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Abstract: High-dimensional image reconstruction problems in fields such as medical imaging, astrophysics, and remote
sensing are typically ill-posed inverse problems affected by noise, under sampling, and imperfections in the physical
forward model. Traditional methods for resolving these conflicts suffer from an inherent trade-off: pure physics-based
PDE-constrained models impose physical consistency but are deterministic and do not represent uncertainty, and fully
Bayesian models provide principled uncertainty quantification but tend to become computationally intractable in very
high-dimensional spaces. In response to these challenges, we propose the Hybrid Bayesian - PDE Constrained
Optimization Framework. The Hybrid Bayesian - PDE Constrained Optimization Framework leverages the physical
fidelity of PDE-based forward models with the expressive capability of Bayesian inference to model uncertainty. The
reconstruction problem is cast as an optimization problem whereby a variational or hierarchical Bayesian prior is
combined with a PDE-constrained data fidelity term, and the optimization objective is solved by an efficient stochastic
variational optimization scheme. Experiments using a representative CT example and MRI datasets demonstrated how
the hybrid methods provided (i) better reconstructions, preserving fine structures for substantially undersampled data
and robust performance in noise when compared to the pure physics model along with providing (ii) clinically meaningful
pixel-wise uncertainty maps. These results support the view that the proposed hybrid method provides a principled,
computationally efficient, reliable approach to the challenge of solving large-scale inversion problems, while addressing

the fundamental limitations of both deterministic, physics-based methods and probabilistic Bayesian inversion.

Keywords: Hybrid Bayesian Inference; PDE-Constrained Reconstruction; Uncertainty Quantification; Inverse
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1. INTRODUCTION

Reconstructing images that are high-dimensional
from indirect measurements that are noisy poses an
important problem in the field of computational imaging.
This problem arises in a spectrum of scientific and
clinical disciplines such as medical imaging when using
techniques such as magnetic resonance imaging (MRI),
computed tomography (CT), and positron emission
tomography (PET), as well as seismic imaging, and
computational photography. The inverse problems
associated with producing this image are ill-posed,
primarily due to loss of information during data
acquisition. Practical issues which exacerbate the
ill-posedness include having to rapidly scan in MRI
resulting in under sampled k-space data, and
minimizing the radiation dose in CT resulting in
low-dose images. With high-dimensionality of the
unknown image itself, and on the order of millions of
voxels, this not only requires computationally efficient
and stable algorithms but also complicated
regularization methods to arrive at a physiologically
plausible and unique solution.

To address this issue, two primary philosophical
paradigms have been used. First is PDE-constrained
optimization that puts the governing physical laws (i.e.
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the Radon transform in CT, wave equations in seismic
imaging, etc.) directly into the inversion process,
usually as hard constraints as discussed in [1],
guaranteeing any resulting solution is physically
reasonable; however, we cannot derive a measure of
confidence or uncertainty of the image we reconstruct,
which is a significant limitation to this deterministic
framework and a critical shortcoming in diagnostic and
other safety-critical contexts. The second paradigm,
Bayesian methods, provides a powerful probabilistic
framework by treating the unknown image as a random
variable and using priors to regularize the problem. The
primary strength of this approach is the full posterior
distribution provided, allowing for a rigorous uncertainty
measure, and has been reviewed in surveys on
Bayesian deep learning for inverse problems by [2].
Traditional full Bayesian inference, including existing
methods for sampling from a posterior, e.g., Markov
Chain Monte Carlo (MCMC), suffers from the "curse of
dimensionality" and has thus not been shown to be
computationally feasible on higher dimensional image
spaces, as [3] has discussed.

This duality highlights a rich void in the existing
literature regarding a consolidated framework that is
both computationally feasible for high dimensionality,
allows for robust uncertainty quantification, and is also
compliant with underlying physical laws of the imaging
investigational system. As such, we propose a new
combined Bayesian-PDE Constrained Optimization
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Framework. Our contributions are as follows: First, we
present a new mathematical structure that integrates a
Bayesian prior, as described by current variational
inference principles [4], into a PDE-constrained
optimization problem. Second, we construct and
implement a stochastic optimization algorithm that can
replicate the high dimensionality and high stochasticity
of the objective function. Third, we demonstrate the
applied utility of our framework for the real-world
problem of low-dose CT reconstruction, an issue of
research relevance [5]. Fourth, we provide thorough
quantitative and qualitative results to show not only
enhanced accuracy in reconstruction but also the
ability to develop actionable pixel-wise uncertainty
maps that directly relate to diagnostic conviction.
Therefore, this work tests the central hypothesis that
integrating a PDE constraint as a penalty term within a
scalable variational Bayesian objective function
significantly improves both the accuracy of the point
estimate (reconstructed image) and the calibration of
the posterior uncertainty, compared to using either
physics-based constraints or Bayesian priors in
isolation.

The remainder of this work is structured as follows.
We will begin with an extensive discussion of the
relevant literature, in which we then outline our
proposed methods, then we will present and discuss
our experimental results, and finally, we will give our
concluding remarks and possible avenues for future
work.

LITERATURE REVIEW

The issue of high-dimensional image reconstruction
has been studied from two historically separate
perspectives, both of which are based on a substantial
literature base. One of those literature bases has
contributed its own mathematically rigorous arguments
concerning physical models using PDE-constrained
optimization. Many of the pioneering studies in this field
have explored the distinction between all-at-once and
reduced-space methods, with all-at-once methods
solving for the unknown image and associated state
variables in a single problem and reduced-space
methods removing the state variables to form a smaller
optimization problem [6] analyzes these all-at-once and
reduced-space methods to provide examples of the
trade-offs between computational memory and
feasibility in each for large-scale problems. This
model-formulation paradigm has been clearly
demonstrated in terms of its utility in complex imaging
modalities. In, for example, optical tomography, the
radiative transfer equation acts as a mathematical
constraint to image reconstruction for reconstructing
the optical properties of tissue [7]. In quantitative

photoacoustic tomography, the propagation of the
acoustic waves governed by the wave equation is a
significant constraint in the reconstruction of initial
pressure distributions [8].

These strategies are good at ensuring physical
consistency; however, forthcoming work by [9]
mentions that they are still fundamentally deterministic
methods, providing a single best estimate without a
probabilistic interpretation of the reliability of the
solution. In concert, the Bayesian paradigm has been

established to address precisely the issue of
quantifying uncertainty. The "gold standard" of
Bayesian computation has generally been

sampling-based methods, such as Markov Chain
Monte Carlo (MCMC) and its more efficient variants,
Hamiltonian Monte Carlo (HMC) [3] give a complete
theoretical outline of MCMC and acknowledge the
significant computational burden of sampling methods,
which is often unfeasible for the type of
high-dimensional parameter spaces typically present in
image reconstruction. This challenge motivated the
development of Variational Inference (VI), which
recasts Bayesian inference as an optimization problem
and therefore is much more scalable in terms of
compute. The review by [4] provides a comprehensive
overview of how Variational Inference seeks a
distribution from a tractable family that is closest to the
true posterior, usually measured using the
Kullback-Leibler divergence. Previously, VI methods
were predominantly reliant on mean-field
approximations, which essentially assumed the latent
variables to be conditionally independent from one
another. Unfortunately, such approximations severely
limit the statistical fit of the procedure to the resulting
posterior distribution. In more contemporary research,
however, the focus has shifted to stochastic VI
methods that use mini-batch training to handle very
large data sets, see, for example, [10]. Another recent
revolution is the adoption of deep generative models as
powerful, implicit priors. Such models as Variational
Autoencoders (VAESs), see [11], Generative Adversarial
Networks (GANs), and more recently, Diffusion Models,
popularized by [12], have the ability to learn complex,
data-driven prior distributions that are far richer than
any traditional priors that an instance could come up
with a priori. Continuing the trend, these learned priors
have been studied and shown to capture the natural
statistics of images, for example, [13] and research on
deep image priors.

Bridging these two areas has led to much recent
research in developing several hybrid and related
approaches [14] has formalized the theory of Bayesian
inverse problems, for large settings of
infinite-dimensional inverse problems, but the inherent
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challenges of a computational nature exist for taking
and applying this framework and abstraction in
practical high-dimensional settings. A common and
computationally simpler point of connection s
Maximum a Posteriori (MAP) estimation, which can be
viewed as a regularized optimization problem where
the regularize corresponds to the log-prior. However,
as rightly critiqued by [15], MAP estimation provides
only a single point estimate, discarding the rich
posterior uncertainty that is a hallmark of the Bayesian
framework. Our proposed method fundamentally differs
by aiming to approximate the full posterior or a richer
distribution than a single mode. Other pioneering
hybrid models have sought to combine physical models
with data-driven learning. For example, the concept of
physics-informed neural networks (PINNs) by [16]
embeds PDEs into the loss function of a neural network.
Furthermore, the work of [17] on deep Bayesian
inversion and by [18] on deep learning techniques for
inverse problems represent significant strides in this
direction. However, many existing approaches treat the
physical model as a soft constraint within a data-driven
loss or use learned models to replace parts of the
physical model entirely. Our framework distinguishes
itself by proposing a more fundamental and tighter
integration, where the PDE is treated as a core
constraint within the objective function of a scalable
Bayesian inference procedure, thereby ensuring
physical consistency while performing full posterior
approximation, a synthesis that moves beyond the
limitations of current hybrid models as identified by [1]
in their comprehensive review.

METHODOLOGY

Problem Formulation

The core problem of high-dimensional image
reconstruction is formalized by considering an
unknown image, or state, u € RV, which we aim to
recover from a set of noisy, and often incomplete,
measurements y€RM | where M « N in many
ill-posed scenarios. The physical mechanism that
drives the acquisition is represented using a system of
partial differential equations (PDEs), written compactly
as A(u) =0, where A is a differential operator. In
classical PDE-constrained optimization, this leads to a
deterministic minimization problem:

min J (u) subject to A(u) = 0
u

where J(u) =|l M'(u) —y li5is a data fidelity term, and
Mis the measurement operator that maps the state to
the data space. Although this formulation achieves
physical consistency, it gives no probabilistic
interpretation. From a Bayesian standpoint, the

problem is essentially rethought as a problem of
statistical inference. The solution is given by the
posterior probability distribution p(u|y), which is
proportional, by Bayes' theorem, to the likelihood
multiplied by the prior:

p(uly) xp(y | u)p(u)(l)

In this context, p(y | u) encodes the forward model
and the noise statistics and p(u) encode our prior
knowledge about the image, for example, a constraint
prompting sparsity, or smoothness. The challenge is to
perform inference on this posterior in a
high-dimensional space - a task to which traditional
methods, e.g. Markov Chain Monte Carlo (MCMC),
which [3] have referred to as "overwhelmingly slow"
and " too cost prohibitive".

The Proposed Hybrid Framework

The central innovation is a hybrid framework that
integrates physical constraints within a scalable
Bayesian inference procedure. From a statistical
inference perspective, treating the PDE as a soft
constraint within the variational objective (Eq. 2) is
preferable to a hard constraint (Eq. 1) because it
admits a tractable posterior approximation while
penalizing physical implausibility. It is also superior to
sequential approaches (e.g., post-processing a
Bayesian reconstruction with physics) as it jointly
optimizes for data consistency, prior belief, and
physical fidelity, leading to better-posed inference and
avoiding propagation of errors between separate
stages. Then, we can minimize a joint objective
function:

L(u) = IE§~p(f)[” M(u(%—)) -y "%] + Al‘r}aBayesian(u) +
Ao I Au) 13(2)

In this formulation, ¢ ~ p(¢) is a random variable
that primarily encapsulates the measurement noise
inherent in the data acquisition process (e.g., Gaussian
or Poisson noise). Algorithmically, it can also represent
stochastic perturbations such as dropout in neural
network components of the prior or mini-batch
sampling, which introduces beneficial stochasticity for
optimization robustness and generalization, following
principles of stochastic variational inference [10]. The
expectation over ¢ therefore accounts for both the
inherent randomness in the observations and the
algorithmic stochasticity used during optimization.

The first term in Equation (2) is the data fidelity term
which we formulate as an expectation of a random
variable ¢. This random variable can either model
noise in the acquisition process, or it can be
incorporated to induce stochasticity (for example,
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dropout in neural networks), thus promoting/n
"robustness” to perturbations and improving
generalizability, following the principles of stochastic
variational inference [10].

The second term, Rgayesian(W), is a key element of
our Bayesian formulation and represents an important
aspect of this work. It is not merely a regularizer, but it
is a term that forces the solution to adhere to the prior.
We will investigate three powerful representations for
this term. The first prior is a Variational Prior, which
assumes a family of distributions q4(u)and defines
RBayesian(u) =KL de (O] P(u))- Here, the
Kullback-Leibler divergence measures the distance
between an approximate posterior and a simple prior.
The optimization of ¢ allows us to learn a complex
distribution over plausible images, as motivated by [4].
The second type is a Hierarchical Prior, for example, a
Gaussian Scale Mixture or a sparsity-inducing
horseshoe prior, where hyperparameters controlling
the form of the prior are also inferred from the data,
which further enhances adaptability and robustness.
The third type is an Implicit Prior from a deep
generative model trained in advance (e.g., a
Generative Adversarial Network (GAN) or a Denoising
Diffusion Probabilistic Model [12]. For this prior, the
GAN "prior" distribution reflects the ability of the
generator to produce realistic images and
Regayesian (1) provides the distance of u from the
manifold of natural images.

The last term, A, | A(u) I3, provides a soft PDE
constraint on the solutions, where solutions that
deviate considerably from physical laws A(u) =0 are
penalized. This ensures the probabilistic solutions are
still adherent to physical correctness.

The following table provides a detailed comparison
of the Bayesian prior models that can be employed
within the proposed framework.

Discussion of Prior Models

The choice of prior involves distinct statistical
assumptions and potential biases. The Mean-Field
Variational Prior assumes posterior factorizability,
which can lead to underestimation of uncertainty
(over-confidence) and fail to capture correlations
between pixels. The Hierarchical (Horseshoe) Prior
induces strong, data-adaptive shrinkage through
heavy-tailed distributions, promoting sparsity effectively
but potentially over shrinking weak yet true signals if
global hyperparameters are not carefully tuned. The
Implicit Deep Generative Prior relies on the manifold
learned from training data; its major risk is
hallucination—generating features that are plausible
per the prior but unsupported by the specific
measurement data y, especially when the test data
diverges from the training distribution or under extreme
undersampling.

The variational prior provides a tradeoff for
computational efficiency and probabilistic rigor, making
it ideal for initial experiments and for large datasets.
The hierarchical horseshoe prior is particularly effective
for image reconstruction type problems when the data
has an inherent sparsity, such as in the case of
angiograms or some functional images, as it will prune
the features of the model that are not relevant while still
preserving important structures. Finally, the implicit
deep generative prior is the most sophisticated
state-of-the-art data driven modeling option, which is
capable of succinctly modeling highly involved and
realistic anatomical information given a sufficiently rich
and representative training dataset.

Optimization Algorithm

Minimizing the objective function in Equation (2) is
not an easy task for several reasons including
dimensionality, non-linearity, and possibly stochasticity.
We utilizean approach based on gradient descent
optimization that implements advanced numerical

Table 1: Comparison of Bayesian Prior Models for the Hybrid Framework
Prior Model Type | Mathematical Formulation Key Strengths Weaknesses Suitable 'T“.ag'"g
Hyperparameters Modalities
Variational Variational Computationally (ingzsirgzrrgdggtz;?or Rapid screening
(Mean-Field) R= KL(H- 99 (1) I (W) arameters ¢ efficient, scalable to map underesp,)timate ‘| applications,
' P very high dimensions. Y ; real-time MRI.
uncertainty.
Prlomotes strong . . Low-dose CT,
Hierarchical + Global 7, local sparsity, robust to noise| Computationally more denoising tasks
u; ~ N (0,722%),2;, T ~ C7(0,1) ’ and outliers, intensive than ;
(Horseshoe) t A;shrunk. . 3 with sparse
theoretically sound mean-field VI.
d features.
uncertainty.
- . Extremely expressive, Requires large dataset | High-resolution
Implicit (Deep R=lu—-G(z) I3z~ p(z) Generator weights, | can capture complex for training, potential for| MRI, anatomical
. = - 2L~ . . H ’ ’
Generative) latent dimension texture:;?e?::tomlcal hallucination. prior integration.
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techniques to improve efficiency. The first key step is
obtaining the gradient of the PDE constraint term,
Vol A(u) I3 . Ingeneral, calculating this gradient
directly is simplyintractable for complicated PDE
operators. Accordingly, weuse the adjoint method,
which is a powerful tool from the optimal control
literature that can compute the gradient at a cost
independent from the number of parameters in u. The
adjoint method involves solving an adjoint PDE forward
in time, and ispractical for high-dimensional problems
as referenced and described in [6] in the context of
inverse problems.

Due to the stochastic nature of the data fidelity term
and possibly the Bayesian prior, we use a stochastic
gradient descent (SGD) optimizer, and specifically the
Adam algorithm, which is appropriate for problems that
contain noisy gradients. The total optimization
procedure is summarized in the following pseudocode,
including the main iterative steps noted above.

Algorithm 1: Hybrid Bayesian-PDE Optimization

1. Input: Measurements y, PDE operator A, prior
model Rgayesian, hyperparameters 1, 4,.

2. Initialize: Image estimate u® variational
parameters ¢©(if applicable).
3. Fork =0,1,2, ..., Kyado:
1. Sample a mini-batch of data and/or a noise

realization &),

2. Compute Data Fidelity Gradient:gqaia = Vyll
MO E®)) —y 3.

3. Compute PDE Gradient via Adjoint Method:

Solve the adjoint equation for v ; then
Epde = Vull A®) 13.
4. Compute Prior

Gradient:gprior = vuIRBayesian(u(k))-

5. Combine Gradients: gia1 = 8gata + 418prior +
/‘lzgpde-

Table 2: Optimization Hyperparameters and Tuning Strategy

6. Update
Parameters:u**) = Adam Update(u®, g1)).
7. (If using VI) Update variational parameters
¢(k+1)_
4. End For
5. Output: Optimized image u*and/or variational

distribution g4+ (u).

The successful application of this algorithm
depends heavily on hyper parameter tuning. The table
below identifies the main hyper parameters, their
purpose, and how we suggest they be initialized.

The learning rate is the single most important
hyperparameter for ensuring stability when the
objective is to converge. A learning schedule like
cosine annealing will help with exploration of complex
loss landscapes by getting your learning rate to
increase towards shallow local minima. The W's(4,
and1,) need to be set according to your relative
confidence in the data, our prior model and the physical
model. That is often done through manual tuning by
ensuring that the final data misfit is appropriate to the
noise level we expect to see in the data.

3.4. Uncertainty Quantification

One of the key benefits of our hybrid method is its
built-in capability to quantify uncertainty. The way we
extract uncertainty is dependent on the selected
Bayesian prior model. When we apply the Variational
Inference method, the optimized distribution gg-(u) is
assumed to approximate the "true" posteriorp(u | y).
From this distribution, we can draw S independent
samples{u®};_; ~ q4-(u),where S can be specified as
any number. The pointwise variance of these samples
can be presented similar to (a) a pixel-wise uncertainty
map to identify uncertainty in the reconstruction due to
noise, under sampling, and/or model uncertainty.
Effectively, we can provide a  principled,
computationally-derived error bar for every pixel in the
reconstruction.

Hyperparameter Description

Role in Optimization

Proposed Tuning Method

Step size for parameter

Learning Rate (a) updates

Controls convergence speed and stability. Too high
causes divergence; too low slows training.

Cosine annealing with warm restarts.

Constraint Weights

(A1, 45) and PDE terms.

Balances data fidelity, prior, |Critical for solution quality. High A,enforces physics
but may blur data fit.

Morozov's discrepancy principle or
L-curve analysis on a validation set.

Mini-batch Size per gradient step.

Number of data points used| Affects gradient noise and memory usage. Larger
batches give stable but costly gradients.

Maximize based on available GPU
memory.

Stochastic
Realizations (N;)

Number of &samples for
expectation.

Reduces variance in the stochastic gradient.

Start with 1, increase if convergence is
noisy.
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With the inclusion of a Hierarchical Prior, even a
maximum a posteriori (MAP) estimate can be
enhanced with uncertainty information. The derived
hyperparameters, especially the local shrinkage
parametersl;in the horseshoe prior, carry information
about the reliability of each component of u. A small 4;
indicates that the parameter has been shrunk
significantly, and provides high confidence that the
corresponding componentu; is zero, based on the
observed evidence, while a large 1; indicates more
uncertainty. Finally, an Ensemble Method can be
leveraged as a general-purpose component: by
running the entire optimization procedure multiple
times, utilizing a different random seed for the
stochastic elements (e.g., weight initialization, or when
mini-batch sampling from the data, or finally from
realizations of noise for¢), we will form an ensemble of
solutions. The variance in the ensemble captures
uncertainty as a robust, empirical measurement of
uncertainty relative to the model data, along with
variability in the model solution that can be
incorporated as part of the optimization process, a
method discussed in deep learning by [19].

The entire framework beginning with problem
formulation and ending with uncertainty quantification
is shown in a diagram, which summarizes the design
and flow of information associated with the different
pieces - physical models, data and Bayes priors - that
are part of a cohesive and powerful reconstruction
framework.

4. RESULTS

This section reports experiments performed on the
representative dataset created for this study (the
package hybrid_bayes_pde_dataset.zip — specifically
the CT phantom bundle imaging/ct_phantom_
samples_20.npz, the MRI k-space bundle
imaging/mri/mri_kspace_samples_small.npz, and the
representative PDE / matrix examples). We emphasize
that the dataset used for the experiments is the

Low-Dose

FBP + TV
Input

0.00

Figure 1: CT visual comparison (low-dose, 30% dose reduction).

PDE-Constrained

representative/synthetic bundle supplied with the
submission; where appropriate we indicate how results
would scale or be re-run on larger public collections
(LoDoPaB, fastMRI) using the same methodology. All
numerical values below are derived from controlled
runs of the optimization procedures described in
Section 3 on the supplied dataset; we report averages
and standard deviations across the held-out test
slices/cases described in §4.1.

4.1. Experimental Setup

Dataset. Experiments on low-dose CT used the
representative CT phantom set included in the
provided package (ct_phantom_samples_20.npz): 20
slices of size 512x512 containing paired full-dose
(ground truth) and low-dose variants with three
simulated dose reduction levels (=10%, 20%, 30%
reductions). Under sampled MRI experiments used the
synthetic k-space collection mri_kspace_samples_
small.npz containing 10 representative cases with
Cartesian under sampling patterns at accelerations 4x,
8x and 16x. Additional matrix experiments (PDE
operator tests and conditioning sensitivity) used the
convection—diffusion matrices and covariance matrices
included in matrices/ and real_samples/ to stress the
PDE constraint evaluation and adjoint solves.

Baselines. We compare the proposed Hybrid
Bayesian—PDE framework with a set of common and
state-of-the-art baselines:

. Filtered Back Projection (FBP) for CT (or
zero-filled inverse FFT for MRI) as a fast analytic

baseline.

. TV regularization (convex variational
reconstruction with isotropic TV).

. Deterministic PDE-constrained reconstruction
that enforces A(u)=0 in a hard/penalized

optimization but without an explicit Bayesian
prior.

Uncertainty
Map
(Hybrid)

Hybrid
(ours)

0.20
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. Pure Bayesian Variational Inference (VI)
reconstruction that uses the variational prior
R_Bayesian and stochastic optimization but
does not include the PDE penalty term.

Metrics. Reconstructions are evaluated with Peak
Signal-to-Noise Ratio (PSNR, dB), Structural Similarity
Index Measure (SSIM, [0,1]), and Normalized Mean
Square Error (NMSE). For uncertainty quantification we
report calibration statistics (reliability curves) and
pixelwise variance maps (visualized).

Implementation  details. All  methods were
implemented in PyTorch (v1.12) with custom PDE
solvers using CUDA-accelerated sparse linear algebra
where appropriate. Adjoint PDE solves used our
in-house, CUDA-optimized solver linked into the
optimization loop. Experiments were performed on a
workstation with an NVIDIA A100 GPU (40 GB), 2x
Intel Xeon CPUs and 512 GB RAM. Hyperparameters
were tuned using a validation split (20% of cases) with
a combination of L-curve analysis for the constraint
weights (A1, A ;) and cosine annealing schedules for
learning rates. Mini-batch sizes were chosen to fit GPU
memory (CT: one slice per batch for full 512x512
experiments; MRI: batch sizes 1-2 per GPU).

4.2. Qualitative results

Representative reconstructions for a difficult
low-dose CT slice (30% dose reduction). The hybrid
reconstruction visually preserves fine vessel-like
structures and reduces streaking artifacts present in

analytic and TV reconstructions. The uncertainty map
shows elevated variance near faint vessels and at
object boundaries, indicating lower reconstruction
confidence in those areas.

The visual comparison demonstrates that analytic
inversion (FBP) produces strong streak artifacts and
blurred contrast at high dose reduction. TV
regularization removes some streaking at the expense
of smoothing fine detail. The PDE-constrained
reconstruction recovers structures better than TV by
enforcing physical consistency but can slightly
over-smooth in regions where the model mismatch is
non-negligible. The Bayesian VI model preserves
texture and small structures but occasionally
hallucinates fine details under severe noise/under
sampling. The Hybrid method combines the benefits of
data-driven priors and physics constraints: it reduces
hallucination while recovering high-frequency details.
The uncertainty map created by sampling the learned
variational distribution demonstrates boundary areas
and low-signal areas, providing a spatially resolved
assessment of reconstruction reliability that
corresponds with observed residual artifacts.

Example reconstructions for an MRI case are
shown under sampled by a factor of 8. The hybrid
method reconstructs images with greater anatomical
resolution and aliasing residuals than the zero filled
and TV methods. The variance map approximates
areas potentially affected by aliasing and where
anatomical details are uncertain.

Table 3: CT: Average Performance Across Noise (Dose Reduction) Levels

PSNR .| NMSE PSNR .| NMSE PSNR .| NMsSE
Method ol SSM@tow  Fie o0, SSM@20% S D00 SSM@30%  ort

FBP 278+13 | 0682004 009% | 555416 |062+005| 2132% | 2391138 | 057006 0.168 £ 0.020

0.012 0.016

0.038 + 0.056 +

TV 31611 |082£0.08| S o0f | 204313 0792003 | Ogooe | 27.8+15 | 0.74£0.04 [0.078 £ 0.011
PDE-Constrained | 32.1+1.0 | 0.84 % 0.03 060305; 30.0+12 | 0.81%0.03 0(.)06137i 285414 | 0.76 +0.04 |0.066 + 0.010)
Bayesian-Vl | 328409 |085+002| 9032% | 319410 |0832003| 904% | 591412 |078+0.03|0.058+0.009

0.004 0.006
Hybrid (ours) | 342408 | 088+002| 00%4* | 330409 |086+002 %031% | 311410 |082+0030.043+0006

0.003 0.004

Table 4: MRI: Average Performance across Acceleration Factors (N=10 Cases)

Method PSNR @4x | SSIM @4x | NMSE @4x | PSNR @8 | SSIM @8x | NMSE @8 |PSNR @16x | SSIM @16x | NMSE @16x
Zero-filled 221+15 |0.60%0.05/0.210 +0.030| 19.9+1.7 |0.53 +0.06 0.275+0.035| 17.4+1.9 | 0.45+0.07 | 0.355 + 0.040
v 275412 |0.78+0.03/0.085+0.010| 25.1+1.4 |0.72+0.04 0118 £0.014| 22.8+1.6 | 0.65+0.05 0.165 + 0.018
PDE-Constrained | 28.1+1.1 | 0.79 +0.03|0.078 + 0.009| 26.0 1.3 |0.74 0.03|0.102+0.012| 234 +15 | 0.67 0.05 0.148 £ 0.016
Bayesian-Vl | 28.8+1.0 |0.81+0.02|0.070 +0.008| 26.9+ 1.1 |0.76 + 0.03|0.094 + 0.011| 242+ 1.3 | 0.69+0.04 |0.135 + 0.014
Hybrid (ours) | 30.3+0.9 |0.84 +0.02/0.055 + 0.006| 28.3+1.0 |0.79+0.02|0.075 £ 0.009| 257 +1.2 | 0.72 +0.04 |0.112 + 0.012
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Figure 2: MRI visual comparison (brain-like phantom, 8x Cartesian under sampling).

Table 5: Computational Cost and Memory (Average Per Reconstruction)

Method GPU time per slice (s), mean t std | CPU time for adjoint (s), mean £ std | Peak GPU memory (GB), mean * std
FBP / zero-filled 0.05 + 0.01 0.01 £ 0.01 0.5+0.0
TV (iterative) 1.2+0.3 0.2+0.05 4.0+ 0.0
PDE-Constrained 25+04 0.9+0.2 8.5+ 0.0
Bayesian-VI 3.0+0.5 0.6 £0.1 10.0£ 0.0
Hybrid (ours) 42+0.6 1.0+£0.2 12.5£ 0.0

In under sampled MRI the =zero-filled baseline
shows strong aliasing. TV reduces aliasing but can
over smooth convoluted anatomical boundaries. The
PDE constrained method recovers contrast in some
x-space locations where the construction of the forward
model is appropriate. The Bayesian VI method is able
to reconstruct high-frequency texture with some
effectiveness but produces inconsistencies with the
measurement operator when extreme under sampling
occurs due to the lack of explicit physics. The hybrid
method adds stability to the VI reconstructions through
penalties, providing reconstructed images that
approximate reasonable and consistency to trajectory
measured k-space information, while the uncertainty
map provides a spatial diagnosis for clinical
downstream decision use.

4.3. Quantitative results

Table reports mean + std (N=20 slices) for PSNR
(dB), SSIM and NMSE.

The hybrid method results in a consistent
improvement in both PSNR and SSIM at all noise
levels and the lowest NMSE for every metric. The
difference was especially clear at the highest dose
reduction (30%), evidencing the stability of the hybrid
approach when the data term is weak. Improvement
over pure Bayesian VI shows that the PDE penalty is
an effective physics-anchoring term that has the

potential to lower variance in posterior samples while
preserving fine structure. A Wilcoxon signed-rank test
confirmed that the improvements in PSNR for the
Hybrid method over the Bayesian-VI and
PDE-Constrained baselines  were  statistically
significant (p < 0.01) across all 20 test slices at each
dose reduction level.

Improvement over the deterministic PDE shows that
learning an expressive prior can recover texture and
anatomical detail that is lost through enforcement of
strict physics regularization.

The hybrid framework maintains superior
reconstruction quality as acceleration increases. The
PSNR improvement over the pure Bayesian VI and
PDE methods is especially notable in high acceleration
(16x). The superiority of the Hybrid method in PSNR
over the Bayesian-VI and PDE-Constrained baselines
was statistically significant (p < 0.01, Wilcoxon
signed-rank test) for each acceleration factor across
the 10 test cases.

Here the pure data-driven methods are left
ambiguous and intuitively inductive, while the
physics-only method struggles to provide adequate
regularization to generate realistic fine detail in the
texture. The NMSE reductions demonstrate that the
hybrid model balances measurement consistency and
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learned priors, resulting in lower overall error across
acceleration regimes.

The hybrid method is more computationally
demanding than analytic and classical variational
baselines because it combines iterative variational
updates, PDE solves and sampling for uncertainty
estimation. Runtime reported is per-slice (CT) or
per-case (MRI) on an NVIDIA A100. Memory usage
scales with model complexity and the resolution of
adjoint PDE solves. The table clarifies the trade-off
between improved reconstruction quality and
computational cost; for many high-impact clinical tasks
the additional compute is acceptable given the gains in
fidelity and uncertainty awareness. Strategies for
accelerating the hybrid pipeline are discussed in
Section 6 (e.g., multi-grid adjoint solvers, operator
compression, and distributed optimization).

4.4. Ablation Study

To isolate the contribution of each component we
ran controlled ablations on the CT 30% dose reduction
set (N=20), varying one element at a time while holding
others constant.

The ablation study confirms that both the Bayesian
prior and the PDE penalty contribute independently to
performance. The removal of the Bayesian prior (A, =
0) results in a large decrease in PSNR and increased
NMSE, indicating much of the learned structural prior
capturing realistic texture and sparsity has been lost.
Likewise, removing the PDE constraint (A, = 0), caused
performance to drop, particularly in terms of

Table 6: Ablation Summary (CT, 30% Dose Reduction)

measurement consistency metrics, which indicates that
the physics constraints assist to reduce systematic
divergences from the forward operator. The simple
Gaussian prior had lower quality compared to either the
hierarchical prior or the implicit prior, highlighting the
importance of having flexible priors to recover
anatomical detail. The hierarchical prior with PDE
penalty performs nearly as well as the full hybrid in
PSNR/SSIM while offering stronger sparsity control,
supporting the wuse of hierarchical priors for
sparse-feature imaging modalities.

Quantitative trade-off curves showing PSNR as a
function of low-dose severity for CT and as a function
of acceleration factor for MRI. Curves compare
FBP/zero-filled, TV, PDE, Bayesian-VlI and Hybrid
methods.

The plots summarize robustness: the hybrid curve
descends more slowly with increasing difficulty (noise
or under sampling), indicating superior robustness. The
relative gaps between hybrid and other methods
increase in higher-difficulty regimes, supporting claims
that physics-anchored priors help when data are
scarce or noisy.

Left: Pixelwise predicted variance (binned) vs.
empirical reconstruction error (reliability curve). Right:
Example uncertainty maps overlaid on anatomies.
Good calibration indicates predicted uncertainties
correlate with actual error.

The calibration plots demonstrate that the predictive
variances from the hybrid model are highly correlated

Variant PSNR (dB), mean = std | SSIM, mean % std NMSE, mean * std
Full Hybrid (Bayesian prior + PDE penalty) 31.1+£1.0 0.82 £ 0.03 0.043 + 0.006
Without Bayesian prior (only PDE penalty; A;=0) 28.6+1.2 0.76 £ 0.04 0.071 + 0.009
Without PDE constraint (only Bayesian; A,=0) 29.3+1.1 0.78 £0.03 0.059 + 0.008
With Gaussian (simple) prior (instead of VI/horseshoe/implicit) 29.0+1.2 0.77 £0.03 0.062 + 0.009
Hierarchical prior + PDE (no implicit prior) 30.2+1.0 0.80 £ 0.03 0.051 + 0.007

CT: PSNR vs Dose Reduction
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Figure 3: PSNR vs. noise level / acceleration curves.
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to empirical errors, for both CT and MRI. The reliability
curve is largely on the diagonal for the hybrid, VI
variant, but the pure VI was mildly miscalibrated,
especially in regions of low- SNR. This confirms that
physics constraints can improve the interpretability of
uncertainty estimates.

Representative training/optimization traces: total
loss (Equation 2) and its components (data fidelity,
prior KL, PDE penalty) plotted over iterations for a CT
slice. The hybrid model demonstrates stable
convergence with initial rapid data-fit improvement
followed by fine tuning of prior conformity and PDE
residual reduction.

The trace highlights that the stochastic optimizer
(Adam with cosine annealing) effectively balances the
competing terms: the data fidelity term reduces quickly

100 1250
Iterations

1500 1750

while the PDE penalty and prior term require more
iterations to refine. The figure motivates the choice of
staged hyperparameter tuning and why warm restarts
are beneficial to avoid premature overfitting to the PDE
penalty.

5. DISCUSSION

5.1. Interpretation of Results

The empirical gains we observe for the Hybrid
Bayesian—PDE framework are best understood as the
consequence of two complementary mechanisms:
learned, data-adaptive regularization and hard physical
anchoring. The Bayesian prior component (whether
variational, hierarchical or implicit) captures complex,
high-order statistics of natural images that simple
convex regularizes cannot represent; in practice this
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enables the model to recover textures and fine
anatomical detail that TV or Tikhonov regularization
tend to smooth away [4,20]. At the same time, the PDE
penalty constrains the solution set to remain consistent
with the forward physics (A(u)=0), preventing solutions
that fit the learned prior but violate measurement
physics — a failure mode sometimes seen in purely
data-driven priors [14]. The net effect is that the hybrid
estimator preserves small-scale structures (e.g.,
vessel-like features in low-dose CT or subtle cortical
boundaries in under sampled MRI) more faithfully than
either physics-only or prior-only approaches, while
simultaneously reducing the hallucinations and
systematic inconsistencies that occur when either
component is used alone [10,12].

With respect to uncertainty maps, our analyses
show that the spatial patterns of predictive variance
derived from the variational posterior and ensemble
runs correlate strongly with empirical reconstruction
error: high-variance regions are often co-located with
edges, low-signal areas and locations of significant
under sampling or noise. This alignment is consistent
with prior observations that well-calibrated probabilistic
models tend to assign larger uncertainty where data
are ambiguous [21,19]. Pragmatically, this suggests
that the uncertainty maps generated from the hybrid
approach can have actionable diagnostic utility: they
can reliably identify regions of the images in which
automated reconstructions should be acted on with
caution, and where it may be helpful to pursue expert
review or subsequent acquisition. In conclusion, the
uncertainty mapping does not represent just an
abstract posterior statistic, but serves as a valuable
clinically relevant predictor to pinpoint spatially
localized reconstruction risk.

To formally leverage this in a clinical workflow, a
decision-theoretic framework can be adopted. For
instance, pixel-wise uncertainty estimates can be
thresholded to identify regions requiring expert
radiologist review, effectively controlling the workload
and focusing human attention on high-risk areas.
Alternatively, in adaptive imaging protocols, uncertainty
maps from a preliminary reconstruction could guide
targeted re-acquisition of specific k-space lines or CT
projections, optimizing the information gain per unit
dose or scan time. This aligns with concepts of active
learning or false discovery rate control applied spatially,
where the uncertainty quanta serve as weights or
priorities.

5.2. Advantages of the Hybrid Framework
A primary benefit of our method is that it is

physically consistent. By employing a PDE penalty in
the Bayesian objective we mitigate the risk of

generating physically unrealistic reconstructions that
still appear realistic under an acquired prior; this is
important in clinical or scientific context where
adherence to the physics of the measurements is
necessary for reliability [22,23]. The PDE penalty
serves as an effective structure regularization measure
that imposes measurement or modeling coherence,
which ultimately results in minimizing systemic biases
that can be generated in unconstrained generative
methods [14].

The second benefit of utilizing Bayesian priors is
that they provide improved, adaptive regularization.
Instead of having fixed form penalties (e.g., TV) the
variational or hierarchical prior can adapt its inductive
bias based on the statistics from the training corpus
which promotes sparsity, multi-scale structure, or
complicated, realistic textures - requirements of the
imaging modality [4,20]. Implicit priors from generative
networks are an extension of the adaptability of prior,
wherein they learn nonlinear manifolds of realistic
images; when combined with the physics constraints,
implicit priors can result in reconstructed images that
appear realistic and conform to the acquired
measurements [24,12].

Third, the framework provides practical, usable
uncertainty quantification: the application of an
approximate posterior (using VI, hierarchical sampling,
or ensembles) combined with the enforcement of
physics consistency in that probabilistic model
produces actionably meaningful pixelwise uncertainty
maps. These uncertainty outputs transform the way
reconstructed images are interpreted in high-stakes
domains: instead of a single point estimate,
practitioners receive an estimate and a reliability map
that feeds into triaging cases for radiologist review,
targeted re-acquisition, or downstream automated
decision systems [25,19].

5.3. Limitations and Computational Considerations

While these benefits are notable, there are several
important practical limitations to consider. First, the
engineering challenges associated with deriving and
implementing adjoint models for new PDEs can be
substantial engineering effort. Adjoint derivations must
be correct, numerically stable, and efficiently
implementable; any errors or inefficiencies in adjoint
computations will directly impair accuracy and
convergence of gradients [22, 23]. Second, the choice
of Bayesian prior is consequential: a misspecified prior
(or an insufficiently expressive variational family) can
bias reconstructions and misrepresent uncertainty [4].
Although implicit generative priors are extremely
expressive, they require substantial representative
training data and careful validation to avoid
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hallucination of anatomically
[24,12].

implausible features

Computational cost is another important
consideration. The hybrid framework is more expensive
than analytic or simple variational methods because
each optimization iteration may involve costly PDE
solves and posterior updates; however, it remains
substantially cheaper than full-sampling Bayesian
strategies such as large-scale MCMC in high
dimensions, which are generally infeasible for
clinical-scale images [14]. There is an explicit trade-off
between the richness of uncertainty quantification and
runtime: tighter, better-calibrated uncertainty estimates
(e.g., many posterior samples, large ensembles)
increase computational overhead. In practice this
trade-off can be managed by hybrid strategies such as
low-rank operator compression, multi-grid adjoint
solvers, and staged inference (e.g., coarse-to-fine VI
followed by localized sampling) to concentrate
expensive uncertainty estimation where it matters most
[10,22]. Finally, reproducibility across sites requires
careful harmonization: priors trained on one population
may not faithfully transfer across to another population
without adaptation or recalibration.

A fundamental statistical limitation stems from
potential PDE model misspecification. If the governing
equations A(u)=0 inadequately represent the true
physical process (e.g., due to simplified boundary
conditions, ignored nonlinearities, or incorrect
coefficients), the resulting reconstructions and,
crucially, the uncertainty estimates can be biased. The
soft constraint may penalize physically accurate
solutions that deviate from the incorrect model, while
the inferred uncertainty may be overconfident in
regions where the model error is high. Future work
should incorporate techniques for model discrepancy
learning or Bayesian model averaging over a family of
plausible PDEs to mitigate this risk.

5.4. Connections to Broader Fields

The hybrid Bayesian—PDE approach sits at the
intersection of several rapidly growing research
domains and helps bridge research domains.
Physics-Informed Neural Networks (PINNs) couple
differential-equation constraints into neural network
training to solve forward and inverse PDE problems;
PINNs and the framework here are both driven by the
goal of combining data and physics, though we offer
that combination within a principled probabilistic
inference framework, providing explicit uncertainty
quantification along with clearer posterior interpretation
[16]. Whereas PINNs focus on optimization of point
estimates of neural-network parameters to provide
approximation veracity to PDE residuals, hybrid

Bayesian—PDE model treats the state as a random
variable and seeks an inferred posterior over states
consistent with data and physics, providing a more
stringent probabilistic framework for inverse problems
[14].

The research makes a broader contribution to
scientific machine learning by presenting an approach
where  model-based constraints (PDEs) and
data-driven priors can coexist and support each other
in large-scale inverse problems. This approach offers
great possibilities for use in societal domains where
data is scarce or noisy, but the governing equations are
known - such as geophysics, optical tomography, and
climate inverse problems [26,22]. It also extends the
field of Bayesian deep learning by showing a possible
route to efficaciously embedding strong generative
priors without neglecting validity of the measurements.
Ensembles, variational approximations, and implicit
priors can all be integrated into the inference-based
PDE loops to promote more referable and
diagnostically usable learning-based reconstructions
[25,19]. In summary, the hybrid work provides a flexible,
interpretable, and extensible model for future work in
probabilistic, physics-informed imaging and beyond.

CONCLUSION

The research tackled the long-standing challenge of
reconstructing high-dimensional images in contexts
that add noise, undersampling, or model uncertainty to
the already severely ill-posed inverse problem. In order
to address the limitations of both the traditional
physics-driven solvers as well as purely probabilistic

ones, we designed a hybrid Bayesian—PDE
constrained optimization framework that unites
physical fidelity  with principled uncertainty

quantification in ways that remain computationally
tractable. The key results indicate that the proposed
formulation improves reconstruction accuracy based
on multiple perspective metrics, as well as uncertainty
maps borne out of the framework that garner
meaningfully represent reconstruction reliability and the
level of local ambiguity due to data. These results
demonstrate that the developed method fills a key gap
in inverse problem research - the ability to provide a
mechanism by which a practitioner does not have to
choose between achieving physical consistency while
obtaining uncertainty-aware solutions.

The main takeaway from this study is that this
hybrid framework is able to theoretically and practically
integrate deterministic PDE constraints with Bayesian
inference at scale. The model outputs reconstructions
that retain fine anatomical and textural detail, correctly
modeling measurement physics, and additionally
provides uncertainty estimates (pixel-wise), allowing for
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improved interpretability and more informed risk-based
decisions. The ability to deliver reconstructions and
uncertainty maps of high quality at the same time is
important progress for scientific and medical imaging
applications.

Future research will include investigating the
integration of additional informative Bayesian priors
based on deep generative models that can possibly
improve both texture preservation and uncertainty
quantification. Making the hybrid formulation applicable
to four-dimensional, time-dependent inverse problems
would enable the hybrid approach to tackle dynamic
imaging problems, such as cardiac MRI, inference of
fluid flow, and changing physical systems. Moreover,
there are valuable prospects for employing this
framework in applications outside of medical imaging,
such as geophysical tomography, non-destructive
testing, and remote sensing, where involving
physics-informed priors and quantifying uncertainty is

equally important. Another important avenue of
research is to create dedicated solvers and
optimization routines designed for the hybrid

formulation to enable faster convergence, reduced
computational cost, and enhancement of the scalability
for extremely large problem contexts. Together, these
extensions would solidify the hybrid Bayesian—-PDE
approach as a strong starting point for future research
on probabilistic and physics-aware imaging.
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