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Abstract: Recent advances in computer modeling allows us to find closer fits to data. Our emphasis is on the 
interdependence between occurrence at kidney dialysis. The interdependence between kidney dialysis occurrences is 
modelled by a bivariate exponential that we propose in this article. The application is shown on the McGilchrist and 

Aisbett kidney data set with the use of the exponential distribution. The proposed bivariate exponential model has 
exponential marginal densities, correlated via a latent random variables and with finite probability of simultaneous 
occurrence. Extension of the model to a bivariate Erlang type distribution with same shape parameter is presented. 
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1. INTRODUCTION 

The exponential family of distributions is very 

important for modeling phenomena in life testing, 

reliability, and other types of medical applications. 

Exponential marginal densities have been known in the 

literature for some time. However, the majority of these 

models have been theoretically motivated rather than 

application oriented. A notable exception was the “fatal 

shock model” of Marshall and Olkin [1]. 

Fitting probability distributions to disease data is an 

essential part in its cure and in gaining control of such 

prevalent disease [2]. Patients with kidney and renal 

failures undergo dialysis processes. Knowing as much 

as possible on the aspects of dialysis help the patients 

prepare to control kidney disease, prevent possible 

failures of the dialysis and manage cost-effectiveness 

of initiating dialysis early [3]. Recent advances in 

computer modeling allows us to find closer fits. 

Emphasis is put on the interdependence between 

occurrence at kidney dialysis. Modeling the time to 

dialysis outcomes falls in the class of survival analysis. 

The bivariate exponential model is proposed with an 

underlying linear relationship that enforces zero or 

positive correlation, including a finite probability of 

simultaneous occurrence. By including the nature of 

the underlying functional relationship of the data, 

structural mathematical models are capable of 

providing explanations for observed and projected 

changes, where correlation models only give limited 
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explanatory capability. We propose an estimation 

approach and illustrate it with real data analysis. 

The proposed bivariate exponential model extends 
ideas from [1, 4-5]. We investigate the bivariate Erlang 
type with a non-zero probability of simultaneous 
occurrence of the phenomena under investigation. 

More specifically, let X
1
 and X

2
 be Erlang random 

variables (rv’s) with hazard rates 
1
 and 

2
 

respectively. These two rv’s are related linearly through 
a non-negative latent rv,  Z . The authors in [6-7] 
showed that the distribution of  Z  can be completely 
and uniquely characterized as the product of two 
independent rv’s, one being a Bernoulli rv with the 

parameter 
  
a

2
/

1
,  and the other being an exponential 

with parameter 
 2

, when 
  
X

1
 and 

  
X

2
 are exponential 

with hazard rates 
 1

 and 
 2

, respectively. 

The paper is organized as follows. Section 2 shows 
the main theoretical result. In Section 3, applications 
based on data from [8] are provided along with 
estimates and variance-covariance of the associated 
parameters. 

2. BIVARIATE ERLANG DISTRIBUTIONS 

Consider the univariate two parameter Erlang 
distribution,  X . Its probability density function (pdf) is 
defined as:  

f
X
(x; , ) =

( )
x 1e x I

[0, )
(x),         (1) 

where  N  is the shape parameter and  > 0  is the 

scale parameter. 
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The Laplace Stieltjes transform (LST) (the 
equivalent concept of moment generating function) 
provides a great deal of insight about the nature of a 
distribution. It is defined in [9] as:  

L
X
(s) = Ee sX =

0
e
sx
dF

X
(x) = (

+ s
) .  

Let 
  
X

1
 and 

  
X

2
 be two rv’s. We define:  

X
2
= aX

1
+ Z ,            (2) 

where  a , a nonnegative fixed constant called the 
coefficient of linear relationship, and  Z , an unknown 

random variable independent of 
  
X

1
.  The unknown rv 

 Z  is also called frailty in the survival model. It extends 
the ideas of the proportional Cox hazard model and 
allows positive correlation among survival times. The 
choice of  Z  as a gamma frailty is widely used. 
Hougaard in [10] discusses alternate choices of frailty 
distributions. We apply an alternate method based on 

the distributional forms of the covariates 
  
X

1
 and 

  
X

2
. 

The coefficient  a  in Equation (2) is estimated by the 
ratio of the occurrences of the events. This model gives 
independent coordinates when a = 0,  and does not 

permit negative association as described in Iyer et al. 
(2002). The characterization described in which the 
marginal distributions are exponential was introduced 
in [1], and has been studied by authors such as in [11-

12]. When X
1
 and X

2
 are exponential rv’s with 

parameters 
 1

 and 
 2

, respectively, the rv  Z  is a 

product of a Bernoulli rv with parameter p  and an 

exponential rv with parameter 
 2

.  Its pdf is given by:  

f (z) = p (z) + (1 p) f
X
2
(z)I(z > 0),         (3) 

where  

• p = P(X
2
= aX

1
) = P(Z = 0) = a

2
/
1
.   

• (t)  refers to the Dirac delta function, i.e (t) = 0 ,if 

  t 0 , and 
  

+

(t)dt = 1 .  

• and 
  
f

X
2

(t) =
2
e 2

t
,t > 0.   

The subsequent output shows the result of the joint 

distribution when 
  
X

1
 and 

  
X

2
 are Erlang with the same 

shape parameter. First let’s recall a related result. 

  

Theorem 1. Let 
   
Z

1
,…,Z

n
 be independent and 

identically distributed (iid) rv’s with the pdf as in (3). 

Define 
   
S

n
= Z

1
+…+ Z

n
. Then the distribution of 

 
S

n
 can 

be written as a mixture of gamma and Dirac delta 
distributions with Binomial weights, i.e.  

  

f
S

n
(z) =

j=0

n
n

n j
pn j (1 p) j f

g
j
(z), z 0,        (4) 

where 
  
f
g
0

(t) = (t),  and 

  

f
g

j
(t) = 2

j

( j)
t j 1e 2

t
,t > 0,  for 

  
1 j n.   

See [13]. 

We now present the joint distribution function of two 
Erlang distributions with same shape parameter.  

Theorem 2. Let 
  
f
1
 and 

  
f
2

 represent the marginal 

Erlang densities of two random variables X
1
 and X

2
. 

More specifically, let 
  
X

1
: Erlang( ,

1
)  and 

X
2
: Erlang( ,

2
) . Then the joint probability density 

function of (X
1
, X

2
)  is given by: 

  

g(x
1
, x

2
) =

j=0
j

p j (1 p) j f
1
(x

1
) f

g
j
(x

2
ax

1
),   (5) 

where 

• the random variables 
  
X

1
 and 

  
X

2
 are related as in 

(2).  

• 
  
p = P( X

2
= aX

1
) = a

2
/

1
.   

• 

  

f
g

j
(t) = (

2

j / ( j))t j 1e 2
t
,t > 0,  for 

  
1 j n.   

• f
g
0
(t) = (t)  refers to the Dirac delta i.e 

  
(t) = 0 ,if 

  t 0 , and 
  

+

(t)dt = 1.   

Proof. : The LST of  Z  is:  

  

L
Z

(s) = [ (1 p) 2

2
+ s

+ p ] .  

From the LST, Z  is sum of  iid rv’s that are the 

product of independent Bernoulli and exponential rv’s.  
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The pdf of Z  is a mixture of two types of functions: the 
Dirac Delta and gamma type pdf. The probability 
density function of  Z  is: 

  

f
Z

(z) =

j=0
j

p j (1 p) j f
g

j
(z), z 0, by Theorem 2.1.  

Using the independence of 
  
X

1
 and  Z , we have:  

  
f

X
1

,Z
(x

1
, z) = f

1
(x

1
) f

Z
(z)  

= p f
1
(x
1
) (z) +

j=1
j
p j (1 p) j f

g
j
(z) f

1
(x
1
).  

Then g(x
1
,x
2
) =

+

f
X
1
,Z
(x
1
, z) (ax

1
+ z x

2
)dz  

=
+

p f
1
(x
1
) (z) (ax

1
+ z x

2
)dz +  

  

+

j=1
j

p j (1 p) j f
1
(x

1
) f

g
k

(z) (ax
1
+ z x

2
)dz  

=Part1+Part2,  

with  

Part1=
+

p f
1
(x
1
) (z) (ax

1
+ z x

2
)dz  

= p f
1
(x
1
)

+

(z) (ax
1
+ z x

2
)dz  

  
= p f

1
(x

1
) (x

2
ax

1
), and  

Part2=
+

j=1
j
p j (1 p) j f

1
(x
1
) f
g
k
(z) (ax

1
+ z x

2
)dz  

  

=

j=1
j

p j (1 p) j f
1
(x

1
)

+

f
g

k
(z) (ax

1
+ z x

2
)dz  

  

=

j=1
j

p j (1 p) j f
1
(x

1
) f

g
k

(x
2

ax
1
).  

Putting together Part1 and Part 2, we obtain,  

  

g(x
1
, x

2
) =

j=0
j

p j (1 p) j f
1
(x

1
) f

g
j
(x

2
ax

1
).  

The following result can then be deduced. 

 

Figure 1: Graph of the joint pdf when 
1
= 4 ,   a = 1 , and 

 2
= 1 . 

As a result, when f
1
 and f

2
 represent exponential 

densities of two random variables 
  
X

1
 and 

  
X

2
 with 

parameters 
1
 and 

2
,  respectively, then the joint 

probability density function of (X
1
, X

2
)  is given by:  

  

g(x
1
, x

2
) = p

1
e 1

x
1 (x

2
ax

1
) +

(1 p)
1 2

e 2
x
2 e

(
1

a
2

)x
1 I(x

2
> ax

1
),

        (6) 

where the random variables X
1
 and X

2
 are related as 

in (2).  

Figure 1 describes the joint distribution of 
  
( X

1
, X

2
)  

for 
1
= 4 , a =1 , and 

2
= 1.   

The reliability of our approach is tested in the next 
section using McGilchrist and Aisbett (1991) kidney 
data [8]. 

3. APPLICATION AND ESTIMATION 

The analysis of the approach was carried out for the 
kidney data [8]. The maximum likelihood for the 
correlated data and the variance for the parameters of 
the bivariate model were calculated. The results are 

presented next. Let 
   
(x

1i
, x

2i
), i = 1,…,n,  represent a 

random sample from (6). The joint maximum likelihood 

estimator of 
 
(

1
,

2
)  is given by:  
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1
=
a

x
2

+
n k

nx
1

and
2
=
1

x
2

,          (7) 

where  

• 
  
k =

i=1

n

I(x
2i

ax
1i

= 0),  represents the number of 

times of proportional occurrence between 
  
X

1
 and 

  
X

2
.  

• 
  
x

1
=

i=1

n

x
1i

/ n,  and 
  

x
2

=
i=1

n

x
2i

/ n.   

The variance covariance matrix of 
  1

, and 
  2

, is:  

  

=
1

n

1
(

1
a

2
) + a

2

2

2
a

2

2

a
2

2

2

2
.         (8) 

When the two rv’s are independent, then it is 

reasonable to assume that   a = k = 0,  and then the 

estimators will represent those proposed in [14]. 

Simulated example: The above mentioned 
estimators were developped under the Exponential-
Exponential case. A simulation study of the same 
setting is assessed. The data were generated from a 

bivariate exponential with 
  1

= 4,
2

= 1 and a = 1  from 

sample of size   n = 25 . Using the simulated data the 
parameters are estimated. The estimated parameters 
and the estimated variance-covariance matrix are given 
as:  

=

4.162

1.041 and =

0.599 0.047

0.047 0.0472 .  

As we can see, there is a close correspondence 
with its original parameters. Now a real data set is 
considered. 

Real example: Here we consider the complete data 
from [8]. The data set describes the recurrence times to 
infection at point of insertion of the catheter for kidney 
patients who are using portable dialysis equipment. 
The sample data correlation between the recurrence 
times is found to be  0.794  with a significant p-value 

smaller than 0.001 . To fit the model, we assume that 

the underlying functional relation between the 
recurrence times is linear. The interdependence is 
captured by the joint distribution of the suggested 
model and fitted using R. The specifications for the 
coefficient of linear relationship is chosen to be  1  and 
data censored is taken into account. The joint MLE’s, 
and the estimated asymptotic variance/covarince 
matrix of the MLE’s(from (7) and (8)) are as follows:  

   

=
0.0138651

0.0049134
and =

0.000003902 0.000000635

0.000000635 0.000000635
.  

The log-likelihood of the data is given in Figure 2.  

 

Figure 2: The log-likelihood. 

Typically, an analysis of disease types can lead to 
debate of the differences between associated 
mortalities, estimates of disease risks and variations. 
Clustering may lead to significantly less stability. The 
inherent correlation between the dependent variables 
can be further studied with regard to this model. We 
believe that a correlation type test can be developed to 
test whether interdependency is statistically significant 
for this data set. By repeating the analysis to the 
different types of kidney diseases, it turns out that a 
little more light can be shed about this disease. The 
data was further aggregated into disease types. To 
address such issues related to the kidney data in [8], 
our model that allows estimates of risk parameters 
associated with the four types of diseases has been 
fitted. The four disease types are  0 =  GN,  1 =  AN,  2 =  
PKD, and  3 =  other. Using our construction, each 
disease type model was fitted separately. The results 
are presented below. We observed conjugate property 
that shows differences between those diseases.  

For disease type  0 , the estimates and the variance-
covariance are respectively:  

   

=
0.0142799

0.0055590
and =

0.000017271 0.000003434

0.000003434 0.000003434
.  

For disease type 1, the estimates and the variance-
covariance are respectively:  

   

=
0.0283395

0.0071006
and =

0.000054360 0.000004202

0.000004202 0.000004202
.  
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For disease type 2 , the estimates and the 
variance-covariance are respectively:  

   

=
0.0145298

0.0038059
and =

0.000042575 0.000003621

0.000003621 0.000003621
.  

For disease type 3, the estimates and the variance-
covariance are respectively:  

   

=
0.0095673

0.0038530
and =

0.000005347 0.000001142

0.000001142 0.000001142
.  

The log-likelihoods for the different disease types 
are given in Figure 3. Such figures along with the 

parameter estimates show that going from disease type 
0  to 3 , the likelihood becomes flattened and the 
estimates match that difference except for disease type 

 0.  There appears to be substantial differences across 

the disease types. The estimated variance from our 
suggested model is smaller than the one proposed in 
[8]. Without use of prior distribution, the relationship 
between recurrence time to infection at point of 
insertion shows that there are substantial differences 
found and since maximum likelihood estimation was 
used variance is stable. Having such results can lead 
to the development of benchmarks where the different 
kinds of kidney diseases are compared, and one could 
discriminate between them. 

    

     a       b 

 

          c      d 

Figure 3: Graphs of the log-likelihood functions. 

a) The log-likelihood for the disease type 0. b) The log-likelihood for the disease type 1. c) The log-likelihood for the disease 
type 2. d) The log-likelihood for the disease type 3. 
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4. CONCLUSION 

We have proposed a method for the linearly related 

type events that have simultaneous or proportional 

occurrence. Such a procedure was originally proposed 

by Marshall and Olkin (1964) for tracking systems that 

can evolve simultaneously in a linear relation. To 

demonstrate the usefulness of the method for 

occurrence of events using a non-zero probability of 

simultaneous occurrence, we have applied it to 

McGilchrist and Aisbett (1991) epidemiology case and 

found results that were not apparent in previously 

proposed models. 

Our results support the use of linear relationship in 

describing related events, due to its relative simplicity 

and comparative ease of implementation. 
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