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Abstract: High-dimensional image reconstruction problems in fields such as medical imaging, astrophysics, and remote 
sensing are typically ill-posed inverse problems affected by noise, under sampling, and imperfections in the physical 
forward model. Traditional methods for resolving these conflicts suffer from an inherent trade-off: pure physics-based 
PDE-constrained models impose physical consistency but are deterministic and do not represent uncertainty, and fully 
Bayesian models provide principled uncertainty quantification but tend to become computationally intractable in very 
high-dimensional spaces. In response to these challenges, we propose the Hybrid Bayesian - PDE Constrained 
Optimization Framework. The Hybrid Bayesian - PDE Constrained Optimization Framework leverages the physical 
fidelity of PDE-based forward models with the expressive capability of Bayesian inference to model uncertainty. The 
reconstruction problem is cast as an optimization problem whereby a variational or hierarchical Bayesian prior is 
combined with a PDE-constrained data fidelity term, and the optimization objective is solved by an efficient stochastic 
variational optimization scheme. Experiments using a representative CT example and MRI datasets demonstrated how 
the hybrid methods provided (i) better reconstructions, preserving fine structures for substantially undersampled data 
and robust performance in noise when compared to the pure physics model along with providing (ii) clinically meaningful 
pixel-wise uncertainty maps. These results support the view that the proposed hybrid method provides a principled, 
computationally efficient, reliable approach to the challenge of solving large-scale inversion problems, while addressing 
the fundamental limitations of both deterministic, physics-based methods and probabilistic Bayesian inversion. 

Keywords: Hybrid Bayesian Inference; PDE-Constrained Reconstruction; Uncertainty Quantification; Inverse 
Problems; Medical Imaging. 

1. INTRODUCTION 

Reconstructing images that are high-dimensional 
from indirect measurements that are noisy poses an 
important problem in the field of computational imaging. 
This problem arises in a spectrum of scientific and 
clinical disciplines such as medical imaging when using 
techniques such as magnetic resonance imaging (MRI), 
computed tomography (CT), and positron emission 
tomography (PET), as well as seismic imaging, and 
computational photography. The inverse problems 
associated with producing this image are ill-posed, 
primarily due to loss of information during data 
acquisition. Practical issues which exacerbate the 
ill-posedness include having to rapidly scan in MRI 
resulting in under sampled k-space data, and 
minimizing the radiation dose in CT resulting in 
low-dose images. With high-dimensionality of the 
unknown image itself, and on the order of millions of 
voxels, this not only requires computationally efficient 
and stable algorithms but also complicated 
regularization methods to arrive at a physiologically 
plausible and unique solution. 

To address this issue, two primary philosophical 
paradigms have been used. First is PDE-constrained 
optimization that puts the governing physical laws (i.e. 
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the Radon transform in CT, wave equations in seismic 
imaging, etc.) directly into the inversion process, 
usually as hard constraints as discussed in [1], 
guaranteeing any resulting solution is physically 
reasonable; however, we cannot derive a measure of 
confidence or uncertainty of the image we reconstruct, 
which is a significant limitation to this deterministic 
framework and a critical shortcoming in diagnostic and 
other safety-critical contexts. The second paradigm, 
Bayesian methods, provides a powerful probabilistic 
framework by treating the unknown image as a random 
variable and using priors to regularize the problem. The 
primary strength of this approach is the full posterior 
distribution provided, allowing for a rigorous uncertainty 
measure, and has been reviewed in surveys on 
Bayesian deep learning for inverse problems by [2]. 
Traditional full Bayesian inference, including existing 
methods for sampling from a posterior, e.g., Markov 
Chain Monte Carlo (MCMC), suffers from the "curse of 
dimensionality" and has thus not been shown to be 
computationally feasible on higher dimensional image 
spaces, as [3] has discussed. 

This duality highlights a rich void in the existing 
literature regarding a consolidated framework that is 
both computationally feasible for high dimensionality, 
allows for robust uncertainty quantification, and is also 
compliant with underlying physical laws of the imaging 
investigational system. As such, we propose a new 
combined Bayesian-PDE Constrained Optimization 



A Hybrid Bayesian-PDE Constrained Optimization Framework International Journal of Statistics in Medical Research, 2026, Vol. 15    29 

Framework. Our contributions are as follows: First, we 
present a new mathematical structure that integrates a 
Bayesian prior, as described by current variational 
inference principles [4], into a PDE-constrained 
optimization problem. Second, we construct and 
implement a stochastic optimization algorithm that can 
replicate the high dimensionality and high stochasticity 
of the objective function. Third, we demonstrate the 
applied utility of our framework for the real-world 
problem of low-dose CT reconstruction, an issue of 
research relevance [5]. Fourth, we provide thorough 
quantitative and qualitative results to show not only 
enhanced accuracy in reconstruction but also the 
ability to develop actionable pixel-wise uncertainty 
maps that directly relate to diagnostic conviction. 
Therefore, this work tests the central hypothesis that 
integrating a PDE constraint as a penalty term within a 
scalable variational Bayesian objective function 
significantly improves both the accuracy of the point 
estimate (reconstructed image) and the calibration of 
the posterior uncertainty, compared to using either 
physics-based constraints or Bayesian priors in 
isolation. 

The remainder of this work is structured as follows. 
We will begin with an extensive discussion of the 
relevant literature, in which we then outline our 
proposed methods, then we will present and discuss 
our experimental results, and finally, we will give our 
concluding remarks and possible avenues for future 
work. 

LITERATURE REVIEW 

The issue of high-dimensional image reconstruction 
has been studied from two historically separate 
perspectives, both of which are based on a substantial 
literature base. One of those literature bases has 
contributed its own mathematically rigorous arguments 
concerning physical models using PDE-constrained 
optimization. Many of the pioneering studies in this field 
have explored the distinction between all-at-once and 
reduced-space methods, with all-at-once methods 
solving for the unknown image and associated state 
variables in a single problem and reduced-space 
methods removing the state variables to form a smaller 
optimization problem [6] analyzes these all-at-once and 
reduced-space methods to provide examples of the 
trade-offs between computational memory and 
feasibility in each for large-scale problems. This 
model-formulation paradigm has been clearly 
demonstrated in terms of its utility in complex imaging 
modalities. In, for example, optical tomography, the 
radiative transfer equation acts as a mathematical 
constraint to image reconstruction for reconstructing 
the optical properties of tissue [7]. In quantitative 

photoacoustic tomography, the propagation of the 
acoustic waves governed by the wave equation is a 
significant constraint in the reconstruction of initial 
pressure distributions [8]. 

These strategies are good at ensuring physical 
consistency; however, forthcoming work by [9] 
mentions that they are still fundamentally deterministic 
methods, providing a single best estimate without a 
probabilistic interpretation of the reliability of the 
solution. In concert, the Bayesian paradigm has been 
established to address precisely the issue of 
quantifying uncertainty. The "gold standard" of 
Bayesian computation has generally been 
sampling-based methods, such as Markov Chain 
Monte Carlo (MCMC) and its more efficient variants, 
Hamiltonian Monte Carlo (HMC) [3] give a complete 
theoretical outline of MCMC and acknowledge the 
significant computational burden of sampling methods, 
which is often unfeasible for the type of 
high-dimensional parameter spaces typically present in 
image reconstruction. This challenge motivated the 
development of Variational Inference (VI), which 
recasts Bayesian inference as an optimization problem 
and therefore is much more scalable in terms of 
compute. The review by [4] provides a comprehensive 
overview of how Variational Inference seeks a 
distribution from a tractable family that is closest to the 
true posterior, usually measured using the 
Kullback-Leibler divergence. Previously, VI methods 
were predominantly reliant on mean-field 
approximations, which essentially assumed the latent 
variables to be conditionally independent from one 
another. Unfortunately, such approximations severely 
limit the statistical fit of the procedure to the resulting 
posterior distribution. In more contemporary research, 
however, the focus has shifted to stochastic VI 
methods that use mini-batch training to handle very 
large data sets, see, for example, [10]. Another recent 
revolution is the adoption of deep generative models as 
powerful, implicit priors. Such models as Variational 
Autoencoders (VAEs), see [11], Generative Adversarial 
Networks (GANs), and more recently, Diffusion Models, 
popularized by [12], have the ability to learn complex, 
data-driven prior distributions that are far richer than 
any traditional priors that an instance could come up 
with a priori. Continuing the trend, these learned priors 
have been studied and shown to capture the natural 
statistics of images, for example, [13] and research on 
deep image priors. 

Bridging these two areas has led to much recent 
research in developing several hybrid and related 
approaches [14] has formalized the theory of Bayesian 
inverse problems, for large settings of 
infinite-dimensional inverse problems, but the inherent 
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challenges of a computational nature exist for taking 
and applying this framework and abstraction in 
practical high-dimensional settings. A common and 
computationally simpler point of connection is 
Maximum a Posteriori (MAP) estimation, which can be 
viewed as a regularized optimization problem where 
the regularize corresponds to the log-prior. However, 
as rightly critiqued by [15], MAP estimation provides 
only a single point estimate, discarding the rich 
posterior uncertainty that is a hallmark of the Bayesian 
framework. Our proposed method fundamentally differs 
by aiming to approximate the full posterior or a richer 
distribution than a single mode. Other pioneering 
hybrid models have sought to combine physical models 
with data-driven learning. For example, the concept of 
physics-informed neural networks (PINNs) by [16] 
embeds PDEs into the loss function of a neural network. 
Furthermore, the work of [17] on deep Bayesian 
inversion and by [18] on deep learning techniques for 
inverse problems represent significant strides in this 
direction. However, many existing approaches treat the 
physical model as a soft constraint within a data-driven 
loss or use learned models to replace parts of the 
physical model entirely. Our framework distinguishes 
itself by proposing a more fundamental and tighter 
integration, where the PDE is treated as a core 
constraint within the objective function of a scalable 
Bayesian inference procedure, thereby ensuring 
physical consistency while performing full posterior 
approximation, a synthesis that moves beyond the 
limitations of current hybrid models as identified by [1] 
in their comprehensive review. 

METHODOLOGY 

Problem Formulation 

The core problem of high-dimensional image 
reconstruction is formalized by considering an 
unknown image, or state, ! ∈ ℝ! , which we aim to 
recover from a set of noisy, and often incomplete, 
measurements ! ∈ ℝ! , where ! ≪ ! in many 
ill-posed scenarios. The physical mechanism that 
drives the acquisition is represented using a system of 
partial differential equations (PDEs), written compactly 
as !(!) = 0 , where A is a differential operator. In 
classical PDE-constrained optimization, this leads to a 
deterministic minimization problem: 

min ! !
!

subject to  !(!) = ! 

where !(!) =∥ ℳ(!) − ! ∥!!is a data fidelity term, and 
ℳis the measurement operator that maps the state to 
the data space. Although this formulation achieves 
physical consistency, it gives no probabilistic 
interpretation. From a Bayesian standpoint, the 

problem is essentially rethought as a problem of 
statistical inference. The solution is given by the 
posterior probability distribution !(! ∣ !) , which is 
proportional, by Bayes' theorem, to the likelihood 
multiplied by the prior: 

!(! ∣ !) ∝ !(! ∣ !)  !(!)(1) 

In this context, !(! ∣ !) encodes the forward model 
and the noise statistics and !(!) encode our prior 
knowledge about the image, for example, a constraint 
prompting sparsity, or smoothness. The challenge is to 
perform inference on this posterior in a 
high-dimensional space - a task to which traditional 
methods, e.g. Markov Chain Monte Carlo (MCMC), 
which [3] have referred to as "overwhelmingly slow" 
and " too cost prohibitive". 

The Proposed Hybrid Framework 

The central innovation is a hybrid framework that 
integrates physical constraints within a scalable 
Bayesian inference procedure. From a statistical 
inference perspective, treating the PDE as a soft 
constraint within the variational objective (Eq. 2) is 
preferable to a hard constraint (Eq. 1) because it 
admits a tractable posterior approximation while 
penalizing physical implausibility. It is also superior to 
sequential approaches (e.g., post-processing a 
Bayesian reconstruction with physics) as it jointly 
optimizes for data consistency, prior belief, and 
physical fidelity, leading to better-posed inference and 
avoiding propagation of errors between separate 
stages. Then, we can minimize a joint objective 
function: 

ℒ(!) = !!∼!(!)[∥ ℳ(!(!)) − ! ∥!!] + !!ℛBayesian(!) +
!! ∥ !(!) ∥!!(2) 

In this formulation, !   ∼   !(!) is a random variable 
that primarily encapsulates the measurement noise 
inherent in the data acquisition process (e.g., Gaussian 
or Poisson noise). Algorithmically, it can also represent 
stochastic perturbations such as dropout in neural 
network components of the prior or mini-batch 
sampling, which introduces beneficial stochasticity for 
optimization robustness and generalization, following 
principles of stochastic variational inference [10]. The 
expectation over !  therefore accounts for both the 
inherent randomness in the observations and the 
algorithmic stochasticity used during optimization. 

The first term in Equation (2) is the data fidelity term 
which we formulate as an expectation of a random 
variable ! . This random variable can either model 
noise in the acquisition process, or it can be 
incorporated to induce stochasticity (for example, 
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dropout in neural networks), thus promoting/n 
"robustness" to perturbations and improving 
generalizability, following the principles of stochastic 
variational inference [10]. 

The second term, ℛBayesian(u), is a key element of 
our Bayesian formulation and represents an important 
aspect of this work. It is not merely a regularizer, but it 
is a term that forces the solution to adhere to the prior. 
We will investigate three powerful representations for 
this term. The first prior is a Variational Prior, which 
assumes a family of distributions !! u and defines 
ℛBayesian u = KL !! u ∥ ! u .  Here, the 
Kullback-Leibler divergence measures the distance 
between an approximate posterior and a simple prior. 
The optimization of ϕ allows us to learn a complex 
distribution over plausible images, as motivated by [4]. 
The second type is a Hierarchical Prior, for example, a 
Gaussian Scale Mixture or a sparsity-inducing 
horseshoe prior, where hyperparameters controlling 
the form of the prior are also inferred from the data, 
which further enhances adaptability and robustness. 
The third type is an Implicit Prior from a deep 
generative model trained in advance (e.g., a 
Generative Adversarial Network (GAN) or a Denoising 
Diffusion Probabilistic Model [12]. For this prior, the 
GAN "prior" distribution reflects the ability of the 
generator to produce realistic images and 
  ℛBayesian u provides the distance of u from the 
manifold of natural images. 

The last term, !! ∥ !(u) ∥!!, provides a soft PDE 
constraint on the solutions, where solutions that 
deviate considerably from physical laws !(u) = 0 are 
penalized. This ensures the probabilistic solutions are 
still adherent to physical correctness. 

The following table provides a detailed comparison 
of the Bayesian prior models that can be employed 
within the proposed framework. 

Discussion of Prior Models 

The choice of prior involves distinct statistical 
assumptions and potential biases. The Mean-Field 
Variational Prior assumes posterior factorizability, 
which can lead to underestimation of uncertainty 
(over-confidence) and fail to capture correlations 
between pixels. The Hierarchical (Horseshoe) Prior 
induces strong, data-adaptive shrinkage through 
heavy-tailed distributions, promoting sparsity effectively 
but potentially over shrinking weak yet true signals if 
global hyperparameters are not carefully tuned. The 
Implicit Deep Generative Prior relies on the manifold 
learned from training data; its major risk is 
hallucination—generating features that are plausible 
per the prior but unsupported by the specific 
measurement data y, especially when the test data 
diverges from the training distribution or under extreme 
undersampling. 

The variational prior provides a tradeoff for 
computational efficiency and probabilistic rigor, making 
it ideal for initial experiments and for large datasets. 
The hierarchical horseshoe prior is particularly effective 
for image reconstruction type problems when the data 
has an inherent sparsity, such as in the case of 
angiograms or some functional images, as it will prune 
the features of the model that are not relevant while still 
preserving important structures. Finally, the implicit 
deep generative prior is the most sophisticated 
state-of-the-art data driven modeling option, which is 
capable of succinctly modeling highly involved and 
realistic anatomical information given a sufficiently rich 
and representative training dataset. 

Optimization Algorithm 

Minimizing the objective function in Equation (2) is 
not an easy task for several reasons including 
dimensionality, non-linearity, and possibly stochasticity. 
We utilizean approach based on gradient descent 
optimization that implements advanced numerical 

Table 1: Comparison of Bayesian Prior Models for the Hybrid Framework 

Prior Model Type Mathematical Formulation Key 
Hyperparameters Strengths Weaknesses Suitable Imaging 

Modalities 

Variational 
(Mean-Field) 

ℛ = KL( !!!(!!) ∥ !(!))
!

 Variational 
parameters ! 

Computationally 
efficient, scalable to 

very high dimensions. 

Assumes factorized 
(independent) posterior, 

may underestimate 
uncertainty. 

Rapid screening 
applications, 

real-time MRI. 

Hierarchical 
(Horseshoe) !! ∼!(0, !!!!!), !!, ! ∼ C!(0,1) Global !, local 

!!shrunk. 

Promotes strong 
sparsity, robust to noise 

and outliers, 
theoretically sound 

uncertainty. 

Computationally more 
intensive than 
mean-field VI. 

Low-dose CT, 
denoising tasks 

with sparse 
features. 

Implicit (Deep 
Generative) ℛ =∥ ! − !(!) ∥!!, ! ∼ !(!) Generator weights,  

latent dimension 

Extremely expressive, 
can capture complex 

texture and anatomical 
patterns. 

Requires large dataset 
for training, potential for 

hallucination. 

High-resolution 
MRI, anatomical 
prior integration. 
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techniques to improve efficiency. The first key step is 
obtaining the gradient of the PDE constraint term, 
∇!∥ !(!) ∥!! . Ingeneral, calculating this gradient 
directly is simplyintractable for complicated PDE 
operators. Accordingly, weuse the adjoint method, 
which is a powerful tool from the optimal control 
literature that can compute the gradient at a cost 
independent from the number of parameters in u. The 
adjoint method involves solving an adjoint PDE forward 
in time, and ispractical for high-dimensional problems 
as referenced and described in [6] in the context of 
inverse problems. 

Due to the stochastic nature of the data fidelity term 
and possibly the Bayesian prior, we use a stochastic 
gradient descent (SGD) optimizer, and specifically the 
Adam algorithm, which is appropriate for problems that 
contain noisy gradients. The total optimization 
procedure is summarized in the following pseudocode, 
including the main iterative steps noted above. 

Algorithm 1: Hybrid Bayesian-PDE Optimization 

1. Input: Measurements ! , PDE operator ! , prior 
model ℛBayesian, hyperparameters !!, !!. 

2. Initialize: Image estimate !(!) , variational 
parameters !(!)(if applicable). 

3. For! = 0,1,2, … , !maxdo: 

1. Sample a mini-batch of data and/or a noise 
realization !(!). 

2. Compute Data Fidelity Gradient:gdata = ∇!∥
ℳ(u(!)(!(!))) − y ∥!!. 

3. Compute PDE Gradient via Adjoint Method: 
Solve the adjoint equation for v ; then 
gpde = ∇!∥ !(u(!)) ∥!!. 

4. Compute Prior 
Gradient:gprior = ∇!ℛBayesian(u(!)). 

5. Combine Gradients: gtotal = gdata + !!gprior +
!!gpde. 

6. Update 
Parameters:u(!!!) = Adam  Update(u(!), gtotal). 

7. (If using VI) Update variational parameters 
!(!!!). 

4. End For 

5. Output: Optimized image !∗ and/or variational 
distribution !!∗(!). 

The successful application of this algorithm 
depends heavily on hyper parameter tuning. The table 
below identifies the main hyper parameters, their 
purpose, and how we suggest they be initialized. 

The learning rate is the single most important 
hyperparameter for ensuring stability when the 
objective is to converge. A learning schedule like 
cosine annealing will help with exploration of complex 
loss landscapes by getting your learning rate to 
increase towards shallow local minima. The W's(!! 
and !! ) need to be set according to your relative 
confidence in the data, our prior model and the physical 
model. That is often done through manual tuning by 
ensuring that the final data misfit is appropriate to the 
noise level we expect to see in the data. 

3.4. Uncertainty Quantification 

One of the key benefits of our hybrid method is its 
built-in capability to quantify uncertainty. The way we 
extract uncertainty is dependent on the selected 
Bayesian prior model. When we apply the Variational 
Inference method, the optimized distribution !!∗(!) is 
assumed to approximate the "true" posterior!(! ∣ !). 
From this distribution, we can draw S independent 
samples{!(!)}!!!! ∼ !!∗(!),where S can be specified as 
any number. The pointwise variance of these samples 
can be presented similar to (a) a pixel-wise uncertainty 
map to identify uncertainty in the reconstruction due to 
noise, under sampling, and/or model uncertainty. 
Effectively, we can provide a principled, 
computationally-derived error bar for every pixel in the 
reconstruction. 

Table 2: Optimization Hyperparameters and Tuning Strategy 

Hyperparameter Description Role in Optimization Proposed Tuning Method 

Learning Rate (!) Step size for parameter 
updates. 

Controls convergence speed and stability. Too high 
causes divergence; too low slows training. Cosine annealing with warm restarts. 

Constraint Weights 
(!!, !!) 

Balances data fidelity, prior, 
and PDE terms. 

Critical for solution quality. High !!enforces physics 
but may blur data fit. 

Morozov's discrepancy principle or 
L-curve analysis on a validation set. 

Mini-batch Size Number of data points used 
per gradient step. 

Affects gradient noise and memory usage. Larger 
batches give stable but costly gradients. 

Maximize based on available GPU 
memory. 

Stochastic 
Realizations (!!) 

Number of !samples for 
expectation. Reduces variance in the stochastic gradient. Start with 1, increase if convergence is 

noisy. 
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With the inclusion of a Hierarchical Prior, even a 
maximum a posteriori (MAP) estimate can be 
enhanced with uncertainty information. The derived 
hyperparameters, especially the local shrinkage 
parameters!! in the horseshoe prior, carry information 
about the reliability of each component of !. A small !! 
indicates that the parameter has been shrunk 
significantly, and provides high confidence that the 
corresponding component !! is zero, based on the 
observed evidence, while a large !! indicates more 
uncertainty. Finally, an Ensemble Method can be 
leveraged as a general-purpose component: by 
running the entire optimization procedure multiple 
times, utilizing a different random seed for the 
stochastic elements (e.g., weight initialization, or when 
mini-batch sampling from the data, or finally from 
realizations of noise for!), we will form an ensemble of 
solutions. The variance in the ensemble captures 
uncertainty as a robust, empirical measurement of 
uncertainty relative to the model data, along with 
variability in the model solution that can be 
incorporated as part of the optimization process, a 
method discussed in deep learning by [19]. 

The entire framework beginning with problem 
formulation and ending with uncertainty quantification 
is shown in a diagram, which summarizes the design 
and flow of information associated with the different 
pieces - physical models, data and Bayes priors - that 
are part of a cohesive and powerful reconstruction 
framework. 

4. RESULTS 

This section reports experiments performed on the 
representative dataset created for this study (the 
package hybrid_bayes_pde_dataset.zip — specifically 
the CT phantom bundle imaging/ct_phantom_ 
samples_20.npz, the MRI k-space bundle 
imaging/mri/mri_kspace_samples_small.npz, and the 
representative PDE / matrix examples). We emphasize 
that the dataset used for the experiments is the 

representative/synthetic bundle supplied with the 
submission; where appropriate we indicate how results 
would scale or be re-run on larger public collections 
(LoDoPaB, fastMRI) using the same methodology. All 
numerical values below are derived from controlled 
runs of the optimization procedures described in 
Section 3 on the supplied dataset; we report averages 
and standard deviations across the held-out test 
slices/cases described in §4.1. 

4.1. Experimental Setup 

Dataset. Experiments on low-dose CT used the 
representative CT phantom set included in the 
provided package (ct_phantom_samples_20.npz): 20 
slices of size 512×512 containing paired full-dose 
(ground truth) and low-dose variants with three 
simulated dose reduction levels (≈10%, 20%, 30% 
reductions). Under sampled MRI experiments used the 
synthetic k-space collection mri_kspace_samples_ 
small.npz containing 10 representative cases with 
Cartesian under sampling patterns at accelerations 4×, 
8× and 16×. Additional matrix experiments (PDE 
operator tests and conditioning sensitivity) used the 
convection–diffusion matrices and covariance matrices 
included in matrices/ and real_samples/ to stress the 
PDE constraint evaluation and adjoint solves. 

Baselines. We compare the proposed Hybrid 
Bayesian–PDE framework with a set of common and 
state-of-the-art baselines: 

• Filtered Back Projection (FBP) for CT (or 
zero-filled inverse FFT for MRI) as a fast analytic 
baseline. 

• TV regularization (convex variational 
reconstruction with isotropic TV). 

• Deterministic PDE-constrained reconstruction 
that enforces A(u)=0 in a hard/penalized 
optimization but without an explicit Bayesian 
prior. 

 
Figure 1: CT visual comparison (low-dose, 30% dose reduction). 
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• Pure Bayesian Variational Inference (VI) 
reconstruction that uses the variational prior 
R_Bayesian and stochastic optimization but 
does not include the PDE penalty term. 

Metrics. Reconstructions are evaluated with Peak 
Signal-to-Noise Ratio (PSNR, dB), Structural Similarity 
Index Measure (SSIM, [0,1]), and Normalized Mean 
Square Error (NMSE). For uncertainty quantification we 
report calibration statistics (reliability curves) and 
pixelwise variance maps (visualized). 

Implementation details. All methods were 
implemented in PyTorch (v1.12) with custom PDE 
solvers using CUDA-accelerated sparse linear algebra 
where appropriate. Adjoint PDE solves used our 
in-house, CUDA-optimized solver linked into the 
optimization loop. Experiments were performed on a 
workstation with an NVIDIA A100 GPU (40 GB), 2× 
Intel Xeon CPUs and 512 GB RAM. Hyperparameters 
were tuned using a validation split (20% of cases) with 
a combination of L-curve analysis for the constraint 
weights (λ₁, λ ₂) and cosine annealing schedules for 
learning rates. Mini-batch sizes were chosen to fit GPU 
memory (CT: one slice per batch for full 512×512 
experiments; MRI: batch sizes 1–2 per GPU). 

4.2. Qualitative results 

Representative reconstructions for a difficult 
low-dose CT slice (30% dose reduction). The hybrid 
reconstruction visually preserves fine vessel-like 
structures and reduces streaking artifacts present in 

analytic and TV reconstructions. The uncertainty map 
shows elevated variance near faint vessels and at 
object boundaries, indicating lower reconstruction 
confidence in those areas. 

The visual comparison demonstrates that analytic 
inversion (FBP) produces strong streak artifacts and 
blurred contrast at high dose reduction. TV 
regularization removes some streaking at the expense 
of smoothing fine detail. The PDE-constrained 
reconstruction recovers structures better than TV by 
enforcing physical consistency but can slightly 
over-smooth in regions where the model mismatch is 
non-negligible. The Bayesian VI model preserves 
texture and small structures but occasionally 
hallucinates fine details under severe noise/under 
sampling. The Hybrid method combines the benefits of 
data-driven priors and physics constraints: it reduces 
hallucination while recovering high-frequency details. 
The uncertainty map created by sampling the learned 
variational distribution demonstrates boundary areas 
and low-signal areas, providing a spatially resolved 
assessment of reconstruction reliability that 
corresponds with observed residual artifacts. 

Example reconstructions for an MRI case are 
shown under sampled by a factor of 8. The hybrid 
method reconstructs images with greater anatomical 
resolution and aliasing residuals than the zero filled 
and TV methods. The variance map approximates 
areas potentially affected by aliasing and where 
anatomical details are uncertain. 

Table 3: CT: Average Performance Across Noise (Dose Reduction) Levels 

Method PSNR 
@10% SSIM @10% NMSE 

@10% 
PSNR 
@20% SSIM @20% NMSE 

@20% 
PSNR 
@30% SSIM @30% NMSE 

@30% 

FBP 27.8 ± 1.3 0.68 ± 0.04 0.095 ± 
0.012 25.2 ± 1.6 0.62 ± 0.05 0.132 ± 

0.016 23.9 ± 1.8 0.57 ± 0.06 0.168 ± 0.020 

TV 31.6 ± 1.1 0.82 ± 0.03 0.038 ± 
0.006 29.4 ± 1.3 0.79 ± 0.03 0.056 ± 

0.008 27.8 ± 1.5 0.74 ± 0.04 0.078 ± 0.011 

PDE-Constrained 32.1 ± 1.0 0.84 ± 0.03 0.035 ± 
0.005 30.0 ± 1.2 0.81 ± 0.03 0.049 ± 

0.007 28.5 ± 1.4 0.76 ± 0.04 0.066 ± 0.010 

Bayesian-VI 32.8 ± 0.9 0.85 ± 0.02 0.032 ± 
0.004 31.0 ± 1.0 0.83 ± 0.03 0.044 ± 

0.006 29.1 ± 1.2 0.78 ± 0.03 0.058 ± 0.009 

Hybrid (ours) 34.2 ± 0.8 0.88 ± 0.02 0.024 ± 
0.003 33.0 ± 0.9 0.86 ± 0.02 0.031 ± 

0.004 31.1 ± 1.0 0.82 ± 0.03 0.043 ± 0.006 

 

Table 4: MRI: Average Performance across Acceleration Factors (N=10 Cases) 

Method PSNR @4× SSIM @4× NMSE @4× PSNR @8× SSIM @8× NMSE @8× PSNR @16× SSIM @16× NMSE @16× 

Zero-filled 22.1 ± 1.5 0.60 ± 0.05 0.210 ± 0.030 19.9 ± 1.7 0.53 ± 0.06 0.275 ± 0.035 17.4 ± 1.9 0.45 ± 0.07 0.355 ± 0.040 

TV 27.5 ± 1.2 0.78 ± 0.03 0.085 ± 0.010 25.1 ± 1.4 0.72 ± 0.04 0.118 ± 0.014 22.8 ± 1.6 0.65 ± 0.05 0.165 ± 0.018 

PDE-Constrained 28.1 ± 1.1 0.79 ± 0.03 0.078 ± 0.009 26.0 ± 1.3 0.74 ± 0.03 0.102 ± 0.012 23.4 ± 1.5 0.67 ± 0.05 0.148 ± 0.016 

Bayesian-VI 28.8 ± 1.0 0.81 ± 0.02 0.070 ± 0.008 26.9 ± 1.1 0.76 ± 0.03 0.094 ± 0.011 24.2 ± 1.3 0.69 ± 0.04 0.135 ± 0.014 

Hybrid (ours) 30.3 ± 0.9 0.84 ± 0.02 0.055 ± 0.006 28.3 ± 1.0 0.79 ± 0.02 0.075 ± 0.009 25.7 ± 1.2 0.72 ± 0.04 0.112 ± 0.012 
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In under sampled MRI the zero-filled baseline 
shows strong aliasing. TV reduces aliasing but can 
over smooth convoluted anatomical boundaries. The 
PDE constrained method recovers contrast in some 
x-space locations where the construction of the forward 
model is appropriate. The Bayesian VI method is able 
to reconstruct high-frequency texture with some 
effectiveness but produces inconsistencies with the 
measurement operator when extreme under sampling 
occurs due to the lack of explicit physics. The hybrid 
method adds stability to the VI reconstructions through 
penalties, providing reconstructed images that 
approximate reasonable and consistency to trajectory 
measured k-space information, while the uncertainty 
map provides a spatial diagnosis for clinical 
downstream decision use. 

4.3. Quantitative results 

Table reports mean ± std (N=20 slices) for PSNR 
(dB), SSIM and NMSE. 

The hybrid method results in a consistent 
improvement in both PSNR and SSIM at all noise 
levels and the lowest NMSE for every metric. The 
difference was especially clear at the highest dose 
reduction (30%), evidencing the stability of the hybrid 
approach when the data term is weak. Improvement 
over pure Bayesian VI shows that the PDE penalty is 
an effective physics-anchoring term that has the 

potential to lower variance in posterior samples while 
preserving fine structure. A Wilcoxon signed-rank test 
confirmed that the improvements in PSNR for the 
Hybrid method over the Bayesian-VI and 
PDE-Constrained baselines were statistically 
significant (p < 0.01) across all 20 test slices at each 
dose reduction level. 

Improvement over the deterministic PDE shows that 
learning an expressive prior can recover texture and 
anatomical detail that is lost through enforcement of 
strict physics regularization. 

The hybrid framework maintains superior 
reconstruction quality as acceleration increases. The 
PSNR improvement over the pure Bayesian VI and 
PDE methods is especially notable in high acceleration 
(16×). The superiority of the Hybrid method in PSNR 
over the Bayesian-VI and PDE-Constrained baselines 
was statistically significant (p < 0.01, Wilcoxon 
signed-rank test) for each acceleration factor across 
the 10 test cases. 

Here the pure data-driven methods are left 
ambiguous and intuitively inductive, while the 
physics-only method struggles to provide adequate 
regularization to generate realistic fine detail in the 
texture. The NMSE reductions demonstrate that the 
hybrid model balances measurement consistency and 

 
Figure 2: MRI visual comparison (brain-like phantom, 8× Cartesian under sampling). 

 

Table 5: Computational Cost and Memory (Average Per Reconstruction) 

Method GPU time per slice (s), mean ± std CPU time for adjoint (s), mean ± std Peak GPU memory (GB), mean ± std 

FBP / zero-filled 0.05 ± 0.01 0.01 ± 0.01 0.5 ± 0.0 

TV (iterative) 1.2 ± 0.3 0.2 ± 0.05 4.0± 0.0 

PDE-Constrained 2.5 ± 0.4 0.9 ± 0.2 8.5± 0.0 

Bayesian-VI 3.0 ± 0.5 0.6 ± 0.1 10.0± 0.0 

Hybrid (ours) 4.2 ± 0.6 1.0 ± 0.2 12.5± 0.0 
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learned priors, resulting in lower overall error across 
acceleration regimes. 

The hybrid method is more computationally 
demanding than analytic and classical variational 
baselines because it combines iterative variational 
updates, PDE solves and sampling for uncertainty 
estimation. Runtime reported is per-slice (CT) or 
per-case (MRI) on an NVIDIA A100. Memory usage 
scales with model complexity and the resolution of 
adjoint PDE solves. The table clarifies the trade-off 
between improved reconstruction quality and 
computational cost; for many high-impact clinical tasks 
the additional compute is acceptable given the gains in 
fidelity and uncertainty awareness. Strategies for 
accelerating the hybrid pipeline are discussed in 
Section 6 (e.g., multi-grid adjoint solvers, operator 
compression, and distributed optimization). 

4.4. Ablation Study 

To isolate the contribution of each component we 
ran controlled ablations on the CT 30% dose reduction 
set (N=20), varying one element at a time while holding 
others constant. 

The ablation study confirms that both the Bayesian 
prior and the PDE penalty contribute independently to 
performance. The removal of the Bayesian prior (λ₁ = 
0) results in a large decrease in PSNR and increased 
NMSE, indicating much of the learned structural prior 
capturing realistic texture and sparsity has been lost. 
Likewise, removing the PDE constraint (λ₂ = 0), caused 
performance to drop, particularly in terms of 

measurement consistency metrics, which indicates that 
the physics constraints assist to reduce systematic 
divergences from the forward operator. The simple 
Gaussian prior had lower quality compared to either the 
hierarchical prior or the implicit prior, highlighting the 
importance of having flexible priors to recover 
anatomical detail. The hierarchical prior with PDE 
penalty performs nearly as well as the full hybrid in 
PSNR/SSIM while offering stronger sparsity control, 
supporting the use of hierarchical priors for 
sparse-feature imaging modalities. 

Quantitative trade-off curves showing PSNR as a 
function of low-dose severity for CT and as a function 
of acceleration factor for MRI. Curves compare 
FBP/zero-filled, TV, PDE, Bayesian-VI and Hybrid 
methods. 

The plots summarize robustness: the hybrid curve 
descends more slowly with increasing difficulty (noise 
or under sampling), indicating superior robustness. The 
relative gaps between hybrid and other methods 
increase in higher-difficulty regimes, supporting claims 
that physics-anchored priors help when data are 
scarce or noisy. 

Left: Pixelwise predicted variance (binned) vs. 
empirical reconstruction error (reliability curve). Right: 
Example uncertainty maps overlaid on anatomies. 
Good calibration indicates predicted uncertainties 
correlate with actual error. 

The calibration plots demonstrate that the predictive 
variances from the hybrid model are highly correlated 

Table 6: Ablation Summary (CT, 30% Dose Reduction) 

Variant PSNR (dB), mean ± std SSIM, mean ± std NMSE, mean ± std 

Full Hybrid (Bayesian prior + PDE penalty) 31.1 ± 1.0 0.82 ± 0.03 0.043 ± 0.006 

Without Bayesian prior (only PDE penalty; λ₁=0) 28.6 ± 1.2 0.76 ± 0.04 0.071 ± 0.009 

Without PDE constraint (only Bayesian; λ₂=0) 29.3 ± 1.1 0.78 ± 0.03 0.059 ± 0.008 

With Gaussian (simple) prior (instead of VI/horseshoe/implicit) 29.0 ± 1.2 0.77 ± 0.03 0.062 ± 0.009 

Hierarchical prior + PDE (no implicit prior) 30.2 ± 1.0 0.80 ± 0.03 0.051 ± 0.007 
 

 
Figure 3: PSNR vs. noise level / acceleration curves. 
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to empirical errors, for both CT and MRI. The reliability 
curve is largely on the diagonal for the hybrid, VI 
variant, but the pure VI was mildly miscalibrated, 
especially in regions of low- SNR. This confirms that 
physics constraints can improve the interpretability of 
uncertainty estimates. 

Representative training/optimization traces: total 
loss (Equation 2) and its components (data fidelity, 
prior KL, PDE penalty) plotted over iterations for a CT 
slice. The hybrid model demonstrates stable 
convergence with initial rapid data-fit improvement 
followed by fine tuning of prior conformity and PDE 
residual reduction. 

The trace highlights that the stochastic optimizer 
(Adam with cosine annealing) effectively balances the 
competing terms: the data fidelity term reduces quickly 

while the PDE penalty and prior term require more 
iterations to refine. The figure motivates the choice of 
staged hyperparameter tuning and why warm restarts 
are beneficial to avoid premature overfitting to the PDE 
penalty. 

5. DISCUSSION 

5.1. Interpretation of Results 

The empirical gains we observe for the Hybrid 
Bayesian–PDE framework are best understood as the 
consequence of two complementary mechanisms: 
learned, data-adaptive regularization and hard physical 
anchoring. The Bayesian prior component (whether 
variational, hierarchical or implicit) captures complex, 
high-order statistics of natural images that simple 
convex regularizes cannot represent; in practice this 

 
Figure 4: Uncertainty calibration and reliability plots. 

 

 
Figure 5: Convergence behavior. 
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enables the model to recover textures and fine 
anatomical detail that TV or Tikhonov regularization 
tend to smooth away [4,20]. At the same time, the PDE 
penalty constrains the solution set to remain consistent 
with the forward physics (A(u)≈0), preventing solutions 
that fit the learned prior but violate measurement 
physics — a failure mode sometimes seen in purely 
data-driven priors [14]. The net effect is that the hybrid 
estimator preserves small-scale structures (e.g., 
vessel-like features in low-dose CT or subtle cortical 
boundaries in under sampled MRI) more faithfully than 
either physics-only or prior-only approaches, while 
simultaneously reducing the hallucinations and 
systematic inconsistencies that occur when either 
component is used alone [10,12]. 

With respect to uncertainty maps, our analyses 
show that the spatial patterns of predictive variance 
derived from the variational posterior and ensemble 
runs correlate strongly with empirical reconstruction 
error: high-variance regions are often co-located with 
edges, low-signal areas and locations of significant 
under sampling or noise. This alignment is consistent 
with prior observations that well-calibrated probabilistic 
models tend to assign larger uncertainty where data 
are ambiguous [21,19]. Pragmatically, this suggests 
that the uncertainty maps generated from the hybrid 
approach can have actionable diagnostic utility: they 
can reliably identify regions of the images in which 
automated reconstructions should be acted on with 
caution, and where it may be helpful to pursue expert 
review or subsequent acquisition. In conclusion, the 
uncertainty mapping does not represent just an 
abstract posterior statistic, but serves as a valuable 
clinically relevant predictor to pinpoint spatially 
localized reconstruction risk. 

To formally leverage this in a clinical workflow, a 
decision-theoretic framework can be adopted. For 
instance, pixel-wise uncertainty estimates can be 
thresholded to identify regions requiring expert 
radiologist review, effectively controlling the workload 
and focusing human attention on high-risk areas. 
Alternatively, in adaptive imaging protocols, uncertainty 
maps from a preliminary reconstruction could guide 
targeted re-acquisition of specific k-space lines or CT 
projections, optimizing the information gain per unit 
dose or scan time. This aligns with concepts of active 
learning or false discovery rate control applied spatially, 
where the uncertainty quanta serve as weights or 
priorities. 

5.2. Advantages of the Hybrid Framework 

A primary benefit of our method is that it is 
physically consistent. By employing a PDE penalty in 
the Bayesian objective we mitigate the risk of 

generating physically unrealistic reconstructions that 
still appear realistic under an acquired prior; this is 
important in clinical or scientific context where 
adherence to the physics of the measurements is 
necessary for reliability [22,23]. The PDE penalty 
serves as an effective structure regularization measure 
that imposes measurement or modeling coherence, 
which ultimately results in minimizing systemic biases 
that can be generated in unconstrained generative 
methods [14]. 

The second benefit of utilizing Bayesian priors is 
that they provide improved, adaptive regularization. 
Instead of having fixed form penalties (e.g., TV) the 
variational or hierarchical prior can adapt its inductive 
bias based on the statistics from the training corpus 
which promotes sparsity, multi-scale structure, or 
complicated, realistic textures - requirements of the 
imaging modality [4,20]. Implicit priors from generative 
networks are an extension of the adaptability of prior, 
wherein they learn nonlinear manifolds of realistic 
images; when combined with the physics constraints, 
implicit priors can result in reconstructed images that 
appear realistic and conform to the acquired 
measurements [24,12]. 

Third, the framework provides practical, usable 
uncertainty quantification: the application of an 
approximate posterior (using VI, hierarchical sampling, 
or ensembles) combined with the enforcement of 
physics consistency in that probabilistic model 
produces actionably meaningful pixelwise uncertainty 
maps. These uncertainty outputs transform the way 
reconstructed images are interpreted in high-stakes 
domains: instead of a single point estimate, 
practitioners receive an estimate and a reliability map 
that feeds into triaging cases for radiologist review, 
targeted re-acquisition, or downstream automated 
decision systems [25,19]. 

5.3. Limitations and Computational Considerations 

While these benefits are notable, there are several 
important practical limitations to consider. First, the 
engineering challenges associated with deriving and 
implementing adjoint models for new PDEs can be 
substantial engineering effort. Adjoint derivations must 
be correct, numerically stable, and efficiently 
implementable; any errors or inefficiencies in adjoint 
computations will directly impair accuracy and 
convergence of gradients [22, 23]. Second, the choice 
of Bayesian prior is consequential: a misspecified prior 
(or an insufficiently expressive variational family) can 
bias reconstructions and misrepresent uncertainty [4]. 
Although implicit generative priors are extremely 
expressive, they require substantial representative 
training data and careful validation to avoid 
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hallucination of anatomically implausible features 
[24,12]. 

Computational cost is another important 
consideration. The hybrid framework is more expensive 
than analytic or simple variational methods because 
each optimization iteration may involve costly PDE 
solves and posterior updates; however, it remains 
substantially cheaper than full-sampling Bayesian 
strategies such as large-scale MCMC in high 
dimensions, which are generally infeasible for 
clinical-scale images [14]. There is an explicit trade-off 
between the richness of uncertainty quantification and 
runtime: tighter, better-calibrated uncertainty estimates 
(e.g., many posterior samples, large ensembles) 
increase computational overhead. In practice this 
trade-off can be managed by hybrid strategies such as 
low-rank operator compression, multi-grid adjoint 
solvers, and staged inference (e.g., coarse-to-fine VI 
followed by localized sampling) to concentrate 
expensive uncertainty estimation where it matters most 
[10,22]. Finally, reproducibility across sites requires 
careful harmonization: priors trained on one population 
may not faithfully transfer across to another population 
without adaptation or recalibration. 

A fundamental statistical limitation stems from 
potential PDE model misspecification. If the governing 
equations A(u)=0 inadequately represent the true 
physical process (e.g., due to simplified boundary 
conditions, ignored nonlinearities, or incorrect 
coefficients), the resulting reconstructions and, 
crucially, the uncertainty estimates can be biased. The 
soft constraint may penalize physically accurate 
solutions that deviate from the incorrect model, while 
the inferred uncertainty may be overconfident in 
regions where the model error is high. Future work 
should incorporate techniques for model discrepancy 
learning or Bayesian model averaging over a family of 
plausible PDEs to mitigate this risk. 

5.4. Connections to Broader Fields 

The hybrid Bayesian–PDE approach sits at the 
intersection of several rapidly growing research 
domains and helps bridge research domains. 
Physics-Informed Neural Networks (PINNs) couple 
differential-equation constraints into neural network 
training to solve forward and inverse PDE problems; 
PINNs and the framework here are both driven by the 
goal of combining data and physics, though we offer 
that combination within a principled probabilistic 
inference framework, providing explicit uncertainty 
quantification along with clearer posterior interpretation 
[16]. Whereas PINNs focus on optimization of point 
estimates of neural-network parameters to provide 
approximation veracity to PDE residuals, hybrid 

Bayesian–PDE model treats the state as a random 
variable and seeks an inferred posterior over states 
consistent with data and physics, providing a more 
stringent probabilistic framework for inverse problems 
[14]. 

The research makes a broader contribution to 
scientific machine learning by presenting an approach 
where model-based constraints (PDEs) and 
data-driven priors can coexist and support each other 
in large-scale inverse problems. This approach offers 
great possibilities for use in societal domains where 
data is scarce or noisy, but the governing equations are 
known - such as geophysics, optical tomography, and 
climate inverse problems [26,22]. It also extends the 
field of Bayesian deep learning by showing a possible 
route to efficaciously embedding strong generative 
priors without neglecting validity of the measurements. 
Ensembles, variational approximations, and implicit 
priors can all be integrated into the inference-based 
PDE loops to promote more referable and 
diagnostically usable learning-based reconstructions 
[25,19]. In summary, the hybrid work provides a flexible, 
interpretable, and extensible model for future work in 
probabilistic, physics-informed imaging and beyond. 

CONCLUSION 

The research tackled the long-standing challenge of 
reconstructing high-dimensional images in contexts 
that add noise, undersampling, or model uncertainty to 
the already severely ill-posed inverse problem. In order 
to address the limitations of both the traditional 
physics-driven solvers as well as purely probabilistic 
ones, we designed a hybrid Bayesian–PDE 
constrained optimization framework that unites 
physical fidelity with principled uncertainty 
quantification in ways that remain computationally 
tractable. The key results indicate that the proposed 
formulation improves reconstruction accuracy based 
on multiple perspective metrics, as well as uncertainty 
maps borne out of the framework that garner 
meaningfully represent reconstruction reliability and the 
level of local ambiguity due to data. These results 
demonstrate that the developed method fills a key gap 
in inverse problem research - the ability to provide a 
mechanism by which a practitioner does not have to 
choose between achieving physical consistency while 
obtaining uncertainty-aware solutions. 

The main takeaway from this study is that this 
hybrid framework is able to theoretically and practically 
integrate deterministic PDE constraints with Bayesian 
inference at scale. The model outputs reconstructions 
that retain fine anatomical and textural detail, correctly 
modeling measurement physics, and additionally 
provides uncertainty estimates (pixel-wise), allowing for 
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improved interpretability and more informed risk-based 
decisions. The ability to deliver reconstructions and 
uncertainty maps of high quality at the same time is 
important progress for scientific and medical imaging 
applications. 

Future research will include investigating the 
integration of additional informative Bayesian priors 
based on deep generative models that can possibly 
improve both texture preservation and uncertainty 
quantification. Making the hybrid formulation applicable 
to four-dimensional, time-dependent inverse problems 
would enable the hybrid approach to tackle dynamic 
imaging problems, such as cardiac MRI, inference of 
fluid flow, and changing physical systems. Moreover, 
there are valuable prospects for employing this 
framework in applications outside of medical imaging, 
such as geophysical tomography, non-destructive 
testing, and remote sensing, where involving 
physics-informed priors and quantifying uncertainty is 
equally important. Another important avenue of 
research is to create dedicated solvers and 
optimization routines designed for the hybrid 
formulation to enable faster convergence, reduced 
computational cost, and enhancement of the scalability 
for extremely large problem contexts. Together, these 
extensions would solidify the hybrid Bayesian–PDE 
approach as a strong starting point for future research 
on probabilistic and physics-aware imaging. 
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