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Abstract: Treatment assignment in observational studies is complex and can be influenced by many factors that include 
patient characteristics, physician practices, and health care systems. These influences can present heterogeneity or 
clustering effects in the treatment assignment. If those heterogeneity or clustering effects are not appropriately adjusted, 

the estimated treatment effect may be severely biased. Through a series of models that mimic various level of 
heterogeneity in treatment assignment in observational studies, we evaluate, through simulation study, the performance 
of several estimators under the impact of different types of heterogeneity. These estimators include propensity score 

stratification, propensity score inverse probability weighting, propensity score regression and the partial least squares 
method. Our results suggest that the partial least squares method is most robust while the dummy variable adjustment 
method in propensity regression also performs fairly consistently. We use the proposed method to analyze a data set 

from the German Breast Cancer Study Group study. 
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1. INTRODUCTION 

Correctly identifying a treatment interventions 

effectiveness for a disease can help patients, health 

care professionals, and purchasers to make informed 

decisions. Randomized controlled trials (RCT) have 

been the gold standard for demonstrating the efficacy 

and safety of a novel intervention for many years. In 

randomized controlled trials, patients are selected and 

randomly assigned to an intervention according to pre-

determined inclusion, exclusion criteria and a random 

assignment protocol to ensure there is no confounding 

due to the baseline covariates when comparing 

treatment effects in two or more groups. While RCT are 

desirable in this regard, it is not always feasible to 

conduct them in practice due to ethical, time, or cost 

considerations. For example, it would be unethical to 

expose patients deliberately to less effective treatments 

in the case of vaccines in the face of a threat of an 

influenza pandemic; researchers cannot randomize 

people to smoking or gender to study their effects on 

lung cancer or design experimental studies to 

determine the effects of pollution or global warming on 

people. 

Observational studies, on the other hand, have 

gathered much attention recently due to the availability 

of real world data [1-4]. The treatment examined in 

observational studies is not randomly assigned, but is  
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influenced by the patients and their health care 

providers. The observational data sets could come 

from several sources that include insurance claim data, 

electronic medical records, prescription records, 

patient’s records and so on. These data sets, usually 

large and rich in information, cover a much broader 

scope than RCT data can provide. For example, the 

Women’s Health Initiative (WHI) observational study 

enlisted 93, 676 postmenopausal women between the 

ages of 50 to79, and the participants were tracked over 

an average of eight years. It was conducted to provide 

reliable estimates of the extent to which known risk 

factors to predict heart disease, cancers and fractures, 

to identify new risk factors for these and other diseases 

in women, and to create a future resource to identify 

biological indicators of disease, especially substances 

and factors found in blood. 

The challenge in analyzing the observational 

studies for treatment effect is that the treatment 

assignment in observational studies is deliberate 

choice made by physicians, patients, and/or the payer 

and is far from random. There may be systematic 

differences between the treated and untreated groups 

that are not be fully measured, or, are simply 

unmeasurable. Different diseases, physicians, 

hospitals and insurance plans all can introduce 

different levels of heterogeneity or clustering effects in 

the treatment assignment. Hence, if not adjusted 

appropriately, the treatment effect estimated from 

observational data could be biased due to 

prognostically important baseline differences among 
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patients, along with physicians’ knowledge of 

unmeasured prognostic variables. For example, even 

though RCT data show prophylaxis reduces VTE risk 

among medically ill inpatients, attempts to generalize 

the trial findings to real world patients have been 

inconclusive [5, 6]. Establishing the equivalence of 

treatment effect between RCT and observational 

studies requires statistical methods that properly 

identify and handle the underlying confounding factors 

and heterogeneity. Recently, Alemayehu et al. [7] 

reviewed some statistical issues in analyzing non-

randomized studies; Willke and Mullins [8] provided a 

practically useful checklist for achieving the goal of 

developing credible and germane comparative 

effectiveness research studies. 

The propensity score (PS) method [9] is the most 
commonly used method to address confounding 
problems in observational studies in practice. Recent 
work on PS methods includes Stukel et al. [10], Chen 
et al. [11], Hong and Yu [12], Ye and Kaskutas [13], 

Wyse, Keesler and Schneider [14], Staff et al. [15], 

Maciejewski et al. [16], among others. The propensity 
score, which is generally estimated using logistic 
regression, is defined as the probability of receiving a 
treatment conditional on a set of observed covariates, 

i.e., 
  
PS = Pr(Trt = 1| X ) . 

The validity of the PS method is built on the 
following two assumptions: 

  
Y 1( ),Y 0( )( ) Trt | X ,           (1) 

  
0 < Pr(Trt = 1| X ) <1 ,           (2) 

where Y 1( ) ,
  
Y 0( )

 
are the outcomes under the active 

treatment and the control treatment;  Trt  is an indicator 
variable denoting the treatment assignment (  Trt = 1  for 
active treatment,   Trt = 0  for control treatment).  X  is 
observed baseline covariates. The first condition says 
that the treatment assignment is independent of the 
potential outcomes conditional on the observed 
baseline covariates. Rosenbaum and Rubin [9] had 
shown that conditional on the propensity score, the 
distribution of measured baseline covariates is similar 
between treated and untreated subjects. Thus, for 
subjects with the same propensity score, the 
distributions of their baseline covariates will be the 
same between the treated and untreated subjects. 
They demonstrated that if treatment assignment is 
strongly ignorable (conditions (1) and (2)), conditioning 

on PS, one also has 
  
Y 1( ),Y 0( )( ) Trt . Hence, 

conditions (1) and (2) are also referred to as the “no 
unmeasured confounders” assumption: all variables 

that affect treatment assignment and outcome have 

been measured. 

The assumption of no unobserved confounding 

covariates may be too simplistic or ideal in 

observational study data settings, especially when 

there is complex heterogeneity or clustering in 

treatment assignment. For example, different hospitals 

may have different preferences or limitations in 

assigning a treatment. Patients with similar 

demographics and the same insurance plans may get 

similar treatment assignments. Physicians’ skills and 

personal preferences may introduce another layer of 

heterogeneity in determining what treatment to give. All 

those factors could also cause clustering effects in the 

outcome models. Under complex scenarios, how 

existing PS methods perform and how to modify them 

to properly account for heterogeneity remain to be 

investigated. We conduct an extensive simulation study 

in this paper to explore the performance of several 

methods under various levels of heterogeneity in 

treatment assignment. Methods considered include PS 

stratification, PS inverse probability weighting, PS 

regression, PS with random effect and partial least 

squares (PLS). These methods are selected for their 

ready availability in standard computing packages 

and/or their robust nature against underlying model 

assumptions.  

The rest of the article is organized as follows. In 

Section 2, we introduce the outcome model and 

several treatment assignment models that include 

traditional models and more close to realistic complex 

models. In Section 3, we briefly describe the different 

methods considered. The simulation study to evaluate 

these methods under various models is presented in 

Section 4. The real world data analysis is presented in 

Section 5. Final remarks are presented in Section 6. 

2. MODELS FOR SIMULATION STUDY 

There are two models that are associated with our 
study: the outcome model that links treatment with a 
response and the treatment assignment model that 
defines the conditional probability of treatment 
assignment given some covariates. In this Section, we 
consider one outcome model and three treatment 
assignment models under complex heterogeneity 

situations. Suppose  K  is the number of clusters. To fix 

notation, let 
 
Y

ij
, 

 
Trt

ij  
(0 or 1) and 

 
Z

ij
 denote the 

response, the treatment assignment and the covariates 

of subject j  in the  i
th

 cluster, respectively, where 

i = 1,…,K ; 
   
j = 1,…,n

i
, and 

 
n

i
 is the number of  i

th

 

cluster. 
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2.1. The Outcome Model  

We consider the following outcome model: 

   

Y
ij
=

0
+ Trt

ij
+

1
Age

ij
+

2
Sev

ij

+
3
Test

ij
+

4
Insu

ij
+

1
Z

1
+ +

20
Z

20
+ b

i
+

ij

.        (3) 

Here i = 1,…,n  denotes physician and 
   
j = 1,…,n

i  
denotes the patients of physician i . The five named 
variables are age ( Age ), disease severity ( Sev ), 

diagnostic test score ( Test ), insurance type ( Insu , 
depending on age), and treatment (Trt ). Specifically, 

  
Age

ij
~Unif (10,60) , 

  
Sev

ij
(0,1,2)~ Mult( p

0
= 0.49, p

1
= 0.42,

 

  
p

2
= 0.09) , 

  
Test

ij
~N (1,2.25) . If 

  
Age

ij
40 , 

  
Insu

ij
~Bern(1, p = 0.8) , otherwise, 

  
Insu

ij
~Bern(1, p = 0.2) . 

The 20 unnamed covariates 
   

Z
1
,…,Z

20( )
 
are nuisance 

variables and all follow the standard normal 

distribution. The cluster effect is 
 
b

i
, where 

  i
~N 0,1( )  

and  b  is constant. The random error 
 ij

 is where 

  ij
~N 0,1( ) . The primary goal is to estimate , the 

regression coe cient associated with  Trt . 

2.2. Treatment Assignment Models 

We consider three random effects models in the 

treatment assignment. Treatment models 1 and 2, 

denoted by (T
1
) and (T

2
), are simple extensions of 

standard models used in the PS approach, except that 

we allow heterogeneity in the models. Both (
  
T

1
) and 

(
  
T

2
) are logistic link functions. In model (

  
T

1
), we allow 

the same heterogeneity variable 
 i

 in the outcome 

model (3) to impact the treatment assignment. In model 

(
  
T

2
), we introduce an independent random effect U

i
, 

where U
i i

, in the treatment assignment model. (T
1
) 

and (
  
T

2
) are defined as following: 

Pr(Trt
ij
= 1| X

ij
,
i
) = (1+ exp( (

1
Age

ij
+

2
Sev

ij

+
3
Test

ij
+

4
Insu

ij
+

i
))) 1

, (
  
T

1
) 

  

Pr(Trt
ij
= 1| X

ij
,U

i
) = (1+ exp( (

1
Age

ij
+

2
Sev

ij

+
3
Test

ij
+

4
Insu

ij
+U

i
))) 1

, (
  
T

2
) 

where U
i
~N (0,1) , 

i
~N (0,1) , U

i i
 are cluster 

effects. 

In the third treatment model (
  
T

3
, also see illustration 

and diagram in Figure 1), we mimic the complexity of 
the real world treatment assignment process and 
introduce the following treatment assignment scheme 
where the system (e.g., Insurance), patients and 

physician’s effects collectively determine the treatment 

assignment. Most importantly, these factors introduce 

 

Figure 1: Flow chart of treatment assignment model T3. 
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several unobserved heterogeneity parameters (μ, , ) , 

where μ~Unif ( 0.15,0.15)  is the random effect for 

probability, representing random variation of chances in 

assigning the treatment; 
  

~Unif ( 5,5)  is the random 

effect for patient’s age variation in getting the 

treatment. 

Model (
  
T

3
) below shows this dynamic treatment 

assignment scheme: 

  

Trt
ij
=

Bern 1, p = 0.7 + μ
i( ), Insu

ij
= 1&

i
1.2

0, Insu
ij
= 0or

i
<1.2( )& Age

ij
20 +

i
,50( )& Sev

ij
< 2

1, Insu
ij
= 0or

i
<1.2( )& Age

ij
20 +

i
,50( )& Sev

ij
= 2

0, Insu
ij
= 0or

i
<1.2( )& Age

ij
20 +

i
& Sev

ij
< 2

Bern 1, p = 0.4 + μ
i( ), Insu

ij
= 0or

i
<1.2( )& Age

ij

20 +
i
& Sev

ij
= 2

0, Insu
ij
= 0or

i
<1.2( )& Age

ij
50 & Sev

ij
< 2

Bern 1, p = 0.7 + μ
i( ), Insu

ij
= 0or

i
<1.2( )& Age

ij

50 & Sev
ij
= 2

. ( T
3
) 

To help understand why the model in (
  
T

3
) is closer to a 

real world data simulation, we provide the following 
illustration. The above scheme depicts a situation 
where the physician’s skill or practice style 

(represented by random effect 
 i

), the insurance plan 

coverage, the patient’s age (young, middle, and old), 

and the severity of the patient’s condition all affect the 

treatment assignment. For example, line 1 of (
  
T

3
) can 

be interpreted as following: if a doctor is a more 

aggressive type (
  i

1.2 ) and the patient’s insurance 

coverage is good, then the patient is more likely to get 
the more expensive new treatment, rather than the less 
expensive traditional care. Here the average chance for 

getting the treatment is 70%, though different doctors 

have their own chance, i.e., range 55% ~ 85%, with 

 
μ

i
’s range considered. The rest of the lines in (

  
T

3
) 

further allow patient’s age and severity to influence the 
treatment assignment. Furthermore, we allow doctors 

to have their own views of old and young (
 i

), as well 

as the chances of assigning the treatment (
 
μ

i
). The 

link function between  Trt  and those factors is not a 

logistic function in contrast to the link function in (
  
T

1
) 

and (
  
T

2
). We believe this model is more realistic and 

closer to a real world treatment assignment process 
than the simple logistic link function, which is chosen 
mainly for its mathematical convenience. 

 

3. METHODS CONSIDERED IN SIMULATION STUDY 

We will make inference on the data from three 
treatment assignment models in Section 2 with the PS 
stratification method, PS inverse probability weighting, 
PS regression, and its extensions under random 

effects. We also consider the partial least squares 
methods. Under the PS methods framework, how to 
model the clustered data is an open question. We 
consider several possible approaches, including 
ignoring the heterogeneity, adjusting the heterogeneity 

by dummy variables, and a mixed effects model. 

PS Methods Under Heterogeneity 

Define 
  
Dummy

ij
= 1  if subject 

 
j
 
is in the  i

th

 cluster, 

and 
  
Dummy

ij
= 0 , otherwise. We proceed with the 

existing PS in the following three ways: 

(1) ignoring the heterogeneity (denoted by 
 
PS

I
) and 

using the standard logistic regression based PS 
method 

  
Logit(Pr(Trt

ij
= 1| X

ij
)) =

0
+

1
X

ij
;        (4) 

(2) using a dummy variable method (denoted by 

 
PS

D
) to adjust for heterogeneity 

  
Logit(Pr(Trt

ij
= 1| X

ij
, Dummy

i
)) =

0
+

1
X

ij
+

2
Dummy

i
; (5) 

(3) using a mixed effects model (denoted by 
 
PS

M
) 

for heterogeneity 

  
Logit(Pr(Trt

ij
= 1| X

ij
,

i
)) =

0
+

1
X

ij
+

i
,         (6)  

where 
 i

 is a random cluster effect. 

After fitting PS from one of three models above, we 
can proceed to estimate the treatment effect ( ) by 

the following methods. 

PS Stratification 

The PS stratification method is to stratify subjects 
into mutually exclusive subsets based on their 
estimated propensity score. Within each stratum, the 

treatment effect can be estimated by comparing 

outcomes between treated and untreated subjects. The 

stratum-specific treatment effects are weighted by the 
proportion of subjects lying within that stratum to obtain 

the overall treatment effect. In this article, we divide 

subjects into four equal-size groups using the quantiles 
of the estimated propensity score. Let denote the  
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estimated treatment effect from the stratification 

method with the propensity score estimated from 
models (4), (5) and (6), respectively. 

PS Inverse Probability Weight 

The PS inverse probability weight method is to use 
inverse of the propensity score as weight to create a 
synthetic sample in which the distribution of measure 
baseline covariates is independent of treatment 
assignment. The weight can be defined as following: 

  

W
ij
=

Trt
ij

PS
ij

+

1 Trt
ij

1 PS
ij

. 

The treatment effect can be estimated by  

  

1

N

Y
ij
Trt

ij

PS
ij

j=1

n
i

i=1

K 1

N

Y
ij
(1 Trt

ij
)

1 PS
ij

j=1

n
i

i=1

K

, 

where 
  
N = n

jj=1

K

is the total number of subjects. Let 

   IPW I
, 

   IPW D  
and 

   IPW M  
denote the estimated 

treatment effects from the inverse probability weight 
method with the propensity score estimated from 
models (4), (5) and (6), respectively. 

PS Regression 

The PS regression method is to estimate the 
treatment effect ( ) from one of following three 

regression models. 

(a) Ignoring heterogeneity model: 

   
Y

ij
=

0
+ Trt

ij
+

1
PS + e

ij
,          (7) 

(b) Using dummy variable adjustment model: 

   
Y

ij
=

0
+ Trt

ij
+

1
PS +

2
Dummy

i
+ e

ij
,         (8) 

(c) Using mixed model: 

Y
ij
=

0
+ Trt

ij
+

1
PS +

i
+ e

ij
,          (9) 

where 
 i  

is the cluster effect. 

In the PS regression, we have 9 estimators from the 
factorial combination of three treatment models 
(models 4-6) and three outcome models (models 7-9). 
These estimators are denoted as three class 

estimators 
   I I

,
I D

,
I M

( ) , 
   D I

,
D D

,
D M

( ) , 

   D I
,

D D
,

D M
( ) , where the first letter in the subscript 

represents how heterogeneity is handled in calculating 

PS scores and the second letter in the subscript 
represents how the heterogeneity in the outcome 
model is handled. Table 1 below summarizes these 
estimators. 

Table 1: Extending Existing PS Method to Handle 
Heterogeneity 

Outcome Model 
Treatment Model 

Ignore Mixed Dummy 

Ignore 
  I I

 
  I M

 
  I D

 

Mixed 
  M I

 
  M M

 
  M D

 

Dummy 
  D I

 
  D M

 
  D D

 

 
Partial Least Squares (PLS) 

PLS is a wide class of methods for modeling 
relations between sets of observed variables by means 
of latent variables [17-19]. In its general form, PLS 
creates orthogonal score vectors (also called latent 
vectors or components) by maximizing the covariance 

between different sets of variables. PLS can be 
naturally extended to regression problems. The 
predictor and predicted (response) variables are each 
considered as a block of variables. PLS then extracts 
the score vectors which serve as a new predictor 
representation and regresses the response variables 
on these new predictors. PLS does not depend on the 
model specification, hence is robust to nonlinear, 
clustering, and interactions. We consider the following 
PLS algorithm. We first center the covariates matrix  X  
and response matrix Y , then set u  to the first column 
of  Y and repeat a sequence of the following steps until 

convergence. 1. 
  
w = X

T
u / u

T
u( ) , coefficients of 

regressing u  on X ; 2. 
  

w 1 , scale w  to be of 

length one; 3.  t = Xw ; 4. 
  
c = Y

T
t / t

T
t( ) , coefficients of 

regressing t  on  Y ; 5. c 1 , scale  c  to be of length 

one; 6.  u = Yc . If  Y  is a vector,  u  is equal to  Y . 

It can be shown that the weight vector  w  
corresponds to the first eigenvector of the following 
eigenvalue problem: 

 X
T
YY

T
Xw = w . 

The latent variables  t ,  u  are then given as  t = Xw  and 
u = Yc . The vectors of loadings 

 
p

 
and 

 
q

 
are computed 

as coefficients of regressing  X  on  t  and Y  on  u , 

respectively. That is, 
  
p = X

T
t / t

T
t( )  and 

  
q = Y

T
u / u

T
u( ) . 

After the extraction of the score vectors  t  and  u , the 

matrix X  and Y  are deflated as 
 
X = X tp

T

 
and 
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Y = Y uq
T . If Y  is a vector, we need not subtract 

above approximation from  Y . The iterations can 
continue until a stopping criteria is met or X  becomes 

the zero matrix. For the PLS method, we let 
PLS I

, 

   PLS D
, 

   PLS M
denote three corresponding PLS 

estimators under the three outcome models (7-9), 
respectively. 

Intuitive Version of Partial Least Squares 

The intention of PLS is to form a set of components 
(named latent variable) that capture most of the 
information in the  X  variables that is useful for 
predicting response, while reducing the dimensionality 
of the regression problems by using fewer components 
than the number of  X  variables. While the description 
we presented above may not be immediately intuitive, 
Garthwaite [20] provided a more intuitive and 
interpretable version of PLS, simplified to the case of 
just one response variable Y . Under Garthwaite’s 
framework of PLS, it is easily seen that the PLS is 
robust to not only the underlying model link structure, 
but also to the form of the covariates. His version of 
PLS is 

1. 1
st
 component: S

1
 and V

11
,…,V

1m
 are centered 

response Y  and covariates 
   
X

1
,…, X

m
, 

respectively. Perform univariate regressions 

   
S

1
= b

1 j
V

1 j
, j = 1,…,m . The first component 

  
L

1  
is 

constructed as 
  
L

1
= W

1 j
b

1 j
V

1 jj=1

m

, where 
  
W

1 j  
are 

pre-determined weight functions; 

2. 2
nd

 component: run a univariate regression with 

  
L

1
 being the covariate and 

  
S

1
, 

   
X

1
,…, X

m
being 

response. Denote the residuals by S
2
, 

   
V

21
,…,V

2m
, respectively. Similarly, perform 

univariate regressions: 
   
S

2
= b

2 j
V

2 j
, j = 1,…,m . 

Then 
  
L

2
 is constructed as 

  
L

2
= W

2 j
b

2 j
V

2 jj=1

m
, 

where 
  
W

2 j  
are pre-determined weight functions; 

3. 3
rd

 component: run a univariate regression with 

  
L

1
 and 

  
L

2
 being the covariate and 

  
S

1
, 
   
X

1
,…, X

m
 

being response. Denote the residuals by 
  
S

3
, 

   
V

31
,…,V

3m
, respectively. Similarly, perform 

univariate regressions: S
3
= b

3 j
V
3 j
, j = 1,…,m . 

Then 
  
L

3
 is constructed as 

  
L

3
= W

3 j
b

3 j
V

3 jj=1

m

, 

where 
  
W

3 j  
are pre-determined weight functions; 

 

4. Subsequent components are constructed 
likewise. 

From Garthwaite’s interpretation, we can see that 

the PLS components are obtained without any model 

specification. Further, inspecting the key step 3 reveals 

that the subsequent components are computed from 

residuals of regressing the original  Y  and  X  on the 

already derived components i.e., these components 

are like “orthogonal” components and they are robust 

to potential nonlinearity, clustering, interactions, and 

complex heterogeneity existing in the treatment 

assignment. 

4. SIMULATION STUDY 

We generate the data from the outcome model (3): 

   

Y
ij
=

0
+ Trt

ij
+

1
Age

ij
+

2
Sev

ij
+

3
Test

ij

+
4
Insu

ij
+

1
Z

1
+ +

20
Z

20
+ b

i
+

ij

. 

We set 
 0

= 0 , 
 1

= 0.2 , 
 2

= 0.4 , 
 3

= 0.7 , 
 4

= 0.3 ; 

and b = 0,1 ,  = 0,0.5 , respectively. We set 

1
= =

20
= 0 . We randomly generate 500 data sets, 

each with n = 100  (i.e., 100 physicians), 
   
n

i
= 20 80  

(i.e., 20-80 patients per doctor) for a total patient 
number   N = 4700 . The treatment assignments are 

generated from one of the three models, ( T
1
), ( T

2
) and 

(
  
T

3
), respectively. We present the result for 

  
Pr Trt = 1( ) = 0.1  and leave the result for 

  
Pr Trt = 1( ) = 0.5

 
as an online supplement. We use the R packages 
“glmmML” (generalized linear mixed model) to 
estimated propensity score, and “lmm” (linear mixed 

model) to estimate treatment effect, respectively. In the 
propensity score method, the covariates  X  from 

  
PS = Pr(Trt = 1| X )  is the matrix 

   
Age,Sev,Test, Insu,Z

1
,…Z

20( ) . We also use the package 

“pls” (PLS method) to compute the latent variables. In 
the PLS method, we use  Trt  as the response and  X  
as the covariates matrix, then we can obtain the latent 
variables matrix  W . In this article, the latent variables 
matrix  W  is constituted by 5 PLS components. Then 

we can obtain the treatment effect estimates from the 

regression  Y  on  Trt  and  W . Below, we present our 

results in the order of (
  
T

1
), (

  
T

2
) to (

  
T

3
). 

Treatment Assignment Generated From Model (
  
T

1
)  

We choose the parameters 
1
= 0.1 Age( ) , 

2
= 0.1 Sev( ) , 

3
= 0.2 Test( ) , 

4
= 0.3 Insu( )  to get 
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Pr Trt = 1( ) = 0.1 . The simulation results are summarized 

in Table 2. 

Inspecting Table 2 reveals that when   b = 0 , i.e., 
when there is no random effect in the outcome model, 
we have: 

(i) 
S I
,

S M
( ) , 

IPW I
,

IPW D
,

IPW M
( )  and 

   M I
,

M D
,

M M
( )  estimators are biased, 

   S D
 is 

unbiased; 

(ii) 
   PLS I

, 
   PLS D

 and 
   PLS M

 are unbiased and are 

the most efficient estimators for . 

 

(iii) 
   D I

,
D D

,
D M

( )  and 
   I I

,
I D

,
I M

( )  are all 

unbiased but are less efficient than PLS 
estimators. 

When   b = 1 , i.e., when  appears in both the 

treatment and the outcome model, where the 
physician’s skill level affects both treatment choice and 

outcome. 

(i) 
   I I

,
I D

,
I M

( )  class estimators now become 

biased; 

(ii) 
   S I

,
S M

( ) , 
   IPW I

,
IPW D

,
IPW M

( )  and 

   M I
,

M D
,

M M
( )  estimators are still biased, 

   S D
 

is still unbiased; 

Table 2: Treatment assignment model (T1) 

b = 0 b = 1 

 = 0  = 0.5  = 0  = 0.5 Method 

Mean SD Mean SD Mean SD Mean SD 

  S I
 -0.100 0.193 0.400 0.193 -0.104 0.236 0.396 0.236 

  S M
 0.140 0.066 0.640 0.066 -0.121 0.230 0.379 0.230 

  S D
 -0.032 0.443 0.468 0.443 -0.028 0.463 0.472 0.463 

  IPW I
 -0.257 0.525 0.232 0.545 -0.246 0.540 0.225 0.560 

  IPW M
 3.979 1.504 4.469 1.576 3.969 1.515 4.483 1.586 

  IPW D
 -0.470 1.403 -0.000 1.464 -0.466 1.417 0.004 1.477 

  I I
 -0.025 0.060 0.475 0.060 0.844 0.142 1.344 0.142 

  I M
 -0.026 0.061 0.474 0.061 0.105 0.081 0.605 0.081 

  I D
 -0.038 0.080 0.462 0.080 -0.038 0.080 0.462 0.080 

  M I
 -0.189 0.087 0.311 0.087 0.679 0.135 1.179 0.135 

M M
 -0.190 0.087 0.310 0.087 -0.058 0.086 0.442 0.086 

  M D
 -0.207 0.088 0.293 0.088 -0.207 0.088 0.293 0.088 

  D I
 0.001 0.062 0.501 0.062 0.001 0.057 0.499 0.057 

  D M
 0.002 0.068 0.502 0.068 0.002 0.068 0.502 0.068 

  D D
 0.003 0.070 0.503 0.070 0.003 0.070 0.503 0.070 

  PLS I
 -0.004 0.051 0.496 0.051 0.840 0.139 1.340 0.139 

  PLS M
 -0.004 0.051 0.496 0.051 0.016 0.054 0.516 0.054 

  PLS D
 -0.003 0.054 0.497 0.054 -0.003 0.054 0.497 0.054 

Note: (
S I
,

S D
,

S M
) : The PS stratification estimates. (

IPW I
,

IPW D
,

IPW M
) : PS inverse probability weight estimates.  PS regression with PS from the model of 

using ignoring (I), dummy variable (D) and mixed model (M) to adjust the heterogeneity in propensity score and the second subscript of 
 

 denotes the response 

from the model of using ignoring (I), dummy variable (D) and mixed model (M) to adjust the heterogeneity in response. 
PLS .

: the PLS method and the second 

denotes the response model.  
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(iii) 
   D I

,
D D

,
D M

( )  class estimators are again 

unbiased and still less efficient than 

PLS I
,

PLS D
,

PLS M
( )  class; 

(iv) among 
   PLS I

,
PLS D

,
PLS M

( )  class estimators, 

   PLS I
 is now biased, but 

   PLS D
 and 

   PLS M
 are 

still the most efficient estimators. 

Treatment Assignment Generated from Model (
  
T

2
) 

We choose the parameters 
  1

= 0.1 Age( ) , 

2
= 0.1 Sev( ) , 

3
= 0.2 Test( ) , 

4
= 0.3 Insu( )  to get 

  
Pr Trt = 1( ) = 0.1 . The simulation results are summarized 

in Table 3. 

Here, the random effect in the treatment model is 

independent of that in the outcome model, i.e., 
 
U

i i
. 

The basic observation outlined in Table 2 mostly stay 

the same. The only difference is that 
   PLS I

 is now 

unbiased in Table 3, even when   b = 1  and 
   S D

 is 

biased, when   b = 1 . Again, 
   D I

,
D D

,
D M

( )  class 

estimators are pretty robust and unbiased, yet they are 

not as efficient as 
   PLS D

 and 
   PLS M

. 

Treatment Assignment Generated from Model (
  
T

3
)  

Again, 
  
Pr Trt = 1( ) = 0.1  in model (

  
T

3
). The other 

parameter values are given in ( T
3
). The simulation 

results are presented in Table 4. 

Table 4 results reveal that: 

(i) 
   S I

,
S M

( ) , 
   IPW I

,
IPW D

,
IPW M

( )  and 
   I I

,
I D

,
I M

( )  

class estimators are all biased; 

Table 3: Treatment Assignment Model (T2) 

b = 0 b = 1 

 = 0  = 0.5  = 0  = 0.5 Method 

Mean SD Mean SD Mean SD Mean SD 

  S I
 -0.100 0.193 0.400 0.193 0.796 0.244 1.296 0.244 

  S M
 -0.117 0.190 0.383 0.190 0.782 0.244 1.282 0.244 

  S D
 -0.032 0.443 0.468 0.443 0.136 0.470 0.636 0.470 

  IPW I
 -0.257 0.524 0.232 0.545 0.629 0.582 1.118 0.602 

  IPW M
 3.979 1.504 4.694 1.576 5.280 1.790 5.994 1.862 

  IPW D
 -0.470 1.403 -0.000 1.464 -0.380 1.309 0.090 1.370 

  I I
 -0.025 0.060 0.475 0.060 -0.030 0.126 0.470 0.126 

  I M
 -0.026 0.061 0.474 0.061 -0.036 0.077 0.464 0.077 

  I D
 -0.038 0.080 0.462 0.080 -0.038 0.080 0.462 0.080 

  M I
 -0.196 0.083 0.304 0.083 -0.201 0.136 0.299 0.136 

  M M
 -0.197 0.083 0.303 0.083 -0.210 0.085 0.290 0.085 

M D
 -0.213 0.086 0.287 0.086 -0.213 0.086 0.287 0.086 

  D I
 0.001 0.062 0.501 0.062 0.001 0.062 0.501 0.062 

D M
 0.002 0.068 0.502 0.068 0.002 0.068 0.502 0.068 

  D D
 0.003 0.070 0.503 0.070 0.003 0.070 0.503 0.070 

  PLS I
 -0.004 0.051 0.496 0.051 0.002 0.120 0.502 0.120 

  PLS M
 -0.004 0.051 0.496 0.051 -0.003 0.054 0.497 0.054 

PLS D
 -0.003 0.054 0.497 0.054 -0.003 0.054 0.497 0.054 

Note: The notations are the same as in Table 2. 
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(ii) 
M I
,

M M
( )  are biased under   b = 0 , however 

they are biased under   b = 1  and the estimator 

M D
 is unbiased; 

(iii) 
   D I

,
D D

,
D M

( )  class estimators are 

consistently robust estimator for ; 

(iv) 
   PLS D

 and 
   PLS M

are unbiased and are the most 

efficient estimators among all. 

The study of different model combinations above 

shows that 
   IPW I

,
IPW D

,
IPW M

( )  are biased estimators 

where there is heterogeneity in the treatment and 

outcome models. 
PLS

 class estimators, especially the 

PLS D
 and 

PLS M
estimators are unbiased and most 

efficient among all estimators considered. Perhaps 

most intriguing are the results for the 
D I
,

D D
,

D M
( )  

class estimator. They are surprisingly unbiased and 

robust, not too far below the 
   PLS

class estimators in 

term of efficiency. 

5. REAL DATA ANALYSIS 

The German Breast Cancer Study Group (GBSG) 
study was conducted between November 1983 and 

November 1989 to evaluate the treatment effect of 
breast preservation compared with radical breast 
cancer surgery, under non-randomized, real-world 
treatment conditions. There were 63 university and 
community hospitals and the total number of the 
women patients with breast cancer of 

Table 4: Treatment Assignment Model (T3) 

b = 0 b = 1 

 = 0  = 0.5  = 0  = 0.5 Method 

Mean SD Mean SD Mean SD Mean SD 

S I
 -0.184 0.949 0.316 0.949 1.200 0.992 1.700 0.992 

  S M
 -0.186 0.920 0.314 0.920 1.209 0.938 1.709 0.938 

  S D
 0.543 0.492 1.043 0.492 1.480 0.504 1.980 0.504 

  IPW I
 13.689 12.162 14.856 12.818 17.480 14.387 18.647 15.044 

  IPW M
 85.691 103.801 90.806 109.566 102.685 121.762 107.800 127.532 

  IPW D
 -8.513 4.037 -8.294 4.446 -8.751 5.027 -8.532 5.037 

  I I
 -0.292 0.096 0.208 0.096 0.774 0.165 1.274 0.165 

  I M
 -0.294 0.097 0.206 0.097 -0.085 0.147 0.415 0.147 

  I D
 -0.343 0.159 0.157 0.159 -0.343 0.159 0.157 0.159 

  M I
 -0.015 0.165 0.485 0.165 1.090 0.206 1.590 0.206 

  M M
 -0.015 0.164 0.485 0.164 0.246 0.173 0.746 0.173 

M D
 -0.020 0.167 0.480 0.167 -0.020 0.167 0.480 0.167 

  D I
 -0.006 0.085 0.494 0.085 -0.006 0.096 0.494 0.096 

D M
 -0.005 0.086 0.495 0.086 -0.005 0.091 0.495 0.091 

  D D
 -0.004 0.090 0.496 0.090 -0.004 0.090 0.496 0.090 

  PLS I
 -0.003 0.055 0.497 0.055 0.733 0.158 1.233 0.158 

  PLS M
 -0.003 0.055 0.497 0.055 0.015 0.059 0.515 0.059 

  PLS D
 -0.003 0.059 0.497 0.059 -0.003 0.059 0.497 0.059 

Note: The notations are the same as in Table 2. 
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pathophysiological tumor stage pT1 N0 M0 was 646 in 
the GBSG study [21, 22]. Our main purpose is to 
evaluate the performance status ( PST ) in relation to 
the two treatment modalities, which are simple 
mastectomy ( Trt = 0 ) and lumpectomy (BC, breast 
conservation,  Trt = 1).  PST  is a score between 0 and 
100 comprising several items of the quality of life (QoL) 
questionnaire, with higher scores reflecting better QoL. 
Patient age (

 
Age ) and tumor size ( Tmass ) are 

considered as possible confounders. 

We consider the following response model: 

   

PST
ij
=

0
+ Trt

ij
+

1
Age

ij
+

2
Tmass

ij
+

3
Age

ij
Tmass

ij
+

1
Z

ij1
+ +

15
Z

ij15
+

ij

, 

where  i  denotes the hospital, 
 
j  denotes the patient in 

the  i
th

 hospital and  is a random error. The 

covariates Z
1
,…,Z

10
 each has a standard normal 

distribution, and 
   
Z

11
,…,Z

15  
are discrete variable with 

corresponding distribution being Z
11

Bern(0.4) , 

Z
12
(0,1,2) Mult(0.4,0.5,0.1) , 

  
Z

13
= I W

1
> 0( )  with 

   
W

1
N (0.2,1) , 

  
Z

14
= I W

2
> 0.2( )  with 

   
W

2
N (0.5,1.5)  

and 
   
Z

15
(0,1,2,3,4) Mult(0.2,0.3,0.2,0.2,0.1) , 

respectively. The covariates Z
1
,…,Z

15
 are noise 

variables and 
  1

= =
15
= 0 . 

We consider the models (4), (5) and (6) in Section 3 
to estimate propensity scores 

with X = Age,Tmass, Age Tmass,Z
1
,…,Z

15( ) . We consider 

four methods to estimate the treatment effect: PS 

stratification, PS inverse probability weighting, PS 
regression and partial least squares methods. We use 
the bootstrap method to obtain variance estimate and 
the number of bootstrap iterations is 300. We use the 
cross-validation method to select the number of PLS 
components. The results are summarized in Table 5. 

Inspecting results in Table 5, we observed similar 
conclusion to our simulation results, i.e. the IPW class 
estimators of the main effect estimate 

   IPW I
,

IPW D
,

IPW M
( )  is biased. The fact that the IPW-D 

and IPW-M are so far apart and one is a positive effect 
(24.143) and the other one is a negative (-27.353 and 
significant) also suggests that the estimated results 
from this method cannot be trusted. The PS 
stratification class estimator and the PS regression 
class estimator yield about the same order of 
magnitude of the effect size as the proposed PLS 
estimator. Inspecting the column 3 in Table 5, our 
proposed partial least squares method has the smallest 
variance 1.302 and a more precise 95% confidence 
interval (-2.158, 2.945) compared with other three 
methods. This suggest that in this real data analysis, 
the PLS method is more efficient than the other 
methods. We would conclude based on the proposed 
method that the proposed partial least squares method 
confirms that lumpectomy treatment is not significantly 

Table 5: Analysis Results for German Breast Cancer Study Group Study 

Method 
 

 SE(
 

) 95% Cl 

  S I
 -0.169 1.416 (-2.944, 2.607)  

  S M
 -0.251 1.672 (-3.439,2.937) 

  S D
 2.943 2.666 (-2.283, 8.170)  

  IPW I
 1.612 3.257 (-4.772, 7.997)  

  IPW M
 -27.353 24.189 (-74.763, 20.056) 

  IPW D
 24.143 7.496 (9.450, 38.836)  

  R I
 0.489 1.396 (-2.246,3.225)  

  R M
 0.416 1.376 (-2.263,3.094) 

  R D
 0.580 1.779 (-2.906,4.067) 

   PLS 2
 0.393 1.302 (-2.158,2.945) 

Note: 
   
(

S I
,

S D
,

S M
) : The PS stratification estimates. 

   
(

IPW I
,

IPW D
,

IPW M
) : PS inverse probability weight estimates. 

   
(

R I
,

R D
,

R M
) : PS regression estimators. 

PLS 2
: partial least squares estimator by using 2 components. 
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related to improved performance status, but has a 
nominal positive impact on it. 

6. DISCUSSION AND CONCLUDING REMARKS 

In this article, we designed several treatment 

assignment mechanisms that we believe to be more 

realistic and closer to real world medical practice than 

the commonly used standard logistic model. Treatment 

selection in observational studies is a complex process 

that involves many factors derived from patients, 

disease status, health care providers, and health care 

systems. Incompleteness in measuring the underlying 

treatment assignment process can create 

heterogeneity that is complex and intractable, and 

could bias the estimate of the true treatment effects. 

We extended the traditional PS method to allow 

different ways of handling random effects (see Table 

1) and consider the traditional PS stratification, PS 

inverse probability weight and PS regression methods. 

We also considered that non model-dependent 

approaches, the PLS methods under the data 

generated. All methods are used to analyze the same 

data set generated. To our knowledge, our paper is the 

first to compare these methods under real world 

heterogeneity situations. 

Overall, we found that two classes of estimators are 
unbiased under all situations studied: the class of 

estimators 
   D I

,
D D

,
D M

( )  where the dummy variable 

method was used in the treatment model and the class 

of estimators based on PLS, namely, 
   PLS D

 and 

   PLS M
. The best performance goes to the class of 

estimators based on PLS, as they are more efficient 

than the 
   D I

,
D D

,
D M

( ) class of estimators. The 

   IPW I
,

IPW D
,

IPW M
( )  do not yield unbiased estimators 

under the situations considered. Our results shed some 
light on what method to use when heterogeneity in the 
underlying process is suspected. More importantly, it 
shows that ignoring such heterogeneity will result in 

biased estimates for the true treatment effect. Our 
result confirmed that where there is complex 
heterogeneity in the treatment assignment, simply 
using the existing method that ignores the 
heterogeneity in the treatment assignment will lead to 
biased estimators generally. We provide below a few 
remarks and insights on the performance of each 
method. 

Interesting questions remain for future research. 
This includes developing a hypothesis testing method 
for detecting potential heterogeneity structure in 
observational studies, and investigating the properties 

of the PLS method. The robust properties of those 
estimators need to be developed theoretically and 
tested with real data. Chen, Zhang and Davidian [23] 
proposed a Monte Carlo EM (MCEM) algorithm for 
generalized linear mixed models with flexible random 

effects distribution. This algorithm allows the density to 
be skewed, multi-modal, fat- or thin-tailed relative to the 
normal distribution and includes the normal distribution 
as a special case. Next, we will consider using the 

MCEM algorithm for PS with random effects, which will 

be more robust. In conclusion, we suggest using the 

dummy adjusted PS method, i.e., 
   D I

,
D D

,
D M

( )  

and/or the PLS method in practice whenever there is 
suspicion that there is heterogeneity in the underlying 
treatment assignment. When the number of clusters is 
small and the number of observations in each cluster is 
large, using the dummy variables to handle the fixed 

cluster effect is reasonable. 

ACKNOWLEDGEMENT 

This work is supported in part by Pfizer, Inc. Drs. Liu 

and Willke are employees of Pfizer. 

SUPPORTING MATERIALS 

The supporting materials can be downloaded from 

the journal website along with the article. 

REFERENCES 

[1] Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. 
Body-mass index and incidence of cancer: a systematic 
review and meta-analysis of prospective observational 

studies. Lancet 2008; 371: 569-78.  
http://dx.doi.org/10.1016/S0140-6736(08)60269-X 

[2] Silverman SL. From randomized controlled trials to 
observational studies. AM J Med 2009; 122: 114-20.  
http://dx.doi.org/10.1016/j.amjmed.2008.09.030 

[3] Thompson S, Ekelund U, Jebb S, Lindroos AK, Mander A, 

Sharp S, Turner R, Wilks D. A proposed method of bias 
adjustment for meta-analyses of published observational 
studies. Int J Epidemiol 2011; 40: 765-77. 
http://dx.doi.org/10.1093/ije/dyq248 

[4] Hair JF, Sarstedt MC, Ringle CM, Mean JA. An assessment 

of the use of partial least squares structural equation 
modeling in marketing research. J Acad Mark Sci 2012; 40: 
414-33. 

[5] Kucher N, Koo S, Quiroz R, Cooper J, Paterno M, 
Soukonnikov B, Goldhaber S. Electronic Alerts to Prevent 

Venous Thromboembolism among Hospitalized Patients. N 
Engl J Med 2005; 352: 969-77. 
http://dx.doi.org/10.1056/NEJMoa041533 

[6] Sharpe N. Clinical Trials and the Real World: Selection Bias 

and Generalizability of Trial Results. Cardiovasc Drugs 
Therapy 2002; 16: 75-7. 

[7] Alemayehu D, Ma J, Jones B, Willke R. Statistical issue with 
the analysis of non- randomized studies in comparative 

effectiveness research. J Manag Care Pharm 2011; 17: 22-

26. 

[8] Willke R, Mullins C. “Ten commandments” for conducting 

comparative effectiveness research using ”Real-World 

Data”. J Manag Care Pharm 2011; 17: 10-15. 



214     International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 2 Yu et al. 

[9] Rosenbaum R, Rubin D. The central role of the propensity 

score in observational studies for causal effects. Biometrika 
1983; 70: 41-55. 

[10] Stukel T, Fisher E, Wennberg D, Alter D, Gottlieb D, 
Vermeulen M. Analysis of Observational Studies in the 

Presence of Treatment Selection Bias. JAMA 2007; 297: 
278-85. 

[11] Chen Y, Lin J, Yu H, Ko W, Jerng J, Chang W, Chen W, 
Huang S, Chi N, Wang C, Chen L, Tsai P, Wang S, Hwang J, 
Lin F. Cardiopulmonary resuscitation with assisted 

extracorporeal life-support versus conventional 
cardiopulmonary resuscitation in adults with in-hospital 
cardiac arrest: an observational study and propensity 

analysis. Lancet 2008; 372: 554-61. 
http://dx.doi.org/10.1016/S0140-6736(08)60958-7 

[12] Hong J, Yu B. Effects of kindergarten retention on children’s 

social-emotional de- velopment: An application of propensity 

score method to multivariate, multilevel data. Dev Psychol 
2008; 44: 407-21. 
http://dx.doi.org/10.1037/0012-1649.44.2.407 

[13] Ye Y, Kaskutas L. Using propensity scores to adjust for 

selection bias when assessing the effectiveness of 

Alcoholics Anonymous in observational studies. Drug Alcohol 
Depend 2009; 104: 56-64. 
http://dx.doi.org/10.1016/j.drugalcdep.2009.03.018 

[14] Wyse A, Keesler V, Schneider B. Assessing the effects of 

small school size on mathematics achievement: A propensity 
score-matching approach. Teachers College Record 2008; 
110: 1879-900. 

[15] Staff J, Patrick M, Loken E, Maggs J. Teenage alcohol use 

and educational attain- ment. J Stud Alcohol Drugs 2008; 69: 
848-58. 

[16] Maciejewski M, Livingston E, Smith V, Kavee A, Kahwati L, 

Henderson W, Arter- burn D. Survival Among High-Risk 
Patients After Bariatric Surgery. JAMA 2011; 305: 2419-26. 
http://dx.doi.org/10.1001/jama.2011.817 

[17] Hoskuldsson A. PLS regression methods. J Chemometr 
1988; 2: 211-28. 
http://dx.doi.org/10.1002/cem.1180020306 

[18] Frank I, Friedman J. A Statistical View of Some 
Chemometrics Regression Tools. Technometrics 1993; 35: 
109-35. 
http://dx.doi.org/10.1080/00401706.1993.10485033 

[19] Rosipal R, Kramer N. Overview and Recent Advances in 

Partial Least Squares. Lecture Notes Comp Sci 2006; 3940: 
34-51. 

[20] Garthwaite P. An interpretation of partial least squares. J Am 
Statist Assoc 1994; 89: 122-27. 
http://dx.doi.org/10.1080/01621459.1994.10476452 

[21] Rauschecker H, Sauer R, Schauer A, Schumacher M, 

Olschewski M, Sauerbrei W, Seegenschmiedt M, Schmoor 
C. Therapy of small breast cancer-four year results of a 
prospective non-randomized study. Breast Cancer Res Treat 
1995; 34: 1-13. 

[22] Senn S, Graf E, Caputo A. Stratification for the propensity 
score compared with linear regression techniques to assess 

the effect of treatment or exposure. Stat Med 2007; 26: 

5529-44. 

[23] Chen J, Zhang D, Davidian M. A Monte Carlo EM algorithm 

for generalized linear mixed models with flexible random 

effects distribution. Biostatistics 2002; 3: 347-60. 

 
Received on 15-04-2014 Accepted on 29-04-2014 Published on 14-05-2014 
 
http://dx.doi.org/10.6000/1929-6029.2014.03.02.13 

 
© 2014 Yu et al.; Licensee Lifescience Global. 
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License 

(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in 
any medium, provided the work is properly cited. 
 


