters are well separated in the
embedding, with relatively homogeneous cluster sizes
and clearly defined spatial regions. Unlike the
corresponding ¢-SNE-alone results, no cluster is
dominated by only a handful of points, and the partition
does not arise from arbitrary slicing of a continuous
manifold. Instead, the PCA -SNE plots display
multiple distinct groups that are consistently identifiable
in the two-dimensional space.

Overall, the results demonstrate that incorporating
PCA as a preprocessing step leads to more balanced
and interpretable clustering outcomes when combined
with the 7-SNE. Across the three candidate values of
k , the PCA-enhanced approach consistently mitigates
the severe cluster-size imbalance and ambiguous
boundaries observed in the ¢-SNE-alone results.
Among the configurations considered, the clustering
with k=5 (Figure 7) provides the clearest separation
and the most coherent cluster structure, suggesting
that this choice offers the most informative
representation for the present dataset.

4. STATISTICAL VALIDATION OF CLUSTERING

4.1. The Projected F -Test

Let €R™ denote the centered gene expression
matrix, where n is the number of samples and p is the
number of genes. The objective is to test the null
hypothesis

H,:u=u,=...=u, (1)

against the alternative that at least one cluster mean
differs. In high-dimensional settings where p>n,

classical multivariate analysis of variance (MANOVA) is
not applicable due to the singularity of the sample
covariance matrix. To address this issue, we adopt the
projected F -test [9], which conducts inference after
projecting the data onto low-dimensional subspaces.

For any given projection dimension r <min{n,p},

implementing the transformation in Theorem 1 of Cao
and Liang (2025, [9]), we carry out the same projected
F -tests as in Table 1 of Cao and Liang (2025, [9]). The
projected F -statistic  has  an F -distribution
F(r,n-1-r) under the null hypothesis (1). Instead of
relying on a single projection dimension, the projected
F -test will be evaluated against a series of projection
dimensions suitable for the scale of the problem. Let
r..=min{n-1,p} -1 denote the maximum admissible

max

projection dimension (Theorem 1 in [9]). In this study,

four representative projection dimensions are
defined as
N P S g R | ,,_3r.WJ
1 4 4 2 3 ’ 3 2 > 4 4 >
where n=29, p=22,447, r,  =min{n-1,p}-1=28,

the notation [x]=the largest integer not exceeding the
real number x, for example, [2.1]=[29]=2. These
values span low to moderately high projection
dimensions while remaining well below the sample
size. By examining statistical evidence across multiple
projection levels, we assess whether cluster separation
is stable with respect to the choice of projection
dimension, rather than being driven by a particular
value of r.

In practice, the projected F -test is applied
separately for each value of r, and the resulting test
statistics and p-values are summarized across
projection dimensions. Consistent significance across
multiple values of r is interpreted as stronger statistical
evidence that the clusters identified through low-
dimensional visualization correspond to distinct mean
structures in the original high-dimensional gene
expression space.

4.2. Testing Results under Different Cluster

Configurations

The projected F -test results for clusters obtained
from the ftraditional t-SNE pipeline under different
cluster configurations are summarized in Table 1.
When the number of clusters varies from k=3 to
k=5, the projected F -statistics remain relatively small
for most projection dimensions, and the corresponding
p-values are generally large or only marginal. This
indicates that, under the direct 7-SNE clustering, the
inferred cluster structures provide limited statistical
evidence for between-cluster mean differences in the
original high-dimensional gene expression space.
Although statistically significant results can be
observed in more favorable -configurations, the
inferential support is not stable across different values
of k.

The corresponding results for the PCA ¢-SNE
pipeline are reported in Table 2, where the projected
F -test results for k=3, 4 5 are presented in a unified
framework. In contrast to the traditional 7-SNE
approach, the PCA-enhanced pipeline consistently
yields larger projected F -statistics and markedly
smaller p-values across all cluster configurations and
projection dimensions. Notably, even for smaller values
of k, where the direct ¢-SNE fails to provide
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Table 1: Projected F -Test for MANOVA of Clusters from the Traditional ¢ -SNE

Projection dimension

k=3

k=4

k=5

n=7, F(1,21)

F=24028, p=.00

F=17559, p=00

F=3521,p=00

r,=9,F(09,19)

F=197.35,p=.00

F=59.51,p=.00

F=2790, p=.00

r, =14, F(14,14)

F =150.80, p =.00

F=40.68, p= 00

F=2104,p=00

r,=21,F21,7)

F=105.26, p=.00

F=2761,p=.00

F=1533,p=.00

Table 2: Projected F -Test for MANOVA of Clusters from PCA ¢ -SNE

Projection dimension k=3 k=4 k=5
n=7, F(1,.21) F=110.63, p = .00 F=171,p=.10 F=270,p=.00
r,=9,F(09,19) F=9280,p=.00 F=174,p=07 F=263,p=.00
r,=14,F(14,14) F=7283,p=.00 F=181,p=03 F=244,p=00
r,=21,F(21,7) F=50.28,p=.00 F=173,p=.02 F=225,p=.00

convincing statistical evidence, the PCA-enhanced
method produces strong and consistent rejection of the
null hypothesis of equal cluster means. Overall, the
comparison between Tables 1 and 2 demonstrates
that, although both methods can produce statistically
significant p -values under certain parameter choices,
the inferential support provided by the PCA ¢-SNE
framework is systematically stronger and more robust
across different cluster configurations. By stabilizing
the projected F-test results over a range of k values,
the incorporation of principal component analysis
provides a more reliable statistical basis for cluster
analysis in high-dimensional gene expression data.

It should be pointed out that the projected F -tests
in Tables 1-2 only provide the individual p -value for
each selected projection dimension. Because the
projected F -tests are not independent, the
determination of the overall type | error rate and the
effect sizes from all projected F -tests are challenging
tasks involved in multiple comparison procedures. We
are not able to further this research direction in this
paper but would like to refer interesting readers to the
books [26, 27].

5. CONCLUDING REMARKS

This paper investigated a PCA-enhanced 7-SNE
framework for the clustering and visualization of high-
dimensional, low-sample-size gene expression data.
While 7-SNE is a powerful tool for exploratory analysis,
its direct application to such data often yields unstable
embeddings and ambiguous clusters. To address this,

we proposed a preprocessing step using Principal
Component Analysis (PCA) to capture dominant global
structures and mitigate the influence of noise and
redundancy prior to 7-SNE. Our empirical analysis
demonstrates that this two-step approach substantially
refines the resulting visualizations. Compared to
standard r-SNE, the PCA-enhanced method produces
embeddings with clearer cluster separation, more
balanced cluster sizes, and greater interpretability,
particularly as the number of presumed clusters
increases. This finding aligns with established guidance
on preparing high-dimensional data for nonlinear
dimensionality reduction. Beyond visual assessment,
we introduced a formal statistical evaluation using a
projection-based F -test to validate cluster separability
directly in the original high-dimensional space. This test
provided stable and meaningful statistical evidence for
the identified clusters, whereas classical MANOVA
based on Wilks-A proved less informative due to
numerical instability in our high-dimensional setting.

In summary, our work supports the integration of
PCA with 7-SNE as a coherent and statistically
grounded workflow for biomedical data exploration.
This framework effectively bridges intuitive low-
dimensional visualization with rigorous inference in the
original feature space, offering a reliable strategy for
pattern discovery in genomics and related fields.

Looking ahead, future research should expand this
comparative analysis across a broader range of
datasets and alternative methodologies. A systematic
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comparison with other nonlinear techniques, such as
UMAP [25], combined with diverse clustering
algorithms, would further elucidate the relative
strengths and optimal applications of the PCA-¢-SNE
pipeline. Additionally, extending the statistical validation
framework to include resampling-based methods and
other robust inference procedures would deepen our
understanding of cluster stability and reproducibility in
complex, high-dimensional biological data.
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