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Abstract: In this paper, we apply a two-step dimension reduction method, PCA-t-SNE to a real gene expression dataset 
as case study. It turns out that the PCA-t-SNE can signigicantly improve the visualization and cluster separation of high-
dimensional biological data. While t-SNE alone often fails to reveal clear cluster structures in complex datasets, our 
approach first applies Principal Component Analysis (PCA) to reduce noise and dimensionality, followed by t-SNE to 
condense the data into a two-dimensional space and then apply the k-means to clustering the two-dimensional data. We 
demonstrate that PCA-t-SNE produces more distinct and interpretable clusters compared to the standard t-SNE. 
Statistical validation via a projected F-test for MANOVA confirms that clusters derived from PCA-t-SNE exhibit 
significantly greater mean separation, with lower p-values, underscoring the enhanced discriminative power of the 
method. The proposed PCA-t-SNE plot proves particularly effective for nonlinear data where conventional t-SNE 
performs poorly, offering a robust visualization tool and supporting the utility of sequential dimension reduction in 
exploratory data analysis for biological and medical research. 

Purpose: This study aims to evaluate the effect from a combination of the classical PCA and the modern t-SNE 
technique for dimension reduction in clustering of high-dimensional gene expression data from the aspects of both 
visualization and MANOVA. 

Methods: This paper presents a combined approach to dimension reduction for high-dimensional gene expression data. 
The effect of the visual approach is re-enhanced by the classical MANOVA method for large sample sizes (n > p) and 
the newly developed MANOVA method for small sample sizes (n < p). 

Results: The proposed PCA t-SNE approach significantly improves the pure t-SNE approach for the selected gene 
expression dataset in the sense of clearer classification of the data from both visual observation and statistical 
significance tests. This provides a pre-processing of high-dimensional gene expression data before implementing the 
nonlinear dimension reduction, making the t-SNE approach more effective. 

Contribution: We carry out a successful application of the two-step dimension reduction method PCA-t-SNE to a real 
gene expression dataset as case study. The idea of the PCA-t-SNE approach to visualizing high-dimensional gene 
expression data, enhanced by the projection-type MANOVA tests, opens a new way to discrimination of complex high-
dimensional with statistical significance in the case of high dimension with a small sample size (n < p). It enhances the 
clustering of those nonlinear-type of data where the pure t-SNE almost fails to discriminate the clusters, and provides 
insight into a two-step dimension reduction approach. 

Keywords: Clustering, Gene expression data, k-means algorithm, Principal component analysis, projected F-test,  
t-SNE plot. 

1. INTRODUCTION 

With the rapid development of high-throughput 
sequencing technology (e.g., RNA-seq), high-
dimensional gene expression data have become 
increasingly important for studying tumor mechanisms, 
characterizing cellular heterogeneity, and identifying 
functional genes. However, such data are typically 
characterized by extremely high dimensionality, a 
limited number of samples, and complex noise 
structures, forming a typical (small n , large p ) 
analysis scenario [20, 21]. In such cases, traditional  
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statistical methods are often difficult to apply 
directly.Therefore, how to effectively reduce 
dimensionality, reveal latent structures, and achieve 
reliable interpretation while retaining essential 
information has become a central challenge in modern 
biostatistics and data science [21, 22]. 

Principal Component Analysis (PCA) is one of the 
most widely used linear dimensionality reduction 
techniques. By identifying orthogonal directions that 
maximize global variance, PCA compresses high-
dimensional data and is frequently employed in 
genomics and transcriptomics for noise reduction, 
identification of major sources of variation, and data 
visualization [2, 3, 10]. Due to its computational 
efficiency and geometrically interpretable results, PCA 
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is often used as a preliminary step in analyzing high-
dimensional gene expression data. However, as a 
linear method, PCA primarily captures global structures 
and often performs poorly when facing with complex 
nonlinear-manifold-type of data, local heterogeneity, or 
fine-grained cluster boundaries [2, 10, 12]. Although 
several PCA variants have been proposed in recent 
years such as FeatPCA [4], which relies on feature 
subspaces or improved projection strategies they 
fundamentally inherit the limitations of linear 
dimensionality reduction. 

In contrast, the t -distributed Stochastic Neighbor 
Embedding ( t -SNE, [23, 24]) is a nonlinear technique 
that emphasizes the preservation of local neighborhood 
relationships. It has shown considerable promise in 
visualizing high-dimensional biological data, such as 
single-cell RNA-seq data [5-8, 19]. By constructing 
probability distributions in both high- and low-
dimensional spaces and minimizing their divergence, 
the t -SNE ensures that similar samples in the original 
space remain proximate in the embedded space, 
thereby revealing potential cell subpopulations [5, 7]. 
Nevertheless, studies have also highlighted t -SNE’s 
tendency to distort global geometry, its high sensitivity 
to hyperparameters and initialization, and the difficulty 
of quantitatively comparing embeddings across 
different runs [15, 17]. Moreover, the t -SNE lacks a 
built-in statistical inference framework to assess 
whether clusters observed in low-dimensional 
visualizations correspond to statistically significant 
differences in the original high-dimensional space [8, 
9]. 

Existing research indicates that PCA and the t -
SNE each possess distinct strengths in analyzing high-
dimensional gene expression data, yet each exhibits 
clear limitations when used alone: PCA reliably 
captures global variation but often fails to reflect 
nonlinear local structures; the t -SNE can reveal local 
neighborhood patterns but depends heavily on high-
quality input representations and may sacrifice global 
structural consistency [7, 15]. Both theoretical and 
empirical studies emphasize that the t-SNE’s 
performance is highly influenced by preprocessing and 
denoising steps, and inadequate input can lead to 
unstable or even misleading embeddings [7, 16, 17]. 
Consequently, designing a dimensionality reduction 
pipeline that balances global stability with local 
expressive power has emerged as a key 
methodological challenge in high-dimensional 
biological data analysis. 

Motivated by these considerations, this paper 
investigates an integrated dimensionality reduction and 
clustering framework that combines PCA and the t -
SNE. The approach aims to stabilize the global 
geometric structure through linear dimensionality 
reduction (PCA) and enhance local neighborhood 
representation via nonlinear embedding ( t -SNE), 
thereby producing more robust and interpretable low-
dimensional visualizations. Furthermore, we introduce 
a projection-based multivariate statistical testing 
procedure inspired by classical and projection-type 
MANOVA (multivariate analysis of variance) to 
statistically validate whether cluster structures 
observed in the low-dimensional embedding reflect a 
significant separation in the original high-dimensional 
space [9, 13, 14]. The remainder of this paper is 
organized as follows. Section 2 describes the gene 
expression dataset and preprocessing steps. Section 3 
gives details about the methodology, including the 
selection of the number of clusters and the comparative 
clustering analysis based on standard t -SNE and 
PCA-enhanced t -SNE. Section 4 compares the 
clustering effects from the standard t -SNE and the 
PCA- t -SNE and evaluates their statistical significance 
using a projected F -test [9]. Some concluding remarks 
are given in the last section. 

2. MATERIALS AND METHODS 

2.1. The t -SNE Plot 

The t -distributed Stochastic Neighborhood 
Embedding ( t -SNE) is a non-linear dimensionality 
reduction technique designed to visualize high-
dimensional data in a low-dimensional space while 
preserving local neighborhood relationships between 
observations. This study employs the t -SNE as an 
exploratory visualization tool to analyze latent 
clustering structures within high-dimensional gene 
expression data. It is known [23, 24] that the t -SNE 
plot possesses the following characteristics in 
visualizing high-dimensional data: [label=)]  

1. Preservation of local neighborhood structures: 
the t -SNE emphasizes pairwise local similarity, 
enabling the visualization of fine-scale structures 
and latent clusters that may not be captured by 
linear dimensionality reduction techniques. 

2. Non-linear representational capability: by 
permitting non-linear mappings from the original 
data space to the embedded space, the t -SNE 
adapts to the complex data geometries 
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commonly encountered in high-dimensional 
environments.  

Despite these advantages, the direct use of t -SNE 
in high-dimensional settings is accompanied by several 
well-recognized limitations [7]: [label=)]  

1. Sensitivity to noise and parameter adjustment 
parameters: When the dimension of the data is 
too high relative to the available sample size, the 
t -SNE embedding may be significantly affected 
by noise and parameter modulation parameters 
such as confusion and initialization. Therefore, 
multiple runs may produce significantly different 
embedding, which makes the evaluation of 
cluster stability complicated. 

2. The interpretability of geometric structure is 
limited: The distance, relative cluster size and 
separation observed in low-dimensional 
embedding are not directly quantitatively 
explained in the original characteristic space. 
Therefore, the visualization results of t -SNE 
usually show a large central cluster area or a 
smooth transition pattern between different 
groups, which makes it difficult to objectively 
quantify the boundaries of the cluster. 

3. Lack of formal inference framework: the t -SNE 
is mainly designed as a visualization tool, not a 
method for statistical inference. Therefore, the 
obvious cluster pattern revealed by embedding 
needs to be independently verified by 
appropriate statistical procedures formulated in 
the original high-dimensional space. 

These considerations show that when the t -SNE is 
directly applied to high-dimensional data, appropriate 
preprocessing steps are usually required to achieve 
better results. Specifically, retaining the main global 
source of change while reducing the dimension helps 
to reduce the impact of noise and redundant 
characteristics, and can generate more stable and 
easy-to-understand low-dimensional representations. 

2.2. PCA for Initial Dimension Reduction 

Principal component analysis (PCA) is a classic 
linear dimension reduction technique that projects high-
dimensional observations onto a low-dimensional 
subspace composed of mutually orthogonal directions. 
The construction of these directions aims to capture the 
largest possible variation in the data, thus providing a 
compact representation that can not only retain the 

main global structure, but also discard subtle changes 
and noise. In a high-dimensional environment, PCA 
provides many practical advantages for subsequent 
data analysis [2]: [label=)]  

1. Extract the main global changes: by sorting the 
components according to the differences in 
interpretation, PCA concentrates the main 
sources of global change in a few major 
components. This feature enables PCA to 
effectively summarize the overall data structure 
when the original dimension is large. 

2. Noise reduction and de-redundancy processing: 
high-dimensional data usually contains related 
variables and noise characteristics, which 
contribute little to system changes. Retaining 
only the main components can weaken such 
effects, thus providing a more stable 
representation for subsequent analysis. 

3. Projection with determinism and high 
computational efficiency: for a given dataset, 
PCA can generate a unique projection, which is 
not affected by random initialization. This 
certainty and computational efficiency make PCA 
a reliable preprocessing tool in high-dimensional 
analysis.  

At the same time, PCA as an independent data 
visualization tool also has its own limitations: [label=)] 

1. Restrictions on linear structure: Since this is a 
linear method, PCA cannot clearly simulate the 
possible nonlinear relationships in complex high-
dimensional data. 

2. Limited sensitivity to local regional patterns: 
Because PCA focuses on overall variance, fine 
local structure or fine cluster separation may not 
be clearly reflected in low-dimensional PCA 
representation.  

Overall, these characteristics show that the principal 
component analysis method is very suitable for 
capturing the main structure of the global situation and 
reducing the dimension, but when used alone, it may 
not be enough to reveal the detailed local pattern in the 
high-dimensional data. 

2.3. The PCA-Enhanced t -SNE 

The PCA t -SNE is motivated by the guidelines for 
appropriate use of t -SNE in high-dimensional data 
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analysis elaborated by Kobak and Berens [7]. These 
guidelines emphasize that the t -SNE should be 
regarded as an exploratory visualization tool, and 
proper pretreatment can significantly improve the 
quality and interpretability of the obtained embedding. 
Based on this principle, a unified framework is 
constructed, integrating PCA and t -SNE to solve the 
complementarity problem of high-dimensional 
structures. 

One of the core design options of the framework is 
to apply PCA before t -SNE embedding. This sorting 
reflects the different goals of these two methods. PCA 
acts directly on the original data space and generates a 
linear and deterministic projection, which can 
summarize the main global changes. In contrast, t -
SNE constructs a nonlinear embedding, and its 
geometric structure is optimized for the retention and 
visualization of local neighborhoods, not for 
representing variance. Therefore, the application of 
PCA after applying t -SNE is equivalent to linear 
transformation of embedding that has undergone 
nonlinear deformation, which cannot restore the 
meaningful global structure. The selected sorting 
ensures that the dimension reduction operation is 
carried out in an environment that can explain global 
changes. Under this framework, the functions of PCA 
and the t -SNE are complementary but independent of 
each other. As a preprocessing step, PCA projects 
high-dimensional data into a medium-dimensional 
subspace, which can retain major global changes while 
suppressing noise and redundancy. This intermediate 
representation provides a structured input for 
subsequent embedding and reduces the impact of 
high-dimensional features that may cover up local 
neighborhood relationships. Then, the representation 
after the reduction of the PCA dimension is applied to 
t -SNE to build a low-dimensional embedding that 
emphasizes the local structure, so as to facilitate 
visualization and clustering. 

By combining PCA and t -SNE in this gradual way, 
the framework makes full use of the advantages of 
these two methods while overcoming their respective 
limitations. Compared with the direct application of the 
t -SNE, the method of enhancing PCA is to operate on 
a more stable and informative representation, so the 
generated embedding is less sensitive to false 
changes. Compared with using only PCA, the 
framework retains the ability to reveal nonlinear local 
patterns that are not well captured by linear projection. 
Therefore, the proposed PCA t -SNE provides a 
coherent and principle-based method for exploratory 

analysis, clustering and subsequent statistical 
verification in a high-dimensional environment. 

3. A PRACTICAL COMPARISON BETWEEN THE t -
SNE AND THE PCA t -SNE 

3.1. Data Description and Preprocessing 

This study is based on a publicly available high-
dimensional gene expression dataset. Let  

 ! !
n"p  

denote the gene expression data matrix, where n  is 
the sample size, which is the number of biological 
samples , p  denotes dimension, which is the number 
of measured gene-expression variables. For the 
dataset studied in this paper, the data matrix has the 
dimension:  

 ! !
n"p =!29"22447,  

corresponding to 29 samples with expression 
measurements for approximately 22,447 genes per 
sample. Therefore, each line of the matrix  stands for 
a gene expression pattern. The data matrix  
demonstrates the characteristics of high dimension with 
a small sample size, which is commonly encountered in 
medical and biological research when the number of 
patients is limited or the limited number of genes with 
large-scale expression by modern DNA-RNA 
sequencing technology. The dataset was downloaded 
from the ArrayExpress repository maintained by the 
European Bioinformatics Institute (EBI), available at 
https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/
E-MTAB-9428?query=carrer%20RNA-Seq with the 
data file provided as MTAB-9428.zip. This dataset 
serves as the basis for all subsequent clustering and 
visualization analyses. 

Before dimension reduction and clustering, the 
standard preprocessing steps were applied. All non-
human genes are eliminated to avoid cross-species 
contamination, and genes with missing values are also 
excluded. The original RNA-sequencing counting data 
is standardized using the M-value mean (TMM) method 
in the edgeR framework and converted to count per 
million (CPM) to ensure comparability between 
samples with different sequencing depths. Then, the 
processed data is sorted into a sample matrix of genes 
for subsequent analysis. Since the original data set 
contains more than 20,000 gene expression variables, 
a feature selection step was carried out to reduce high-
dimensional noise and improve the stability of nonlinear 
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embedding and clustering. Specifically, only the first 
2,000 genes with the highest expression variability 
were retained as input characteristics for all 
subsequent analyses. This step significantly reduces 
the computational complexity while retaining the main 
biological signals, thus providing a stable data basis for 
the selection of the number of clusters through the 
elbow diagram and the comparative analysis of the t -
SNE and PCA t -SNE. 

3.2. Determination of the Number of Clusters 

Prior to applying dimension reduction and clustering 
methods, the number of clusters was assessed using 
the elbow method based on within-cluster dispersion. 
Specifically, k -means clustering was performed for a 
range of candidate cluster numbers, and the 
corresponding within-cluster sum of squares was 
examined as a function of the number of clusters. The 
elbow method [6] provides a visual observation for 
determining a suitable cluster number by locating a 
point at which the marginal decrease in within-cluster 
dispersion begins to diminish, indicating a trade-off 
between model complexity and goodness of fit. 

As illustrated in the elbow plot shown in Figure 1 the 
curve exhibits a clear change in slope in the region 
corresponding to three to five clusters. In particular, the 
reduction in within-cluster dispersion is substantial 
when increasing the number of clusters up to this 
range, while further increases lead to comparatively 
smaller gains. Based on this observed pattern, the 
values k = 3, 4, 5 are selected as candidate cluster 
numbers for subsequent analyses. These choices allow 
for a visualization-based comparison of clustering 
behavior across different levels of granularity and 
provide a practical basis for evaluating the stability and 

interpretability of the resulting low-dimensional 
representations.  

3.3. Clustering Based on Pure t -SNE 

Figures 2-4 present the t -SNE-based clustering 
results obtained using k -means for three candidate 
numbers of clusters, k  = 3, 4, 5. For each value of k , 
the t -SNE embeddings were computed using 
perplexity values of 10, 20, 30, and 40, and the overall 
clustering patterns were compared across these 
settings. While changes in perplexity lead to moderate 
variations in the geometric layout of the embedding, the 
main clustering characteristics remain similar and are 
therefore discussed with respect to the number of 
clusters. Here we employ the R package Rtsne 
(https://cran.r-project.org/web/packages/Rtsne/index. 
html to do all t -SNE plots and follow the idea in [5, 15, 
17] to adjust the perplexity parameter to obtain a 
desirable t -SNE plot for each case. 

For k  = 3 in Figure 2, the clustering results exhibit a 
pronounced imbalance in cluster sizes. One of the 
clusters occupies an absolute dominant position in the 
sample, containing about 93% of the observation 
points, and forming a large and continuous curved 
structure in the embedded space. In contrast, the 
smallest cluster accounts for less than 1% of the total, 
mainly composed of a small number of samples at the 
embedded edge, while the remaining clusters present a 
narrow band distribution adjacent to the dominant 
structure. The division essentially reflects the 
separation of a very small number of marginal samples 
from a large-scale and continuously changing subject 
group, rather than forming three relatively balanced 
clusters with sample support. 

 
Figure 1: Number of clusters. 



A PCA-Enhanced t-SNE Plot and Its Application in Biological International Journal of Statistics in Medical Research, 2025, Vol. 14      849 

When k  = 4 in Figure 3, the dominant structure 
observed for k  = 3 is further subdivided. However, this 
subdivision still mainly occurs on the same continuous 
surface, and each cluster is more like a local cut along 
a continuous trajectory than an independent area that 
is clearly separated in space. Under this configuration, 
the largest cluster still contains more than 80% of the 
samples, while the sample ratio of the smallest cluster 
is still less than 1%. The rest of the samples are mainly 
distributed in one to two medium-sized clusters. On the 
whole, the cluster results still show the structural 
characteristics of a highly dominant cluster + several 

extremely small clusters, and there is an obvious 
continuous transition between different clusters. 

A similar pattern is observed for k  = 5 in Figure 4. 
With the further increase in the number of clusters, the 
embedded structure is further divided, but this division 
still mainly affects the original continuous structure. At 
this time, the largest cluster accounts for about 77% of 
the total sample, while the smallest cluster still 
accounts for less than 1%. Although the cluster particle 
size has improved, the new cluster does not 
correspond to the obviously independent area in the 

 
Figure 2: Traditional t -SNE plots under different perplexity values ( k = 3 ). 

 
Figure 3: Traditional t -SNE plots under different perplexity values ( k = 4 ). 
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embedded space, but is a further refinement of the 
dominant structure. As a result, the overall clustering 
results are still highly uneven in the distribution of 
samples, and the spatial differentiation of each cluster 
is limited. 

Overall, across k = 3, 4, 5, the results obtained from 
clustering directly based on the t -SNE embedding 
generally show obvious cluster size imbalances, that is, 
there are clusters with extremely small sample 
proportions and large clusters that dominate at the 
same time. In addition, clusters are often divided along 
continuous structures instead of forming groups that 
are clearly separated in space. These phenomena 
show that in the current research context of high-

dimensional and small samples, it is difficult to provide 
sufficient structured and stable input for the k -means 
clusters by relying only on the low-dimensional 
representation obtained by the t -SNE, thus limiting the 
interpretability of clustering results. 

3.4. Clustering Based on PCA t -SNE 

When PCA preprocessing is introduced prior to the 
t -SNE, the resulting embeddings and clustering 
outcomes exhibit noticeably different structures 
compared with those obtained from direct t -SNE 
embeddings. Figures 5-7 shows the clustering results 
based on PCA-enhanced the t -SNE representations 
for k  = 3, 4, 5, where the k -means is applied to the 

 
Figure 4: Traditional t -SNE plots under different perplexity values ( k = 5 ). 

 
Figure 5: PCA- t -SNE plots under different perplexity values ( k = 3 ). 
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dimension-reduced data from PCA with reduced 
dimension pr = 50  and coefficient of variation 
explanation [2] 100%  from the selected principal 
components. 

For k =3 in Figure 5, the PCA t -SNE yields three 
clusters that are more evenly populated than those 
obtained from the t -SNE alone. Each cluster occupies 
a distinct region of the embedding, and none of the 
clusters is reduced to only a few isolated points. 
Although the overall structure still reflects a curved 
geometry, the partition no longer corresponds to 
separating a small set of peripheral samples from a 
single dominant group. Instead, the three clusters are 
supported by substantial numbers of observations, 

which improves the interpretability of the clustering 
result. 

For k =4 in Figure 6, the PCA t -SNE plots display 
clearer separation among clusters. The four clusters 
are distributed more uniformly across the embedding 
space, with reduced overlap at their boundaries. 
Compared with the t -SNE-alone clustering, the 
subdivision of the data is less driven by local distortions 
in the low-dimensional representation and more closely 
aligned with visually distinct regions. As a result, the 
clusters appear more coherent and balanced, 
facilitating a clearer interpretation of the four-group 
structure. 

 
Figure 6: PCA- t -SNE plots under different perplexity values ( k = 4 ). 

 
Figure 7: PCA- t -SNE plots under different perplexity values ( k = 5 ). 
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When k =5 in Figure 7, the PCA t -SNE 
representation provides the most structured clustering 
outcome. The five clusters are well separated in the 
embedding, with relatively homogeneous cluster sizes 
and clearly defined spatial regions. Unlike the 
corresponding t -SNE-alone results, no cluster is 
dominated by only a handful of points, and the partition 
does not arise from arbitrary slicing of a continuous 
manifold. Instead, the PCA t -SNE plots display 
multiple distinct groups that are consistently identifiable 
in the two-dimensional space. 

Overall, the results demonstrate that incorporating 
PCA as a preprocessing step leads to more balanced 
and interpretable clustering outcomes when combined 
with the t -SNE. Across the three candidate values of 
k , the PCA-enhanced approach consistently mitigates 
the severe cluster-size imbalance and ambiguous 
boundaries observed in the t -SNE-alone results. 
Among the configurations considered, the clustering 
with k =5 (Figure 7) provides the clearest separation 
and the most coherent cluster structure, suggesting 
that this choice offers the most informative 
representation for the present dataset. 

4. STATISTICAL VALIDATION OF CLUSTERING 

4.1. The Projected F -Test 

Let  ! !
n"p  denote the centered gene expression 

matrix, where n  is the number of samples and p  is the 
number of genes. The objective is to test the null 
hypothesis  

 H 0 : µ 1=µ 2=…=µ k           (1) 

against the alternative that at least one cluster mean 
differs. In high-dimensional settings where  p! n , 
classical multivariate analysis of variance (MANOVA) is 
not applicable due to the singularity of the sample 
covariance matrix. To address this issue, we adopt the 
projected F -test [9], which conducts inference after 
projecting the data onto low-dimensional subspaces. 

For any given projection dimension r < min{n,p} , 
implementing the transformation in Theorem 1 of Cao 
and Liang (2025, [9]), we carry out the same projected 
F -tests as in Table 1 of Cao and Liang (2025, [9]). The 
projected F -statistic has an F -distribution 
F(r,n!1! r)  under the null hypothesis (1). Instead of 
relying on a single projection dimension, the projected 
F -test will be evaluated against a series of projection 
dimensions suitable for the scale of the problem. Let 
rmax = min{n!1,p}!1  denote the maximum admissible 
projection dimension (Theorem 1 in [9]). In this study, 

four representative projection dimensions are  
defined as  

r1 =
rmax
4

!

"!
#

$#
, r2 =

rmax
3

!

"!
#

$#
, r3 =

rmax
2

!

"!
#

$#
, r4 =

3rmax
4

!

"!
#

$#
,  

where n = 29 , p = 22,447 , rmax = min{n!1,p}!1= 28 , 
the notation [x] = the largest integer not exceeding the 
real number x , for example, [2.1] = [2.9] = 2 . These 
values span low to moderately high projection 
dimensions while remaining well below the sample 
size. By examining statistical evidence across multiple 
projection levels, we assess whether cluster separation 
is stable with respect to the choice of projection 
dimension, rather than being driven by a particular 
value of r . 

In practice, the projected F -test is applied 
separately for each value of r , and the resulting test 
statistics and p -values are summarized across 
projection dimensions. Consistent significance across 
multiple values of r  is interpreted as stronger statistical 
evidence that the clusters identified through low-
dimensional visualization correspond to distinct mean 
structures in the original high-dimensional gene 
expression space. 

4.2. Testing Results under Different Cluster 
Configurations 

The projected F -test results for clusters obtained 
from the traditional t-SNE pipeline under different 
cluster configurations are summarized in Table 1. 
When the number of clusters varies from k = 3  to 
k = 5 , the projected F -statistics remain relatively small 
for most projection dimensions, and the corresponding 
p -values are generally large or only marginal. This 

indicates that, under the direct t -SNE clustering, the 
inferred cluster structures provide limited statistical 
evidence for between-cluster mean differences in the 
original high-dimensional gene expression space. 
Although statistically significant results can be 
observed in more favorable configurations, the 
inferential support is not stable across different values 
of k . 

The corresponding results for the PCA t -SNE 
pipeline are reported in Table 2, where the projected 
F -test results for k =3, 4 5 are presented in a unified 
framework. In contrast to the traditional t -SNE 
approach, the PCA-enhanced pipeline consistently 
yields larger projected F -statistics and markedly 
smaller p -values across all cluster configurations and 
projection dimensions. Notably, even for smaller values 
of k , where the direct t -SNE fails to provide 
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convincing statistical evidence, the PCA-enhanced 
method produces strong and consistent rejection of the 
null hypothesis of equal cluster means. Overall, the 
comparison between Tables 1 and 2 demonstrates 
that, although both methods can produce statistically 
significant p -values under certain parameter choices, 
the inferential support provided by the PCA t -SNE 
framework is systematically stronger and more robust 
across different cluster configurations. By stabilizing 
the projected F-test results over a range of k  values, 
the incorporation of principal component analysis 
provides a more reliable statistical basis for cluster 
analysis in high-dimensional gene expression data. 

It should be pointed out that the projected F -tests 
in Tables 1-2 only provide the individual p -value for 
each selected projection dimension. Because the 
projected F -tests are not independent, the 
determination of the overall type I error rate and the 
effect sizes from all projected F -tests are challenging 
tasks involved in multiple comparison procedures. We 
are not able to further this research direction in this 
paper but would like to refer interesting readers to the 
books [26, 27]. 

5. CONCLUDING REMARKS 

This paper investigated a PCA-enhanced t -SNE 
framework for the clustering and visualization of high-
dimensional, low-sample-size gene expression data. 
While t -SNE is a powerful tool for exploratory analysis, 
its direct application to such data often yields unstable 
embeddings and ambiguous clusters. To address this, 

we proposed a preprocessing step using Principal 
Component Analysis (PCA) to capture dominant global 
structures and mitigate the influence of noise and 
redundancy prior to t -SNE. Our empirical analysis 
demonstrates that this two-step approach substantially 
refines the resulting visualizations. Compared to 
standard t -SNE, the PCA-enhanced method produces 
embeddings with clearer cluster separation, more 
balanced cluster sizes, and greater interpretability, 
particularly as the number of presumed clusters 
increases. This finding aligns with established guidance 
on preparing high-dimensional data for nonlinear 
dimensionality reduction. Beyond visual assessment, 
we introduced a formal statistical evaluation using a 
projection-based F -test to validate cluster separability 
directly in the original high-dimensional space. This test 
provided stable and meaningful statistical evidence for 
the identified clusters, whereas classical MANOVA 
based on Wilks-!  proved less informative due to 
numerical instability in our high-dimensional setting. 

In summary, our work supports the integration of 
PCA with t -SNE as a coherent and statistically 
grounded workflow for biomedical data exploration. 
This framework effectively bridges intuitive low-
dimensional visualization with rigorous inference in the 
original feature space, offering a reliable strategy for 
pattern discovery in genomics and related fields. 

Looking ahead, future research should expand this 
comparative analysis across a broader range of 
datasets and alternative methodologies. A systematic 

Table 1: Projected F -Test for MANOVA of Clusters from the Traditional t -SNE 

 Projection dimension   k = 3    k = 4    k = 5   

r1 = 7 , F(7,21)    F = 240.28, p = .00    F = 75.59, p = .00    F = 35.21, p = .00  

r2 = 9, F(9,19)    F =197.35, p = .00    F = 59.51, p = .00    F = 27.90, p = .00  

r3 =14, F(14,14)    F =150.80, p = .00    F = 40.68, p = .00    F = 21.04, p = .00  

r4 = 21, F(21,7)    F =105.26, p = .00    F = 27.61, p = .00    F =15.33, p = .00  

 

Table 2: Projected F -Test for MANOVA of Clusters from PCA t -SNE 

 Projection dimension   k = 3    k = 4    k = 5   

r1 = 7 , F(7,21)    F =110.63, p = .00    F =1.71, p = .10    F = 2.70, p = .00  

r2 = 9, F(9,19)    F = 92.80, p = .00    F =1.74, p = .07    F = 2.63, p = .00   

r3 =14, F(14,14)    F = 72.83, p = .00    F =1.81, p = .03    F = 2.44, p = .00  

r4 = 21, F(21,7)    F = 50.28, p = .00    F =1.73, p = .02    F = 2.25, p = .00  



854     International Journal of Statistics in Medical Research, 2025, Vol. 14 Guo et al. 

comparison with other nonlinear techniques, such as 
UMAP [25], combined with diverse clustering 
algorithms, would further elucidate the relative 
strengths and optimal applications of the PCA- t -SNE 
pipeline. Additionally, extending the statistical validation 
framework to include resampling-based methods and 
other robust inference procedures would deepen our 
understanding of cluster stability and reproducibility in 
complex, high-dimensional biological data. 
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