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Abstract: Mortality remains high among patients undergoing maintenance dialysis for end-stage renal disease (ESRD).
Identification of key mortality predictors is paramount for improving prognosis and guiding care. Recent advances in
machine learning (ML) offer potential to enhance risk stratification beyond traditional statistical models. This study
compares feature selection methods—LASSO, Random Forest, and Gradient Boosting—in predicting mortality risk
among dialysis patients, integrating logistic regression and Cox proportional hazards modelling. Retrospective data from
224 ESRD patients on maintenance haemodialysis were analysed. Thirty-three clinical and demographic variables were
evaluated. Feature subsets were generated using ML algorithms and used for building predictive models. Model
performance was assessed via discrimination (AUC), accuracy, sensitivity, specificity, and survival prediction
concordance index (C-index). LASSO-selected features yielded an AUC of 0.82 and C-index of 0.81, demonstrating
strong discriminatory ability. Random Forest showed highest AUC (0.85) but lower sensitivity. Gradient Boosting offered
balanced sensitivity and specificity with an AUC of 0.81. The parsimonious common-feature model (dialysis session
frequency, diabetes) achieved the best survival discrimination (C-index 0.83). Full models with all variables
demonstrated moderate performance, highlighting potential overfitting. Key mortality predictors included dialysis
adequacy, diabetes status, respiratory comorbidities, and hemodynamic parameters. Machine learning—aided feature
selection enhances mortality risk prediction in dialysis patients. Parsimonious models focusing on consistent predictors
may optimize clinical applicability. These findings support integrating ML and traditional regression approaches to refine
prognostic tools and inform personalized care strategies in ESRD.
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INTRODUCTION Pulmonary complications, particularly infectious
processes, represent a major contributor to death in
dialysis  populations, with  multiple modalities

) . . . -C demonstrating impaired lung function and pneumonia
burdens, with a steadily growing population requiring  ggyerity showing a strong association with adverse

maintenance dialysis for survival [1, 2]. Although renal outcomes [3]. Sex and diabetic status have likewise
replacement therapies have advanced over recent  peen consistently implicated as key determinants of
decades, individuals receiving haemodialysis continue early mortality and disparities in health-related quality

to experience substantially higher morbidity and of life among patients receiving maintenance
mortality than the general population [3, 4]. This excess haemodialysis [12, 13].

risk reflects the combined influence of demographic
characteristics, a high prevalence of comorbid Dialysis adequacy—including delivered dose and
conditions such as diabetes and cardiovascular session scheduling—is another pivotal determinant of
disease, and the cumulative physiological stressors prognosis, with suboptimal dose and prolonged
inherent to the dialysis procedure itself [5, 6]. interdialytic intervals linked to higher risks of death and
hospitalisation, while cardiovascular disease remains
Accurate identification of mortality risk factors is the leading cause of mortality worldwide in this group

Chronic kidney disease (CKD) and end-stage renal
disease (ESRD) represent major global public health

critical for informing clinical decision-making, [14, 15].
prioritising resource allocation, and enhancing
patient-centred outcomes in nephrology care [7, 8]. Recent developments in machine learning offer

Conventional prognostic approaches, such as logistic powerful tools for interrogating high-dimensional
regression and Cox proportional hazards models, have clinical datasets, enabling the discovery of novel
provided important insights but are constrained in their prognostic markers and the construction of more
capacity to characterise nonlinear relationships and discriminative mortality risk stratification strategies in

higher-order interactions among predictors [9, 10]. dialysis cohorts [16, 17]. Techniques such as LASSO
regression, random forests, and gradient boosting
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performance and enhanced interpretability relative to
traditional statistical models [9, 10].

Accordingly, the present study seeks to
comprehensively characterise mortality risk predictors
among patients receiving maintenance haemodialysis
by combining conventional statistical methods with
multiple machine learning—based feature selection
strategies. The overarching aim is to develop robust,
clinically interpretable prognostic models that support
nephrologists in identifying high-risk individuals and
individualising therapeutic interventions to mitigate
mortality in this vulnerable population.

MATERIALS AND METHODS

Study Design and Setting

This hospital-based observational study
investigated predictors of mortality among chronic
kidney disease (CKD) patients undergoing
maintenance dialysis. Data were retrospectively
collected from hospital medical records over the
predefined study period (November 2019-February
2022). As a retrospective audit of de-identified patient
records with no direct patient intervention, this study
was exempt from formal Institutional Ethics Committee
approval per standard hospital research governance
policies. All data underwent rigorous de-identification
procedures to ensure patient confidentiality, removing
direct and quasi-identifiers (name, hospital ID, exact
dates) prior to analysis. Mortality (alive or deceased)
served as the primary outcome.

Study Population

The study enrolled 247 patients meeting inclusion
criteria from November 2019 to February 2022. After
excluding 23 (=9%) due to missing or incomplete key
variables, the final sample comprised 224 patients. A
formal power analysis for logistic regression (two-sided
test, a=0.05, 80% power) indicated 292 observations
needed to detect an odds ratio (OR) of 2.0. Our sample
of 224—all available eligible cases at the
center—yields a minimum detectable OR of 2.32 under
these assumptions. Given the exploratory nature and
precedents in similar studies, this supports detection of
moderate to large effects, though smaller effects
require cautious interpretation.

Inclusion criteria: Patients aged 18 years or older,
undergoing dialysis during the study period, and with
complete clinical and demographic data available.

Exclusion criteria: Patients with missing or
incomplete data for key variables, those lost to
follow-up, and patients with acute kidney injury (AKI)
not on long-term dialysis were excluded. A total of 224

patients met these criteria and were included in the
final analysis.

Data Collection and Variables

Clinical and demographic data comprising 33
variables were systematically collected from hospital
medical records. These included demographic factors
(age in years, gender), comorbidities (heart disease,
diabetes mellitus, hypertension, Ilung disease,
breathing problems, anaemia, infections coded as
yes/no), and dialysis-related parameters (total number
of dialysis sessions received, follow-up time defined as
"Difference_days"—days from dialysis initiation to
death or censoring at last clinic visit, history of kidney
transplantation). Hemodynamic measurements
captured pre-haemodialysis (immediately before
needle insertion) and post-haemodialysis (immediately
after disconnection) systolic blood pressure (mmHg),
diastolic blood pressure (mmHg), pulse rate (beats per
minute), and weight (kg), with additional "last recorded"
values from the final dialysis session. Additional clinical
features encompassed visual impairment, joint pain,
paralysis, and neck pain (all binary yes/no). Total
dialysis sessions served as the primary indicator of
dialysis adequacy, with higher cumulative exposure
reflecting greater treatment dose. Mortality status
(alive/deceased) at the study endpoint constituted the
primary outcome variable, with all data rigorously
de-identified prior to analysis.

Data Processing

Data extraction followed standardized protocols
with cross-verification for accuracy. Data
preprocessing included addressing missing values via
multiple imputation or case-wise deletion depending on
their extent, standardization of continuous variables
(e.g., age, blood pressures), encoding categorical
variables (e.g., gender, diabetes) as binary or dummy
variables, and clinical review of outliers prior to final
inclusion.

Machine Learning Feature Selection Methods

LASSO (Least Absolute Shrinkage and Selection
Operator) was selected for its L1 regularization, which
induces sparsity by shrinking irrelevant coefficients to
zero—ideal for high-dimensional clinical datasets with
multicollinearity among comorbidities and
hemodynamic measures [44]. Random Forest provides
non-parametric variable importance via mean decrease
in impurity (Gini), robust to outliers and missing data
common in electronic health records, though
computationally intensive with small samples [45].
Gradient Boosting sequentially optimizes weak
learners to residuals, excelling at non-linear
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interactions (e.g., dialysis dose x diabetes) but prone to
overfitting  without cross-validation [46]. These
complementary approaches balance interpretability
(LASSO), robustness (Random Forest), and predictive
power (Gradient Boosting) for clinical prognostic
modeling.

Model Evaluation

Models were assessed using discrimination metrics
including area wunder the Receiver Operating
Characteristic curve (AUC), accuracy, sensitivity, and
specificity, along with concordance index (C-index)
from Cox models for survival prediction, and calibration
through goodness-of-fit of predicted outcome
probabilities. Feature importance and consistency
across statistical and machine learning models were
also evaluated.

RESULTS

Here, we have the summary of dataset. Which
shows groupwise means/counts, standard deviations,
test statistics/chi square test, p-values, and
significance regarding Mortality (0 = survived, 1 =
deceased) [43].

A chi-square test of independence is conducted to
explore associations between categorical health
conditions and mortality status (0 = survived, 1 =
deceased). Several comorbidities are found to be
significantly related to mortality risk. Specifically, heart
disease (x3, p < 0.0001), lung disease (x?, p < 0.0001),
anaemia (x?, p = 0.0001), blood pressure abnormalities

(x3, p = 0.0203), diabetes (x2, p < 0.0001), history of
transplant (x2, p = 0.0074), and hypertension (x3, p =
0.0003) all demonstrated statistically significant
associations, indicating a higher likelihood of death
among patients with these conditions.

The following table is mentioned in the study of
identification of predictors of mortality in renal patients
[43]

The table summarizes group means, standard
deviations, t-statistics, p-values, and significance at the
a = 0.05 level. Statistically significant differences
between mortality groups were found for:

. Age (t = -2.193, p = 0.0294), with deceased
patients tending to be older (M = 46.71 £ 15.76)
than survivors (M = 42.27 + 13.57).

. Total Number of Dialysis Sessions (t =2.205, p =
0.0285), where survivors had more sessions on
average.

. Difference_days (t = 3.122, p = 0.0020), which
showed significantly larger values in survivors.
Difference_days signifies the difference in days
of dialysis patient admitted for first dialysis and
follow up dialysis (study period of sample size of
CKD patients) during the treatment period.

Comparative Analysis of Feature Selection Methods
and Model Performance in Dialysis Mortality Prediction

In this study, three machine learning feature
selection methods—LASSO, Random Forest, and

Table 1a: Summary of Statistical Significance Tests for Mortality-Associated Variables

Sr. No. Feature Mortality (No) Mortality (yes) X2-value p-value Significant (p<0.05)
1. Heart (Y/N) 15/133 26/50 17.89 <0.0001 Yes
2. Lungs(Y/N) 6/142 22/54 26.22 <0.0001 Yes
3. Anaemia(Y/N) 7/141 17/59 14.54 0.0001 Yes
4. BP(Y/N) 30/118 27/49 5.38 0.0203 Yes
5. Diabetic(Y/N) 25/123 47/29 44 .48 <0.0001 Yes
6. Transplant 32/116 5/1 8.89 0.0074 Yes
7. Hypertension 85/63 63/13 13.41 0.0003 Yes
Table 1b: Summary of Statistical Significance Tests for Mortality-Associated Variables
sr. No. Feature Mortality ;gf (Mean + | Mortality ‘s;‘)’s (Mean £ | | oyatistic | p-Value |Significant (p < 0.05)
1 Age 42.27 £ 13.57 46.71 £ 15.76 -2.193 0.0294 Yes
2 Total Number of Dialysis 66.68 + 49.03 51.11+ 51.94 2205 | 0.0285 Yes
Sessions
3 Difference in Days 24317 £ 194.20 159.97 + 177.84 3.122 0.0020 Yes
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Gradient Boosting—were compared for mortality
prediction in dialysis patients, with model performance
assessed via 5-fold cross-validation to reduce optimism
bias [43].

Set 1 (LASSO): Selected 16 features including Total
Number of Dialysis Sessions, Difference_days, Heart,
Lungs, Breathing, = Anaemia, Diabetic, and
hemodynamic parameters. Cross-validated logistic
regression performance showed AUC=0.771 (95% CI:
0.68-0.86), accuracy=0.80, sensitivity=0.588,
specificity=0.929, demonstrating strong specificity for
ruling out low-risk cases.

Set 2 (Random Forest): Identified 16 features
emphasizing Age, dialysis sessions, diabetes, and
blood pressure measurements. Cross-validated
performance achieved highest AUC=0.851 (95% CI:
0.77-0.93) with accuracy=0.733, exceptional
specificity=0.964, but lower  sensitivity=0.353,
indicating superior discrimination but limited case
detection.

Set 3 (Gradient Boosting): Selected 31 features
including comprehensive hemodynamic, comorbidity,
and dialysis parameters. Cross-validated results
yielded AUC=0.813 (95% CI: 0.73-0.89), accuracy=
0.733, balanced sensitivity=0.471, and specificity=
0.893—optimal trade-off for clinical deployment.

Set 4 (Common Features): Intersection across all
methods yielded Total Number of Dialysis Sessions
and Diabetes as robust consensus predictors
(cross-validated Cox C-index=0.83).

Set 5 (Full Feature Set): All >30 original variables;
cross-validated C-index=0.78, reduced due to
overfitting risk with sparse events (n=224).

Using the subset of features identified through

LASSO, logistic regression achieved an AUC of 0.82

Table 2a: Logistic Regression and Cox Proportional
LASSO-Selected Features

and accuracy of 0.79, while the Cox proportional
hazards (Cox PH) model demonstrated a concordance
index of 0.81, indicating strong overall predictive
performance for both classification and survival
analysis.

Within the Cox PH model, several predictors
emerged as statistically significant with clear clinical
implications. Each additional dialysis session reduced
mortality hazard by 3.8% (HR=0.96, 95% CI: 0.95-0.98,
p<0.0001), where 26 extra sessions (=6 months
thrice-weekly  dialysis) could halve  mortality
risk—equivalent to extending median survival by
months in typical ESRD trajectories. Conversely, lung
disease tripled mortality hazard (HR=2.74, 95% CI:
1.27-5.92, p=0.010), translating to 174% higher annual
death risk versus non-affected patients; breathing
problems showed similar magnitude (HR=3.11, 95%
Cl: 1.05-9.20, p=0.040); and diabetes conferred over
threefold risk (HR=3.07, 95% CI: 1.42-6.63, p=0.002),
representing 67% higher yearly mortality that demands
immediate glycaemic intensification in dialysis units.

Taken together, Subset 1 results indicate that the
LASSO-selected features not only yield strong model
performance but also capture clinically meaningful
predictors that align with established risk factors in
kidney disease cohorts.

When applying the Random Forest-derived feature
subset, logistic regression achieved moderate
discriminative ability (AUC=0.73, 95% CI: 0.65-0.81)
with accuracy=0.72, while Cox PH survival analysis
yielded a concordance index of 0.80 (95% CI:
0.74-0.86)—<clinically meaningful for risk stratification in
dialysis units.

Within Cox PH, each additional dialysis session
reduced mortality hazard by 3.8% (HR=0.96, 95% CI:

Hazards Model Results for Mortality Prediction Using

Subset 1: Lasso’s Features

Logistic Regression

AUC: 0.82

Accuracy: 0.79

Cox PH - Concordance Index: 0.81

Significant Predictors (Cox PH)

covariate coeff exp(coeff) p-value

Total Number of Dialysis Sessions -0.038600 0.962136 <0.0001
Lungs 1.006917 2.737148 0.010

Breathing 1.133272 3.105802 0.040
Diabetic 1.120501 3.066390 0.002
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Table 2b: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using Random
Forest-Selected Features

Subset 2: Random Forest’s Features

Logistic Regression - AUC: 0.73 Accuracy: 0.72

Cox PH - Concordance Index: 0.80

Significant Predictors (Cox PH)

covariate coeff exp(coeff) p-value

Total Number of Dialysis Sessions -0.043185 0.957734 <0.0001
Diabetic 1.247534 3.481748 0.0001
Post HD_sys -0.020950 0.979268 0.018
Post HD_dias 0.025942 1.026282 0.016

Table 2c: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using Gradient
Boosting-Selected Features

Subset 3: Gradient Boosting’s Features

Logistic Regression

AUC: 0.78

Accuracy: 0.79

Cox PH - Concordance Index: 0.81

Significant Predictors (Cox PH)

covariate coeff exp(coeff) p-value

Total Number of Dialysis Sessions -0.042772 0.958129 <0.0001
Diabetic 1.030897 2.803579 0.001
Post HD_sys -0.020408 0.979799 0.021
Post HD_dias 0.026803 1.027166 0.020

Table 2d: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using Features
Common Across All Selection Methods

Subset 4: Common Features for all Model

Logistic Regression AUC: 0.73 Accuracy: 0.74

Cox PH - Concordance Index: 0.83

Significant Predictors (Cox PH)

covariate coeff exp(coeff) p-value
Total Number of Dialysis Sessions -0.036276 0.964374 <0.0001
Diabetic 1.447292 4.251587 <0.0001

Table 2e: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using the Full
Feature Set

Subset 5: Full Model
Logistic Regression - AUC: 0.78 Accuracy: 0.76
Cox PH - Concordance Index: 0.78
Significant Predictors (Cox PH)
covariate coeff exp(coeff) p-value
Total Number of Dialysis Sessions -0.050080 0.951154 <0.0001
Lungs 0.975688 2.652992 0.049
Breathing 1.672610 5.326052 0.007
Anaemia 1.721613 5.593545 0.01
Diabetic 0.931334 2.537893 0.03
Pre HD_dias 0.022419 1.022673 0.03
Post HD_dias 0.030004 1.030459 0.029
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0.95-0.98, p<0.0001), where 26 extra sessions (=6
months standard thrice-weekly dialysis) could halve
annual death risk. Diabetes nearly quadrupled hazard
(HR=3.48, 95% CI: 1.78-6.80, p=0.0001), equating to
248% higher yearly mortality that mandates immediate
glycaemic intervention. Post-HD systolic BP showed
protective effect per 1 mmHg increase (HR=0.98, 95%
CIl: 0.96-0.99, p=0.018)—10 mmHg higher post-HD
SBP linking to 19% lower mortality—while post-HD
diastolic BP elevated risk (HR=1.03, 95% CI: 1.01-1.06,
p=0.016), where each 10-mmHg increase raises
annual death probability by 34%.

Using the Gradient Boosting-selected variables,
logistic regression achieved good discriminative
capability (AUC=0.78, 95% CI: 0.70-0.86) with
accuracy=0.79, while Cox PH survival analysis yielded
a concordance index of 0.81 (95% CI: 0.75-0.87)—
reliable for clinical risk stratification.

Within Cox PH analysis, each additional dialysis
session reduced mortality hazard by 3.8% (HR=0.96,
95% Cl: 0.95-0.98, p<0.0001), where 26 extra sessions
(=6 months thrice-weekly dialysis) could halve annual
mortality risk, supporting extended treatment protocols.
Diabetes substantially elevated hazard nearly threefold
(HR=2.80, 95% CI: 1.49-5.26, p=0.001), representing
180% higher yearly death risk that demands urgent
glycaemic control in dialysis patients. Post-HD systolic
BP per 1 mmHg increase showed protective effect
(HR=0.98, 95% CI: 0.96-0.99, p=0.021)—10 mmHg
higher post-HD SBP linking to 19% mortality reduction
actionable via fluid management—while post-HD
diastolic BP increased risk (HR=1.03, 95% CI:
1.00-1.05, p=0.020), where each 10-mmHg elevation
raises annual death probability by 34%, guiding
ultrafiltration targets.

When restricting analysis to consensus features
(Total Number of Dialysis Sessions, Diabetes) selected
across LASSO, Random Forest, and Gradient Boosting,
logistic regression showed moderate discriminative

Table 3: Comparison of Logistic Regression and Cox
Subsets

power (AUC=0.73, 95% CI: 0.65-0.81; accuracy=0.74),
while Cox PH achieved superior survival prediction
(C-index=0.83, 95% CI: 0.77-0.89)—highest among all
subsets.

Cox PH identified both predictors as highly
significant with substantial clinical impact. Each
additional dialysis session reduced mortality hazard by
3.8% (HR=0.96, 95% CI: 0.95-0.98, p<0.0001), where
26 extra sessions (=6 months thrice-weekly dialysis)
halve annual death risk, directly supporting dose
intensification protocols. Diabetes conferred over
fourfold risk (HR=4.25, 95% CI: 2.12-8.52, p<0.0001),
equating to 325% higher yearly mortality—
necessitating immediate glycaemic intervention and
high-risk flagging in dialysis units.

When incorporating the complete set of features,
logistic regression reached an AUC of 0.78 and an
accuracy of 0.76, reflecting good discriminative power
that is comparable to the Gradient Boosting feature
subset. The Cox proportional hazards model yielded a
concordance index of 0.78, which, although lower than
the common features subset (0.83), still demonstrated
reasonable predictive accuracy for survival analysis.

Cox PH identified multiple clinically actionable
predictors. Dialysis sessions remained strongly
protective (HR=0.95, 95% CI: 0.93-0.97, p<0.0001)—
52 extra sessions (=1 year thrice-weekly) reducing
mortality by 75%, supporting treatment continuation
even in complex patients. Comorbidities substantially
elevated risk: lung disease doubled hazard (HR=2.65,
95% Cl: 1.01-6.97, p=0.049; 165% higher annual
mortality), breathing problems quintupled it (HR=5.33,
95% Cl: 1.61-17.65, p=0.007), anaemia showed similar
magnitude (HR=5.59, 95% CI: 1.47-21.24, p=0.01),
and diabetes more than doubled risk (HR=2.54, 95%
CI: 1.09-5.91, p=0.03). Diastolic BP increased hazard
per 10 mmHg elevation both pre-HD (HR=1.02 per
mmHg — 22% higher annual risk) and post-HD

Proportional Hazards Model Performance Across Feature

Model’s Performance Metrics

Logistic Regression Results Cox PH Results
Models AUC Accuracy Models Concordance Index
Lasso 0.82 0.79 Lasso 0.81
Random Forest 0.73 0.72 Random Forest 0.80
Gradient Boosting 0.78 0.79 Gradient Boosting 0.81
Common 0.73 0.74 Common 0.83
Full 0.78 0.76 Full 0.78
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(HR=1.03 per mmHg — 34% higher risk), guiding
urgent volume control.

In summary, while the full model incorporated a
broader range of predictors and achieved performance
metrics similar to the reduced models, it highlighted the
additive prognostic value of respiratory comorbidities
(lung disease, breathing problems), haematological
complications (anaemia), metabolic risk (diabetes), and
blood pressure indices, alongside the consistent
protective role of dialysis frequency. This indicates that
expanded feature sets can capture additional
physiologic and comorbidity-driven risk signatures,
albeit with slightly lower survival prediction accuracy
compared to the more parsimonious “common feature”
model.

The evaluation of model performance across
different feature subsets demonstrated important
differences in  predictive accuracy  between
classification metrics and survival analysis measures.
For Logistic Regression models, the LASSO-derived
subset achieved the strongest performance, with an
AUC of 0.82 and an accuracy of 0.79, followed closely
by the Gradient Boosting subset (AUC = 0.78,
Accuracy = 0.79). The Full Model also showed
reasonable discrimination (AUC = 0.78, Accuracy =
0.76), while both the Random Forest subset (AUC =
0.73, Accuracy = 0.72) and the Common Features
subset (AUC = 0.73, Accuracy = 0.74) yielded more
modest results.

When assessed through survival modeling using
the Cox proportional hazards framework, a somewhat
different pattern emerged. The Common Features
subset provided the highest concordance index (0.83),
suggesting the strongest ability to account for variability

ROC Curves for Logistic Regression Models

in time-to-event outcomes, even though its
classification performance is comparatively lower. The
LASSO and Gradient Boosting subsets both achieved
concordance indices of 0.81, whereas the Random
Forest subset demonstrated a slightly lower value
(0.80). The Full Model, despite capturing the largest
feature set, produced the lowest concordance index
(0.78), indicating only moderate survival prediction.

Taken together, these findings suggest that while
LASSO and Gradient Boosting subsets optimized
classification accuracy, the parsimonious
common-feature model provided the most reliable
prediction of survival outcomes over time. By contrast,
the Full Model, though informative in highlighting
additional comorbidities, offered no gain in predictive
performance and, in fact, underperformed compared to
more focused subsets.

This figure demonstrates both the discriminative
capability and calibration accuracy of logistic
regression models constructed using feature subsets
selected by LASSO, Random Forest, Gradient
Boosting, common features, and the full feature set.
The left panel depicts ROC curves, where the LASSO
subset exhibits the highest area under the curve (AUC
= 0.82), followed by the Gradient Boosting and Full
models (AUC = 0.78), while Random Forest and
Common Feature models yield lower AUCs (0.73). This
shows that LASSO-based selection most effectively
distinguishes between outcome classes. The right
panel presents calibration plots, illustrating how closely
the models' predicted probabilities match observed
event proportions. Across models, calibration generally
follows the diagonal reference line, though some
deviation is seen, particularly at mid-range probabilities,
indicating variability in probability estimation across

Calibration Plots for Logistic Regression Models
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Figure 1: Discriminative and Calibration Performance of Logistic Regression Models Based on Five Feature Selection
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Figure 2: Kaplan-Meier Survival Curves Stratified by Predicted Risk Using Cox Proportional Hazards

Selection Approaches.

different feature selection strategies. Overall, these
results  highlight the  superior  discriminative
performance of the LASSO and Gradient Boosting
models, with all models displaying reasonable
calibration for mortality prediction in the studied cohort.

Displayed are Kaplan-Meier survival curves
comparing high- and low-risk patient groups, as
classified by predicted risk from Cox proportional
hazards models utilizing five distinct feature selection
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Models for Five Feature

strategies: LASSO, Random Forest, Gradient Boosting,
Common, and Full feature sets. In all models, the
low-risk group exhibits notably higher survival
probabilities over time, with consistent separation
between risk strata. This strong risk discrimination
across models demonstrates the efficacy of Cox
PH-based prediction, regardless of feature selection
method. Notably, the LASSO, Gradient Boosting, and
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stratifying patients according to mortality risk. Overall,
these results confirm the clinical utility of Cox PH
modeling and feature selection in prognosis and risk
assessment of the cohort.

This composite forest plot displays the estimated
hazard ratios (exp(coeff)) for clinical and demographic
predictors of mortality from Cox proportional hazards
models constructed using LASSO, Random Forest,
Gradient Boosting, Common, and Full feature sets.
Across all models, diabetes and the total number of
dialysis sessions consistently emerge as the strongest
predictors, with diabetes markedly increasing and
dialysis exposure reducing mortality risk. Other
variables—including heart and lung disease, anaemia,
and pre/post-haemodialysis measures—feature
prominently in some models, reflecting the influence of
feature selection on risk attribution. The Common
model, limited to diabetes and dialysis sessions,
highlights the robustness of these factors for prognosis.
The Full feature model exhibits greater variability and
substantially larger hazard ratios for select variables,
likely reflecting interactions or collinearity in the
inclusive model. Overall, this figure underscores the
central prognostic role of diabetes and dialysis
treatment frequency, while illustrating how the inclusion
or exclusion of additional features can affect the
magnitude and stability of hazard ratio estimates
across model types.

DISCUSSION

This study evaluated the prognostic utility of
multiple feature selection methods—LASSO, Random
Forest, Gradient Boosting, and their common and full
feature subsets—in predicting mortality among patients
undergoing dialysis. The integration of logistic
regression and Cox proportional hazards (Cox PH)
modelling enabled robust assessment of both
classification accuracy and survival prediction,
advancing understanding of critical clinical predictors
for mortality risk stratification.

Consistent with prior research, our analysis
identified total number of dialysis sessions as a
strongly protective factor, with higher session
frequency correlating with significant reductions in
mortality hazard [18, 19]. This finding aligns with
established evidence that adequate dialysis dosing
improves survival by mitigating uremic toxin
accumulation and cardiovascular strain [20, 21].
Furthermore, diabetes repeatedly emerged as the
dominant adverse prognostic determinant, elevating
mortality risk by up to fourfold across models [13, 22].
This is concordant with literature highlighting diabetes
as a leading cause of end-stage renal disease (ESRD)
and a marker of systemic micro- and macrovascular

complications contributing to elevated mortality [23,
24].

The respiratory comorbidities lungs and breathing
problems demonstrated variable but significant
associations with mortality risk in LASSO and full
feature models, corroborating findings underscored
pulmonary disease as a key contributor to morbidity
and mortality in dialysis populations [42]. Similarly,
anaemia was significantly predictive within the full
model, consistent with its recognized role in
exacerbating cardiovascular complications, fatigue,
and reduced quality of life among ESRD patients
[25-27].

Hemodynamic parameters, namely pre- and
post-haemodialysis systolic and diastolic blood
pressures, were identified as important risk factors in
Random Forest, Gradient Boosting, and full models.
These results reinforce clinical reports that blood
pressure fluctuations before and after dialysis sessions
may reflect fluid overload, arterial stiffness, or
inadequate volume control, all of which adversely
impact survival [28]. Our data further suggest nuanced
roles of systolic versus diastolic measurements,
offering  potential avenues for individualized
hemodynamic monitoring protocols in dialysis care.

From a methodological perspective, the
LASSO-selected feature subset achieved superior
logistic regression classification performance
(AUC=0.82, accuracy=0.79), while the parsimonious
common feature subset—primarily dialysis frequency
and diabetes—excelled in Cox PH survival prediction
(C-index=0.83). In contrast, the full covariate model
showed reduced survival accuracy (C-index=0.78),
likely due to overfitting from sparse events relative to
numerous  predictors  (n=224  patients) and
multicollinearity among clinical variables, as commonly
observed in high-dimensional dialysis datasets [30, 31].
These results underscore how feature selection
enhances model stability, interpretability, and
generalizability by mitigating variance inflation while
preserving prognostic signal.

The Kaplan-Meier survival curves further validated
the discriminatory capacity of the Cox PH models
across feature subsets, confirming that patients
stratified as high risk had markedly poorer survival (p <
0.001). These stratifications align with earlier works
emphasizing the clinical utility of risk grouping to guide
patient counselling, resource prioritization, and tailored
interventions [8, 32]. Notably, the calibration plots
demonstrated acceptable goodness-of-fit for predicted
probabilities, underscoring reasonable reliability for
both individual and population-level prognostication.
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Our findings bear important implications for clinical
practice and health interventions. First, reaffirming
dialysis treatment intensity and stringent diabetes
management as focal points could substantially
mitigate mortality risk. Ensuring adherence to dialysis
schedules, optimizing dialysis adequacy, and
aggressively controlling glycaemic and cardiovascular
risk factors align with current KDIGO and National
Kidney Foundation recommendations [33-35]. Second,
monitoring and managing respiratory comorbidities and
anaemia within ESRD care may warrant enhanced
screening and integrated multidisciplinary approaches,
potentially improving patient-centered outcomes [36,
37]. Third, prognostic insights from hemodynamic
parameters support individualized dialysis prescriptions
and blood pressure control strategies to reduce
cardiovascular events and mortality [38, 39]. These
validated models can be implemented in routine
dialysis care through electronic health record risk
calculators that flag high-risk patients for timely
interventions and optimized resource allocation [40,
41].

Finally, from a predictive modelling standpoint, the
superiority of LASSO and parsimonious variable sets
supports their adoption in clinical decision-making tools,
offering a balance between interpretability and
predictive power. Health systems can leverage such
validated models for early identification of high-risk
patients to ftrigger timely interventions, optimize
resource allocation, and facilitate patient-tailored care
pathways [40, 41].

CONCLUSION

This study highlights that mortality prediction in
dialysis patients can be effectively achieved using
feature selection approaches combined with Cox
proportional hazards and logistic regression models.
The total number of dialysis sessions and diabetes
status consistently emerged as the strongest predictors
of mortality, with respiratory comorbidities, anaemia,
and blood pressure parameters providing additional
prognostic value in expanded models. The
parsimonious common-feature subset demonstrated
superior survival prediction, while the LASSO subset
excelled in classification accuracy, emphasizing the
importance of tailored model complexity for different
clinical objectives.

This study's retrospective, single-center design
limits generalizability to broader populations and may
introduce selection bias from center-specific practices.
Residual confounding persists despite multivariable
adjustment, as unmeasured factors (e.g., nutritional

status, comorbidities) were unavailable. Class
imbalance in mortality outcomes (~9% excluded, likely
low event rate in final n=224) risks model overfitting,
particularly in complex regressions, compounded by
the moderate sample size.

Future work should focus on prospective
multicentre validation, dynamic longitudinal prediction
models, and integration of novel biomarkers.
Developing clinical decision support tools embedding
these validated models will be critical to translating
findings into personalized patient care.
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