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Abstract: Mortality remains high among patients undergoing maintenance dialysis for end-stage renal disease (ESRD). 
Identification of key mortality predictors is paramount for improving prognosis and guiding care. Recent advances in 
machine learning (ML) offer potential to enhance risk stratification beyond traditional statistical models. This study 
compares feature selection methods—LASSO, Random Forest, and Gradient Boosting—in predicting mortality risk 
among dialysis patients, integrating logistic regression and Cox proportional hazards modelling. Retrospective data from 
224 ESRD patients on maintenance haemodialysis were analysed. Thirty-three clinical and demographic variables were 
evaluated. Feature subsets were generated using ML algorithms and used for building predictive models. Model 
performance was assessed via discrimination (AUC), accuracy, sensitivity, specificity, and survival prediction 
concordance index (C-index). LASSO-selected features yielded an AUC of 0.82 and C-index of 0.81, demonstrating 
strong discriminatory ability. Random Forest showed highest AUC (0.85) but lower sensitivity. Gradient Boosting offered 
balanced sensitivity and specificity with an AUC of 0.81. The parsimonious common-feature model (dialysis session 
frequency, diabetes) achieved the best survival discrimination (C-index 0.83). Full models with all variables 
demonstrated moderate performance, highlighting potential overfitting. Key mortality predictors included dialysis 
adequacy, diabetes status, respiratory comorbidities, and hemodynamic parameters. Machine learning–aided feature 
selection enhances mortality risk prediction in dialysis patients. Parsimonious models focusing on consistent predictors 
may optimize clinical applicability. These findings support integrating ML and traditional regression approaches to refine 
prognostic tools and inform personalized care strategies in ESRD.  
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INTRODUCTION 

Chronic kidney disease (CKD) and end-stage renal 
disease (ESRD) represent major global public health 
burdens, with a steadily growing population requiring 
maintenance dialysis for survival [1, 2]. Although renal 
replacement therapies have advanced over recent 
decades, individuals receiving haemodialysis continue 
to experience substantially higher morbidity and 
mortality than the general population [3, 4]. This excess 
risk reflects the combined influence of demographic 
characteristics, a high prevalence of comorbid 
conditions such as diabetes and cardiovascular 
disease, and the cumulative physiological stressors 
inherent to the dialysis procedure itself [5, 6]. 

Accurate identification of mortality risk factors is 
critical for informing clinical decision-making, 
prioritising resource allocation, and enhancing 
patient-centred outcomes in nephrology care [7, 8]. 
Conventional prognostic approaches, such as logistic 
regression and Cox proportional hazards models, have 
provided important insights but are constrained in their 
capacity to characterise nonlinear relationships and 
higher-order interactions among predictors [9, 10]. 
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Pulmonary complications, particularly infectious 
processes, represent a major contributor to death in 
dialysis populations, with multiple modalities 
demonstrating impaired lung function and pneumonia 
severity showing a strong association with adverse 
outcomes [3]. Sex and diabetic status have likewise 
been consistently implicated as key determinants of 
early mortality and disparities in health-related quality 
of life among patients receiving maintenance 
haemodialysis [12, 13].  

Dialysis adequacy—including delivered dose and 
session scheduling—is another pivotal determinant of 
prognosis, with suboptimal dose and prolonged 
interdialytic intervals linked to higher risks of death and 
hospitalisation, while cardiovascular disease remains 
the leading cause of mortality worldwide in this group 
[14, 15]. 

Recent developments in machine learning offer 
powerful tools for interrogating high-dimensional 
clinical datasets, enabling the discovery of novel 
prognostic markers and the construction of more 
discriminative mortality risk stratification strategies in 
dialysis cohorts [16, 17]. Techniques such as LASSO 
regression, random forests, and gradient boosting 
facilitate efficient feature selection and model 
development, often yielding superior predictive 
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performance and enhanced interpretability relative to 
traditional statistical models [9, 10]. 

Accordingly, the present study seeks to 
comprehensively characterise mortality risk predictors 
among patients receiving maintenance haemodialysis 
by combining conventional statistical methods with 
multiple machine learning–based feature selection 
strategies. The overarching aim is to develop robust, 
clinically interpretable prognostic models that support 
nephrologists in identifying high-risk individuals and 
individualising therapeutic interventions to mitigate 
mortality in this vulnerable population. 

MATERIALS AND METHODS  

Study Design and Setting  

This hospital-based observational study 
investigated predictors of mortality among chronic 
kidney disease (CKD) patients undergoing 
maintenance dialysis. Data were retrospectively 
collected from hospital medical records over the 
predefined study period (November 2019–February 
2022). As a retrospective audit of de-identified patient 
records with no direct patient intervention, this study 
was exempt from formal Institutional Ethics Committee 
approval per standard hospital research governance 
policies. All data underwent rigorous de-identification 
procedures to ensure patient confidentiality, removing 
direct and quasi-identifiers (name, hospital ID, exact 
dates) prior to analysis. Mortality (alive or deceased) 
served as the primary outcome.  

Study Population  

The study enrolled 247 patients meeting inclusion 
criteria from November 2019 to February 2022. After 
excluding 23 (≈9%) due to missing or incomplete key 
variables, the final sample comprised 224 patients. A 
formal power analysis for logistic regression (two-sided 
test, α=0.05, 80% power) indicated 292 observations 
needed to detect an odds ratio (OR) of 2.0. Our sample 
of 224—all available eligible cases at the 
center—yields a minimum detectable OR of 2.32 under 
these assumptions. Given the exploratory nature and 
precedents in similar studies, this supports detection of 
moderate to large effects, though smaller effects 
require cautious interpretation.  

Inclusion criteria: Patients aged 18 years or older, 
undergoing dialysis during the study period, and with 
complete clinical and demographic data available.  

Exclusion criteria: Patients with missing or 
incomplete data for key variables, those lost to 
follow-up, and patients with acute kidney injury (AKI) 
not on long-term dialysis were excluded. A total of 224 

patients met these criteria and were included in the 
final analysis.  

Data Collection and Variables  

Clinical and demographic data comprising 33 
variables were systematically collected from hospital 
medical records. These included demographic factors 
(age in years, gender), comorbidities (heart disease, 
diabetes mellitus, hypertension, lung disease, 
breathing problems, anaemia, infections coded as 
yes/no), and dialysis-related parameters (total number 
of dialysis sessions received, follow-up time defined as 
"Difference_days"—days from dialysis initiation to 
death or censoring at last clinic visit, history of kidney 
transplantation). Hemodynamic measurements 
captured pre-haemodialysis (immediately before 
needle insertion) and post-haemodialysis (immediately 
after disconnection) systolic blood pressure (mmHg), 
diastolic blood pressure (mmHg), pulse rate (beats per 
minute), and weight (kg), with additional "last recorded" 
values from the final dialysis session. Additional clinical 
features encompassed visual impairment, joint pain, 
paralysis, and neck pain (all binary yes/no). Total 
dialysis sessions served as the primary indicator of 
dialysis adequacy, with higher cumulative exposure 
reflecting greater treatment dose. Mortality status 
(alive/deceased) at the study endpoint constituted the 
primary outcome variable, with all data rigorously 
de-identified prior to analysis. 

Data Processing 

Data extraction followed standardized protocols 
with cross-verification for accuracy. Data 
preprocessing included addressing missing values via 
multiple imputation or case-wise deletion depending on 
their extent, standardization of continuous variables 
(e.g., age, blood pressures), encoding categorical 
variables (e.g., gender, diabetes) as binary or dummy 
variables, and clinical review of outliers prior to final 
inclusion. 

Machine Learning Feature Selection Methods 

LASSO (Least Absolute Shrinkage and Selection 
Operator) was selected for its L1 regularization, which 
induces sparsity by shrinking irrelevant coefficients to 
zero—ideal for high-dimensional clinical datasets with 
multicollinearity among comorbidities and 
hemodynamic measures [44]. Random Forest provides 
non-parametric variable importance via mean decrease 
in impurity (Gini), robust to outliers and missing data 
common in electronic health records, though 
computationally intensive with small samples [45]. 
Gradient Boosting sequentially optimizes weak 
learners to residuals, excelling at non-linear 
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interactions (e.g., dialysis dose × diabetes) but prone to 
overfitting without cross-validation [46]. These 
complementary approaches balance interpretability 
(LASSO), robustness (Random Forest), and predictive 
power (Gradient Boosting) for clinical prognostic 
modeling. 

Model Evaluation  

Models were assessed using discrimination metrics 
including area under the Receiver Operating 
Characteristic curve (AUC), accuracy, sensitivity, and 
specificity, along with concordance index (C-index) 
from Cox models for survival prediction, and calibration 
through goodness-of-fit of predicted outcome 
probabilities. Feature importance and consistency 
across statistical and machine learning models were 
also evaluated. 

RESULTS  

Here, we have the summary of dataset. Which 
shows groupwise means/counts, standard deviations, 
test statistics/chi square test, p-values, and 
significance regarding Mortality (0 = survived, 1 = 
deceased) [43]. 

A chi-square test of independence is conducted to 
explore associations between categorical health 
conditions and mortality status (0 = survived, 1 = 
deceased). Several comorbidities are found to be 
significantly related to mortality risk. Specifically, heart 
disease (χ², p < 0.0001), lung disease (χ², p < 0.0001), 
anaemia (χ², p = 0.0001), blood pressure abnormalities 

(χ², p = 0.0203), diabetes (χ², p < 0.0001), history of 
transplant (χ², p = 0.0074), and hypertension (χ², p = 
0.0003) all demonstrated statistically significant 
associations, indicating a higher likelihood of death 
among patients with these conditions.  

The following table is mentioned in the study of 
identification of predictors of mortality in renal patients 
[43]  

The table summarizes group means, standard 
deviations, t-statistics, p-values, and significance at the 
α = 0.05 level. Statistically significant differences 
between mortality groups were found for:  

• Age (t = -2.193, p = 0.0294), with deceased 
patients tending to be older (M = 46.71 ± 15.76) 
than survivors (M = 42.27 ± 13.57).  

• Total Number of Dialysis Sessions (t = 2.205, p = 
0.0285), where survivors had more sessions on 
average.  

• Difference_days (t = 3.122, p = 0.0020), which 
showed significantly larger values in survivors. 
Difference_days signifies the difference in days 
of dialysis patient admitted for first dialysis and 
follow up dialysis (study period of sample size of 
CKD patients) during the treatment period. 

Comparative Analysis of Feature Selection Methods 
and Model Performance in Dialysis Mortality Prediction  

In this study, three machine learning feature 
selection methods—LASSO, Random Forest, and 

Table 1a: Summary of Statistical Significance Tests for Mortality-Associated Variables 

Sr. No. Feature Mortality (No) Mortality (yes) χ2-value p-value Significant (p<0.05) 

1. Heart (Y/N) 15/133 26/50 17.89 <0.0001 Yes 

2. Lungs(Y/N) 6/142 22/54 26.22 <0.0001 Yes 

3. Anaemia(Y/N) 7/141 17/59 14.54 0.0001 Yes 

4. BP(Y/N) 30/118 27/49 5.38 0.0203 Yes 

5. Diabetic(Y/N) 25/123 47/29 44.48 <0.0001 Yes 

6. Transplant 32/116 5/1 8.89 0.0074 Yes 

7. Hypertension 85/63 63/13 13.41 0.0003 Yes 

 

Table 1b: Summary of Statistical Significance Tests for Mortality-Associated Variables  

Sr. No. Feature Mortality – No (Mean ± 
SD) 

Mortality – Yes (Mean ± 
SD) t-Statistic p-Value Significant (p < 0.05) 

1 Age 42.27 ± 13.57 46.71 ± 15.76 -2.193 0.0294 Yes 

2 Total Number of Dialysis 
Sessions 66.68 ± 49.03 51.11 ± 51.94 2.205 0.0285 Yes 

3 Difference in Days 243.17 ± 194.20 159.97 ± 177.84 3.122 0.0020 Yes 
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Gradient Boosting—were compared for mortality 
prediction in dialysis patients, with model performance 
assessed via 5-fold cross-validation to reduce optimism 
bias [43]. 

Set 1 (LASSO): Selected 16 features including Total 
Number of Dialysis Sessions, Difference_days, Heart, 
Lungs, Breathing, Anaemia, Diabetic, and 
hemodynamic parameters. Cross-validated logistic 
regression performance showed AUC=0.771 (95% CI: 
0.68-0.86), accuracy=0.80, sensitivity=0.588, 
specificity=0.929, demonstrating strong specificity for 
ruling out low-risk cases. 

Set 2 (Random Forest): Identified 16 features 
emphasizing Age, dialysis sessions, diabetes, and 
blood pressure measurements. Cross-validated 
performance achieved highest AUC=0.851 (95% CI: 
0.77-0.93) with accuracy=0.733, exceptional 
specificity=0.964, but lower sensitivity=0.353, 
indicating superior discrimination but limited case 
detection. 

Set 3 (Gradient Boosting): Selected 31 features 
including comprehensive hemodynamic, comorbidity, 
and dialysis parameters. Cross-validated results 
yielded AUC=0.813 (95% CI: 0.73-0.89), accuracy= 
0.733, balanced sensitivity=0.471, and specificity= 
0.893—optimal trade-off for clinical deployment. 

Set 4 (Common Features): Intersection across all 
methods yielded Total Number of Dialysis Sessions 
and Diabetes as robust consensus predictors 
(cross-validated Cox C-index=0.83). 

Set 5 (Full Feature Set): All >30 original variables; 
cross-validated C-index=0.78, reduced due to 
overfitting risk with sparse events (n=224). 

Using the subset of features identified through 
LASSO, logistic regression achieved an AUC of 0.82 

and accuracy of 0.79, while the Cox proportional 
hazards (Cox PH) model demonstrated a concordance 
index of 0.81, indicating strong overall predictive 
performance for both classification and survival 
analysis.  

Within the Cox PH model, several predictors 
emerged as statistically significant with clear clinical 
implications. Each additional dialysis session reduced 
mortality hazard by 3.8% (HR=0.96, 95% CI: 0.95-0.98, 
p<0.0001), where 26 extra sessions (≈6 months 
thrice-weekly dialysis) could halve mortality 
risk—equivalent to extending median survival by 
months in typical ESRD trajectories. Conversely, lung 
disease tripled mortality hazard (HR=2.74, 95% CI: 
1.27-5.92, p=0.010), translating to 174% higher annual 
death risk versus non-affected patients; breathing 
problems showed similar magnitude (HR=3.11, 95% 
CI: 1.05-9.20, p=0.040); and diabetes conferred over 
threefold risk (HR=3.07, 95% CI: 1.42-6.63, p=0.002), 
representing 67% higher yearly mortality that demands 
immediate glycaemic intensification in dialysis units. 

Taken together, Subset 1 results indicate that the 
LASSO-selected features not only yield strong model 
performance but also capture clinically meaningful 
predictors that align with established risk factors in 
kidney disease cohorts.  

When applying the Random Forest-derived feature 
subset, logistic regression achieved moderate 
discriminative ability (AUC=0.73, 95% CI: 0.65-0.81) 
with accuracy=0.72, while Cox PH survival analysis 
yielded a concordance index of 0.80 (95% CI: 
0.74-0.86)—clinically meaningful for risk stratification in 
dialysis units. 

Within Cox PH, each additional dialysis session 
reduced mortality hazard by 3.8% (HR=0.96, 95% CI: 

Table 2a: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using 
LASSO-Selected Features  

Subset 1: Lasso’s Features  

Logistic Regression  AUC: 0.82  Accuracy: 0.79  

Cox PH - Concordance Index: 0.81  

Significant Predictors (Cox PH)  

 

covariate  coeff  exp(coeff)   p-value  

Total Number of Dialysis Sessions  -0.038600  0.962136  <0.0001  

Lungs  1.006917  2.737148  0.010  

Breathing  1.133272  3.105802   0.040  

Diabetic  1.120501  3.066390  0.002  
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Table 2b: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using Random 
Forest-Selected Features  

Subset 2: Random Forest’s Features  

Logistic Regression -  AUC: 0.73  Accuracy: 0.72  

Cox PH - Concordance Index: 0.80    

Significant Predictors (Cox PH)  

 

covariate  coeff  exp(coeff)   p-value  

Total Number of Dialysis Sessions  -0.043185  0.957734   <0.0001  

Diabetic  1.247534  3.481748  0.0001  

Post HD_sys  -0.020950  0.979268   0.018  

Post HD_dias  0.025942  1.026282   0.016  
 

Table 2c: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using Gradient 
Boosting-Selected Features  

Subset 3: Gradient Boosting’s Features  

Logistic Regression  AUC: 0.78  Accuracy: 0.79  

Cox PH - Concordance Index: 0.81  

Significant Predictors (Cox PH)  

 

covariate  coeff  exp(coeff)   p-value  

Total Number of Dialysis Sessions  -0.042772  0.958129   <0.0001  

Diabetic  1.030897  2.803579  0.001  

Post HD_sys  -0.020408  0.979799  0.021  

Post HD_dias  0.026803  1.027166  0.020  
 

Table 2d: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using Features 
Common Across All Selection Methods  

Subset 4: Common Features for all Model  

Logistic Regression  AUC: 0.73  Accuracy: 0.74  

Cox PH - Concordance Index: 0.83    

Significant Predictors (Cox PH)  

covariate  coeff  exp(coeff)   p-value  

Total Number of Dialysis Sessions  -0.036276  0.964374  <0.0001  

Diabetic  1.447292  4.251587  <0.0001  
 

Table 2e: Logistic Regression and Cox Proportional Hazards Model Results for Mortality Prediction Using the Full 
Feature Set  

Subset 5: Full Model  

Logistic Regression -  AUC: 0.78  Accuracy: 0.76  

Cox PH - Concordance Index: 0.78  

Significant Predictors (Cox PH)   

covariate  coeff  exp(coeff)   p-value  

Total Number of Dialysis Sessions  -0.050080  0.951154  <0.0001  

Lungs  0.975688  2.652992  0.049  

Breathing  1.672610  5.326052  0.007  

Anaemia  1.721613  5.593545  0.01  

Diabetic  0.931334  2.537893  0.03  

Pre HD_dias  0.022419  1.022673  0.03  

Post HD_dias  0.030004  1.030459  0.029  
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0.95-0.98, p<0.0001), where 26 extra sessions (≈6 
months standard thrice-weekly dialysis) could halve 
annual death risk. Diabetes nearly quadrupled hazard 
(HR=3.48, 95% CI: 1.78-6.80, p=0.0001), equating to 
248% higher yearly mortality that mandates immediate 
glycaemic intervention. Post-HD systolic BP showed 
protective effect per 1 mmHg increase (HR=0.98, 95% 
CI: 0.96-0.99, p=0.018)—10 mmHg higher post-HD 
SBP linking to 19% lower mortality—while post-HD 
diastolic BP elevated risk (HR=1.03, 95% CI: 1.01-1.06, 
p=0.016), where each 10-mmHg increase raises 
annual death probability by 34%. 

Using the Gradient Boosting-selected variables, 
logistic regression achieved good discriminative 
capability (AUC=0.78, 95% CI: 0.70-0.86) with 
accuracy=0.79, while Cox PH survival analysis yielded 
a concordance index of 0.81 (95% CI: 0.75-0.87)— 
reliable for clinical risk stratification. 

Within Cox PH analysis, each additional dialysis 
session reduced mortality hazard by 3.8% (HR=0.96, 
95% CI: 0.95-0.98, p<0.0001), where 26 extra sessions 
(≈6 months thrice-weekly dialysis) could halve annual 
mortality risk, supporting extended treatment protocols. 
Diabetes substantially elevated hazard nearly threefold 
(HR=2.80, 95% CI: 1.49-5.26, p=0.001), representing 
180% higher yearly death risk that demands urgent 
glycaemic control in dialysis patients. Post-HD systolic 
BP per 1 mmHg increase showed protective effect 
(HR=0.98, 95% CI: 0.96-0.99, p=0.021)—10 mmHg 
higher post-HD SBP linking to 19% mortality reduction 
actionable via fluid management—while post-HD 
diastolic BP increased risk (HR=1.03, 95% CI: 
1.00-1.05, p=0.020), where each 10-mmHg elevation 
raises annual death probability by 34%, guiding 
ultrafiltration targets. 

When restricting analysis to consensus features 
(Total Number of Dialysis Sessions, Diabetes) selected 
across LASSO, Random Forest, and Gradient Boosting, 
logistic regression showed moderate discriminative 

power (AUC=0.73, 95% CI: 0.65-0.81; accuracy=0.74), 
while Cox PH achieved superior survival prediction 
(C-index=0.83, 95% CI: 0.77-0.89)—highest among all 
subsets. 

Cox PH identified both predictors as highly 
significant with substantial clinical impact. Each 
additional dialysis session reduced mortality hazard by 
3.8% (HR=0.96, 95% CI: 0.95-0.98, p<0.0001), where 
26 extra sessions (≈6 months thrice-weekly dialysis) 
halve annual death risk, directly supporting dose 
intensification protocols. Diabetes conferred over 
fourfold risk (HR=4.25, 95% CI: 2.12-8.52, p<0.0001), 
equating to 325% higher yearly mortality— 
necessitating immediate glycaemic intervention and 
high-risk flagging in dialysis units.  

When incorporating the complete set of features, 
logistic regression reached an AUC of 0.78 and an 
accuracy of 0.76, reflecting good discriminative power 
that is comparable to the Gradient Boosting feature 
subset. The Cox proportional hazards model yielded a 
concordance index of 0.78, which, although lower than 
the common features subset (0.83), still demonstrated 
reasonable predictive accuracy for survival analysis.  

Cox PH identified multiple clinically actionable 
predictors. Dialysis sessions remained strongly 
protective (HR=0.95, 95% CI: 0.93-0.97, p<0.0001)— 
52 extra sessions (≈1 year thrice-weekly) reducing 
mortality by 75%, supporting treatment continuation 
even in complex patients. Comorbidities substantially 
elevated risk: lung disease doubled hazard (HR=2.65, 
95% CI: 1.01-6.97, p=0.049; 165% higher annual 
mortality), breathing problems quintupled it (HR=5.33, 
95% CI: 1.61-17.65, p=0.007), anaemia showed similar 
magnitude (HR=5.59, 95% CI: 1.47-21.24, p=0.01), 
and diabetes more than doubled risk (HR=2.54, 95% 
CI: 1.09-5.91, p=0.03). Diastolic BP increased hazard 
per 10 mmHg elevation both pre-HD (HR=1.02 per 
mmHg → 22% higher annual risk) and post-HD 

Table 3: Comparison of Logistic Regression and Cox Proportional Hazards Model Performance Across Feature 
Subsets  

 Model’s Performance Metrics  

Logistic Regression Results   Cox PH Results  

Models  AUC  Accuracy  Models Concordance Index  

Lasso  0.82  0.79  Lasso 0.81 

Random Forest  0.73  0.72  Random Forest 0.80 

Gradient Boosting  0.78  0.79  Gradient Boosting 0.81 

Common  0.73  0.74  Common 0.83 

Full  0.78  0.76  Full 0.78 
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(HR=1.03 per mmHg → 34% higher risk), guiding 
urgent volume control. 

In summary, while the full model incorporated a 
broader range of predictors and achieved performance 
metrics similar to the reduced models, it highlighted the 
additive prognostic value of respiratory comorbidities 
(lung disease, breathing problems), haematological 
complications (anaemia), metabolic risk (diabetes), and 
blood pressure indices, alongside the consistent 
protective role of dialysis frequency. This indicates that 
expanded feature sets can capture additional 
physiologic and comorbidity-driven risk signatures, 
albeit with slightly lower survival prediction accuracy 
compared to the more parsimonious “common feature” 
model.  

The evaluation of model performance across 
different feature subsets demonstrated important 
differences in predictive accuracy between 
classification metrics and survival analysis measures. 
For Logistic Regression models, the LASSO-derived 
subset achieved the strongest performance, with an 
AUC of 0.82 and an accuracy of 0.79, followed closely 
by the Gradient Boosting subset (AUC = 0.78, 
Accuracy = 0.79). The Full Model also showed 
reasonable discrimination (AUC = 0.78, Accuracy = 
0.76), while both the Random Forest subset (AUC = 
0.73, Accuracy = 0.72) and the Common Features 
subset (AUC = 0.73, Accuracy = 0.74) yielded more 
modest results.  

When assessed through survival modeling using 
the Cox proportional hazards framework, a somewhat 
different pattern emerged. The Common Features 
subset provided the highest concordance index (0.83), 
suggesting the strongest ability to account for variability 

in time-to-event outcomes, even though its 
classification performance is comparatively lower. The 
LASSO and Gradient Boosting subsets both achieved 
concordance indices of 0.81, whereas the Random 
Forest subset demonstrated a slightly lower value 
(0.80). The Full Model, despite capturing the largest 
feature set, produced the lowest concordance index 
(0.78), indicating only moderate survival prediction.  

Taken together, these findings suggest that while 
LASSO and Gradient Boosting subsets optimized 
classification accuracy, the parsimonious 
common-feature model provided the most reliable 
prediction of survival outcomes over time. By contrast, 
the Full Model, though informative in highlighting 
additional comorbidities, offered no gain in predictive 
performance and, in fact, underperformed compared to 
more focused subsets.  

This figure demonstrates both the discriminative 
capability and calibration accuracy of logistic 
regression models constructed using feature subsets 
selected by LASSO, Random Forest, Gradient 
Boosting, common features, and the full feature set. 
The left panel depicts ROC curves, where the LASSO 
subset exhibits the highest area under the curve (AUC 
= 0.82), followed by the Gradient Boosting and Full 
models (AUC = 0.78), while Random Forest and 
Common Feature models yield lower AUCs (0.73). This 
shows that LASSO-based selection most effectively 
distinguishes between outcome classes. The right 
panel presents calibration plots, illustrating how closely 
the models' predicted probabilities match observed 
event proportions. Across models, calibration generally 
follows the diagonal reference line, though some 
deviation is seen, particularly at mid-range probabilities, 
indicating variability in probability estimation across 

 
Figure 1: Discriminative and Calibration Performance of Logistic Regression Models Based on Five Feature Selection 
Strategies. 
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different feature selection strategies. Overall, these 
results highlight the superior discriminative 
performance of the LASSO and Gradient Boosting 
models, with all models displaying reasonable 
calibration for mortality prediction in the studied cohort.  

Displayed are Kaplan-Meier survival curves 
comparing high- and low-risk patient groups, as 
classified by predicted risk from Cox proportional 
hazards models utilizing five distinct feature selection 

strategies: LASSO, Random Forest, Gradient Boosting, 
Common, and Full feature sets. In all models, the 
low-risk group exhibits notably higher survival 
probabilities over time, with consistent separation 
between risk strata. This strong risk discrimination 
across models demonstrates the efficacy of Cox 
PH–based prediction, regardless of feature selection 
method. Notably, the LASSO, Gradient Boosting, and 
Common feature models show the greatest divergence 
between groups, indicating robust performance in 

 
Figure 2: Kaplan-Meier Survival Curves Stratified by Predicted Risk Using Cox Proportional Hazards Models for Five Feature 
Selection Approaches. 

 
Figure 3: Comparison of Hazard Ratios for Mortality Predictors Across Five Cox Proportional Hazards Models Using Different 
Feature Selection Strategies. 
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stratifying patients according to mortality risk. Overall, 
these results confirm the clinical utility of Cox PH 
modeling and feature selection in prognosis and risk 
assessment of the cohort.  

This composite forest plot displays the estimated 
hazard ratios (exp(coeff)) for clinical and demographic 
predictors of mortality from Cox proportional hazards 
models constructed using LASSO, Random Forest, 
Gradient Boosting, Common, and Full feature sets. 
Across all models, diabetes and the total number of 
dialysis sessions consistently emerge as the strongest 
predictors, with diabetes markedly increasing and 
dialysis exposure reducing mortality risk. Other 
variables—including heart and lung disease, anaemia, 
and pre/post-haemodialysis measures—feature 
prominently in some models, reflecting the influence of 
feature selection on risk attribution. The Common 
model, limited to diabetes and dialysis sessions, 
highlights the robustness of these factors for prognosis. 
The Full feature model exhibits greater variability and 
substantially larger hazard ratios for select variables, 
likely reflecting interactions or collinearity in the 
inclusive model. Overall, this figure underscores the 
central prognostic role of diabetes and dialysis 
treatment frequency, while illustrating how the inclusion 
or exclusion of additional features can affect the 
magnitude and stability of hazard ratio estimates 
across model types.  

DISCUSSION  

This study evaluated the prognostic utility of 
multiple feature selection methods—LASSO, Random 
Forest, Gradient Boosting, and their common and full 
feature subsets—in predicting mortality among patients 
undergoing dialysis. The integration of logistic 
regression and Cox proportional hazards (Cox PH) 
modelling enabled robust assessment of both 
classification accuracy and survival prediction, 
advancing understanding of critical clinical predictors 
for mortality risk stratification.  

Consistent with prior research, our analysis 
identified total number of dialysis sessions as a 
strongly protective factor, with higher session 
frequency correlating with significant reductions in 
mortality hazard [18, 19]. This finding aligns with 
established evidence that adequate dialysis dosing 
improves survival by mitigating uremic toxin 
accumulation and cardiovascular strain [20, 21]. 
Furthermore, diabetes repeatedly emerged as the 
dominant adverse prognostic determinant, elevating 
mortality risk by up to fourfold across models [13, 22]. 
This is concordant with literature highlighting diabetes 
as a leading cause of end-stage renal disease (ESRD) 
and a marker of systemic micro- and macrovascular 

complications contributing to elevated mortality [23, 
24].  

The respiratory comorbidities lungs and breathing 
problems demonstrated variable but significant 
associations with mortality risk in LASSO and full 
feature models, corroborating findings underscored 
pulmonary disease as a key contributor to morbidity 
and mortality in dialysis populations [42]. Similarly, 
anaemia was significantly predictive within the full 
model, consistent with its recognized role in 
exacerbating cardiovascular complications, fatigue, 
and reduced quality of life among ESRD patients 
[25-27].  

Hemodynamic parameters, namely pre- and 
post-haemodialysis systolic and diastolic blood 
pressures, were identified as important risk factors in 
Random Forest, Gradient Boosting, and full models. 
These results reinforce clinical reports that blood 
pressure fluctuations before and after dialysis sessions 
may reflect fluid overload, arterial stiffness, or 
inadequate volume control, all of which adversely 
impact survival [28]. Our data further suggest nuanced 
roles of systolic versus diastolic measurements, 
offering potential avenues for individualized 
hemodynamic monitoring protocols in dialysis care.  

From a methodological perspective, the 
LASSO-selected feature subset achieved superior 
logistic regression classification performance 
(AUC=0.82, accuracy=0.79), while the parsimonious 
common feature subset—primarily dialysis frequency 
and diabetes—excelled in Cox PH survival prediction 
(C-index=0.83). In contrast, the full covariate model 
showed reduced survival accuracy (C-index=0.78), 
likely due to overfitting from sparse events relative to 
numerous predictors (n=224 patients) and 
multicollinearity among clinical variables, as commonly 
observed in high-dimensional dialysis datasets [30, 31]. 
These results underscore how feature selection 
enhances model stability, interpretability, and 
generalizability by mitigating variance inflation while 
preserving prognostic signal. 

The Kaplan-Meier survival curves further validated 
the discriminatory capacity of the Cox PH models 
across feature subsets, confirming that patients 
stratified as high risk had markedly poorer survival (p < 
0.001). These stratifications align with earlier works 
emphasizing the clinical utility of risk grouping to guide 
patient counselling, resource prioritization, and tailored 
interventions [8, 32]. Notably, the calibration plots 
demonstrated acceptable goodness-of-fit for predicted 
probabilities, underscoring reasonable reliability for 
both individual and population-level prognostication.  



26    International Journal of Statistics in Medical Research, 2026, Vol. 15 Ravi et al. 

Our findings bear important implications for clinical 
practice and health interventions. First, reaffirming 
dialysis treatment intensity and stringent diabetes 
management as focal points could substantially 
mitigate mortality risk. Ensuring adherence to dialysis 
schedules, optimizing dialysis adequacy, and 
aggressively controlling glycaemic and cardiovascular 
risk factors align with current KDIGO and National 
Kidney Foundation recommendations [33-35]. Second, 
monitoring and managing respiratory comorbidities and 
anaemia within ESRD care may warrant enhanced 
screening and integrated multidisciplinary approaches, 
potentially improving patient-centered outcomes [36, 
37]. Third, prognostic insights from hemodynamic 
parameters support individualized dialysis prescriptions 
and blood pressure control strategies to reduce 
cardiovascular events and mortality [38, 39]. These 
validated models can be implemented in routine 
dialysis care through electronic health record risk 
calculators that flag high-risk patients for timely 
interventions and optimized resource allocation [40, 
41]. 

Finally, from a predictive modelling standpoint, the 
superiority of LASSO and parsimonious variable sets 
supports their adoption in clinical decision-making tools, 
offering a balance between interpretability and 
predictive power. Health systems can leverage such 
validated models for early identification of high-risk 
patients to trigger timely interventions, optimize 
resource allocation, and facilitate patient-tailored care 
pathways [40, 41].  

CONCLUSION 

This study highlights that mortality prediction in 
dialysis patients can be effectively achieved using 
feature selection approaches combined with Cox 
proportional hazards and logistic regression models. 
The total number of dialysis sessions and diabetes 
status consistently emerged as the strongest predictors 
of mortality, with respiratory comorbidities, anaemia, 
and blood pressure parameters providing additional 
prognostic value in expanded models. The 
parsimonious common-feature subset demonstrated 
superior survival prediction, while the LASSO subset 
excelled in classification accuracy, emphasizing the 
importance of tailored model complexity for different 
clinical objectives.  

This study's retrospective, single-center design 
limits generalizability to broader populations and may 
introduce selection bias from center-specific practices. 
Residual confounding persists despite multivariable 
adjustment, as unmeasured factors (e.g., nutritional 

status, comorbidities) were unavailable. Class 
imbalance in mortality outcomes (~9% excluded, likely 
low event rate in final n=224) risks model overfitting, 
particularly in complex regressions, compounded by 
the moderate sample size.  

Future work should focus on prospective 
multicentre validation, dynamic longitudinal prediction 
models, and integration of novel biomarkers. 
Developing clinical decision support tools embedding 
these validated models will be critical to translating 
findings into personalized patient care.  

DISCLOSURE  

The authors have no conflicts of interest to report.  

ACKNOWLEDGEMENT 

We sincerely thank the editor for their valuable 
suggestions and insightful comments, which 
significantly contributed to improving the clarity and 
quality of this manuscript.  

REFERENCES  

[1] Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic 
kidney disease: A systematic review and meta-analysis. PLoS 
One 2016; 11(7): e0158765.  
https://doi.org/10.1371/journal.pone.0158765 

[2] Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: 
Global dimension and perspectives. The Lancet 2013; 
382(9888): 260-272.  
https://doi.org/10.1016/S0140-6736(13)60687-X 

[3] Sarnak MJ, Jaber BL. Pulmonary infectious mortality among 
patients with end-stage renal disease. Chest 2001; 120(6): 
1883-1887. 
https://doi.org/10.1378/chest.120.6.1883 

[4] Foley RN, Gilbertson DT, Murray, et al. Long interdialytic interval 
and mortality among patients receiving hemodialysis. New 
England Journal of Medicine 2011; 365(12): 1099-1107. 
https://doi.org/10.1056/NEJMoa1103313 

[5] Tsai WC, Wu HY, Peng YS, et al. Risk factors for progression of 
chronic kidney disease: A systematic review and meta-analysis. 
Medicine (Baltimore) 2016; 95(11): e3013.  
https://doi.org/10.1097/MD.0000000000003013 

[6] Sankarasubbaiyan S, Pollock CA, Anandh U, et al. Risk factors 
for mortality among patients on hemodialysis in India: A 
case-control study. Indian Journal of Nephrology 2025; 35(3): 
390-396.  
https://doi.org/10.25259/ijn_563_23 

[7] Tangri N, Stevens LA, Griffith J, et al. A predictive model for 
progression of chronic kidney disease to kidney failure. JAMA 
2011; 305(15): 1553-1559. 
https://doi.org/10.1001/jama.2011.451 

[8] Kalantar-Zadeh K, Lockwood MB, Rhee CM, et al. 
Patient-centred approaches for the management of dialysis 
patients in the era of precision medicine. Nature Reviews 
Nephrology 2020; 16(11): 681-700. 

[9] Takkavatakarn K, Nadkarni GN, Roytman M, et al. Machine 
learning models to predict end-stage kidney disease in chronic 
kidney disease stage 4. BMC Nephrology 2023; 24(1): 132.  
https://doi.org/10.1186/s12882-023-03424-7 

[10] Peng Z, Zhong S, Li X, et al. An artificial intelligence model to 
predict mortality among hemodialysis patients: A retrospective 
validated cohort study. Scientific Reports 2025; 15(1): 27699.  
https://doi.org/10.1038/s41598-025-06576-8 

[11] Sarnak MJ, Jaber BL. Pulmonary infectious mortality among 
patients with end-stage renal disease. Chest 2001; 120(6): 
1883-1887.  
https://doi.org/10.1378/chest.120.6.1883 



Mortality Prediction and Survival Estimation in Dialysis Patients International Journal of Statistics in Medical Research, 2026, Vol. 15    27 

[12] Riehl-Tonn VJ, MacRae JM, Dumanski SM, et al. Sex and 
gender differences in health-related quality of life in individuals 
initiating haemodialysis. Clinical Kidney Journal 2024; 17(10): 
sfae273. 
https://doi.org/10.1093/ckj/sfae273 

[13] Soleymanian T, Kokabeh Z, Ramaghi R, et al. Clinical outcomes 
and quality of life in hemodialysis diabetic patients versus 
non-diabetics. Journal of Nephropathology 2017; 6(2): 81-89. 
https://doi.org/10.15171/jnp.2017.14 

[14] Liu S-X, Wang Z-H, Zhang S, et al. The association between 
dose of hemodialysis and mortality in a prospective cohort study. 
Scientific Reports 2022; 12: 13708. 
https://doi.org/10.1038/s41598-022-17943-0 

[15] Flythe JE, Xue H, Lynch KE, et al. Association of mortality risk 
with various definitions of intradialytic hypotension. Journal of the 
American Society of Nephrology 2015; 26(3): 724-734. 
https://doi.org/10.1681/ASN.2014020222 

[16] Noh J, Park SY, Bae W, et al. Predicting early mortality in 
haemodialysis patients: A deep learning approach using a 
nationwide prospective cohort in South Korea. Scientific Reports 
2024; 14: 29658.  
https://doi.org/10.1038/s41598-024-80900-6 

[17] Montemayor VC, Malo AM, Barbieri C. Predicting mortality in 
hemodialysis patients using machine learning analysis. Clinical 
Kidney Journal 2020; 14(5): 1388-1395. 
https://doi.org/10.1093/ckj/sfaa126 

[18] Liu S-X, Wang Z-H, Zhang S, et al. The association between 
dose of hemodialysis and mortality in a prospective cohort study. 
Scientific Reports 2022; 12: 13708. 
https://doi.org/10.1038/s41598-022-17943-0 

[19] Jia W, He W, Chen Z, et al. Determinants of dialysis adequacy in 
maintenance hemodialysis patients: A cross-sectional study on 
modifiable risk factors and clinical interventions. BMC 
Nephrology 2025; 26: 369. 
https://doi.org/10.1186/s12882-025-04278-x 

[20] Foley RN, Gilbertson DT, Murray et al. Long interdialytic interval 
and mortality among patients receiving hemodialysis. New 
England Journal of Medicine 2011; 365(12): 1099-1107. 
https://doi.org/10.1056/NEJMoa1103313 

[21] El Chamieh C, Liabeuf S, Massy Z. Uremic toxins and cardio- 
vascular risk in chronic kidney disease: What have we learned 
recently beyond the past findings? Toxins 2022; 14(4): 280. 
https://doi.org/10.3390/toxins14040280 

[22] Collins AJ, Foley RN, Herzog C, et al. United States Renal Data 
System Annual Data Report. Am J Kidney Dis 2019; 73(3): 
A7-A815. 

[23] Bhatti NK, Karimi Galougahi K, Paz, et al. Diagnosis and 
management of cardiovascular disease in advanced and 
end-stage renal disease. Journal of the American Heart 
Association 2016; 5(8): e003648. 
https://doi.org/10.1161/JAHA.116.003648 

[24] Thomas MC, Cooper ME, Zimmet P. Diabetic kidney disease. 
Nature Reviews Disease Primers 2015; 1: 15018. 
https://doi.org/10.1038/nrdp.2015.18 

[25] Babitt JL, Lin HY. Mechanisms of anemia in CKD. New England 
Journal of Medicine 2012; 367(19): 1901-1911. 

[26] Lin Y-C, Chang Y-H, Yang S-Y, et al. Update of pathophysiology 
and management of diabetic kidney disease. Journal of the 
Formosan Medical Association 2018; 117(8): 662-675. 
https://doi.org/10.1016/j.jfma.2018.02.007 

[27] Pisoni RL, Bragg-Gresham JL, Young EW, et al. Anemia 
management and outcomes in dialysis patients: Results from the 
Dialysis Outcomes and Practice Patterns Study (DOPPS). 
American Journal of Kidney Diseases 2018; 71(6): 812-822. 

[28] Shoji T, Tsubakihara Y, Fujii M, et al. Hemodialysis- associated 
hypotension as an independent risk factor for two-year mortality 
in patients on chronic hemodialysis. Kidney International 2019; 
95(5): 1212-1220. 
https://doi.org/10.1111/j.1523-1755.2004.00812.x 

[29] Steyerberg EW, Eijkemans MJC, Harrell FE, et al. Prognostic 
modelling with logistic regression analysis: A comparison of 
selection and estimation methods. Statistics in Medicine 2000; 
19(8): 1059-1079. 
https://doi.org/10.1002/(SICI)1097-0258(20000430)19:8<1059::
AID-SIM412>3.0.CO;2-0 

[30] Harrell FE, Jr. Regression modeling strategies: With applications 
to linear models, logistic regression, and survival analysis (2nd 
ed.). Springer 2015. 
https://doi.org/10.1007/978-3-319-19425-7 

[31] Belloni A, Chernozhukov V, Hansen C. High-dimensional 
methods and inference on structural and treatment effects. 
Journal of Economic Perspectives 2014; 28(2): 29-50.  
https://doi.org/10.1257/jep.28.2.29 

[32] Tangri N, Grams ME, Levey AS, et al. Multinational assessment 
of accuracy of equations for predicting risk of kidney failure. 
JAMA 2016; 315(2): 164-174. 
https://doi.org/10.1001/jama.2015.18202 

[33] KDIGO CKD Work Group. KDIGO 2012 clinical practice guideline 
for the evaluation and management of chronic kidney disease. 
Kidney International Supplements 2013; 3(1): 1-150. 

[34] KDIGO Diabetes Work Group. KDIGO 2020 clinical practice 
guideline for diabetes management in chronic kidney disease. 
Kidney International 2020; 98(4S): S1-S115.  
https://doi.org/10.1016/j.kint.2020.06.019 

[35] National Kidney Foundation. KDOQI clinical practice guideline for 
hemodialysis adequacy: 2015 update. American Journal of 
Kidney Diseases 2015; 66(5): 884-930.  
https://doi.org/10.1053/j.ajkd.2015.07.015 

[36] Goldfarb-Rumyantzev AS, Massry SG. Heart-lung-kidney 
interactions in chronic kidney disease. Seminars in Nephrology 
2019; 39(3): 263-275.  

[37] Vanholder R, Van Biesen W, Lameire N. What is the 
renal-cardio-pulmonary syndrome? Nature Reviews Nephrology 
2020; 16(12): 707-723.  

[38] McIntyre CW, Odudu A, Eldehni MT, et al. Induced cardiac injury 
by hemodialysis: Time to turn down the dial. Journal of the 
American Society of Nephrology 2017; 28(10): 2839-2848.  

[39] Agarwal R, Flynn J, Pogue V, et al. Assessment and 
management of hypertension in patients on dialysis. Journal of 
the American Society of Nephrology 2018; 29(4): 893-905.  

[40] Rajkomar A, Dean J, Kohane I. Machine learning in medicine. 
New England Journal of Medicine 2019; 380(14): 1347-1358.  
https://doi.org/10.1056/NEJMra1814259 

[41] Deo RC. Machine learning in medicine. Circulation 2015; 
132(20): 1920-1930.  
https://doi.org/10.1161/CIRCULATIONAHA.115.001593 

[42] Sood MM, Tangri N, Hiebert B, et al. Pulmonary disease and 
mortality in patients with chronic kidney disease: A 
population-based cohort study. Kidney International 2017; 92(2): 
467-476. 

[43] Ravi V, Singh SK, Yadav CB. To Identify the Predictors of 
Mortality in Renal Patients Undergoing Dialysis. International 
Journal of Statistics in Medical Research 2025; 14: 755-764. 
https://doi.org/10.6000/1929-6029.2025.14.68 

[44] Tibshirani R. Regression shrinkage and selection via the lasso. 
Journal of the Royal Statistical Society: Series B 
(Methodological) 1996; 58(1): 267-288. 
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x 

[45] Breiman L. Random forests. Machine Learning 2001; 45(1): 5-32. 
https://doi.org/10.1023/A:1010933404324 

[46] Friedman JH. Greedy function approximation: A gradient 
boosting machine. The Annals of Statistics 2001; 29(5): 
1189-1232. 
https://doi.org/10.1214/aos/1013203451 

 
 

 
Received on 06-12-2025 Accepted on 04-01-2026 Published on 30-01-2026 
 
https://doi.org/10.6000/1929-6029.2026.15.02 
 
© 2026 Ravi et al. 
This is an open-access article licensed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the work is properly cited. 


