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Abstract: This paper suggests some new estimators of the ridge parameter for binary choice models that may be 
applied in the presence of a multicollinearity problem. These new ridge parameters are functions of other estimators of 
the ridge parameter that have shown to work well in the previous research. Using a simulation study we investigate the 
mean square error (MSE) properties of these new ridge parameters and compare them with the best performing 
estimators from the previous research. The results indicate that we may improve the MSE properties of the ridge 
regression estimator by applying the proposed estimators in this paper, especially when there is a high multicollinearity 
between the explanatory variables and when many explanatory variables are included in the regression model. The 
benefit of this paper is then shown by a health related data where the effect of some risk factors on the probability of 
receiving diabetes is investigated. 
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1. INTRODUCTION 

For binary choice models one often assumes that 
we want to model the relationship between some 
explanatory variables and a latent variable. This 
relationship may be described using the subsequent 
equation:  

y
i
* = x

i
' + u

i
,        (1.1) 

where one may define 
 
x

i
 as the ith row of X , which is 

a 
  
n p +1( )  data matrix with p explanatory variables, 

 
is a 

  
p +1( ) 1  vector of coefficients and 

 
u

i
 is an 

error term. A latent variable is a random variable who’s 
realized values are hidden. Instead, the property of the 
latent variable must be inferred indirectly using a 
statistical model such as the one presented in equation 
(1.1) that connects the latent (unobserved) variables to 
observed variables. Common examples of latent 
variables are different psychometric measures (see for 
example [1]) and in economics it may be the utility 
when purchasing a product (see [2]). In all of these 
cases we may not observe the latent variable directly. 
Instead we may investigate the following binary 
dependent variable: 
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y
i
=

1   if  y
i
* > 0

0   otherwise

       (1.2) 

Depending on the distribution of the error term in 
equation (1.1) we may have two different regression 
models. The first is the probit model which should be 

used when the error term u
i
 is normally distributed. 

The second option is the logit model that may be 

applied if the error term 
 
u

i
 is logistic distributed. For 

both models the parameters are estimated using the 
maximum likelihood (ML) method by applying the 
following iterative weighted least square (IWLS) 
algorithm: 

ML = (X'WX )-1 X'Wz        (1.3) 

where z  is a vector where the ith element equals 

zi = log( i) +
yi- i

i(1- i)
 and W  is a matrix where the 

non-diagonal elements equal to zero and the ith 

diagonal element equals ( i)(1- i) . However, when 

the explanatory variables are collinear then the 
estimated parameters become instable with high 
variances. Hence, the consequences of 
multicollinearity are wider confidence intervals and an 
increase in the probability of conducting a type II error 
in any hypothesis testing regarding the estimated 
parameters. To solve this problem, caused by  
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multicollinearity, [3] suggested using the following ridge 
regression estimator: 

RR = (X'WX+kI )-1 X'WX ML
      (1.4) 

where ˆ
ML  is defined in (1.3). The shrinkage 

parameter k in equation (1.4) may take on values 
between zero and infinity, and when k equals zero, we 

have
 
ˆ
RR =

ˆ
ML . When k is greater than zero we have 

that ˆ
RR

ˆ
ML . Since ˆML  is, on average, too long 

in the presence of multicollinearity, ˆRR  
is expected to 

perform better and thus have a lower mean squared 

error (MSE) than
 
ˆ
ML . This is well-established both 

theoretically and by means of Monte Carlo simulation 
for binary choice models by for example [3, 4]. The 
purpose of this paper is to introduce some new 
estimators of the ridge parameter in equation (1.4). 
These new ridge parameters are functions of other 
estimators of k that have shown to work well in the 
previous research. In a simulation study we investigate 
the MSE properties of these new ridge parameters and 
compare them with the best performing estimators of 
the ridge parameter from the existing research. The 
results indicate that the new ridge parameter may 
improve the MSE properties of the ridge estimator, 
especially when there is high multicollinearity between 
the explanatory variables and when many independent 
variables are included in the regression model. The 
advantage of using ridge regression techniques is 
finally shown by an empirical example where it is 
investigated how some risk factors affects the 
probability of receiving diabetes. This example is 
included mainly to show how the ridge regression may 
work when analyzing health related data and not to 
reach conclusive evidence of the effect of the risk 
factors on the probability of getting diabetis. 

The organization of this paper is as follows: The 

different estimators of the ridge parameters is given in 

section 2. A simulation study has been conducted in 

section 3. To illustrate the findings of the paper a real 

life health related data are analysed in section 4. 

Finally some concluding remarks are given in section 5. 

2. ESTIMATORS OF THE RIDGE PARAMETER K 

Several methods of estimation for the ridge 

parameter k have been suggested by several 

researchers in different time. For the linear regression 

model and using ordinary least squares, several 

methods have been proposed by [5-15], and very 

recently [16-18] among others. For non-linear models 

some research has been conducted and some 

estimators of the ridge parameter have been proposed 

by [3, 4, 19] among others. In this section we introduce 

the classical method suggested by [5, 6] along with 

some good ridge regression estimators according to 

the simulated result from [19]. Finally some new ridge 

regression estimators are introduced.  

In order to explain these estimators we start by 

defining X 'ŴX   =U U '  and ˆ =U ' ˆML , where U is the 

matrix whose columns are the eigenvectors of X 'ŴX  
and  is the diagonal matrix of it’s eigenvalues 
corresponding to the columns of U. The first estimator 
for the linear regression model was proposed by [5, 6] 
as follows: 

k1=
ˆ 2

ˆmax
2 ,         (2.1) 

where 
 max  

is the maximum element of vector, ˆ  and 

ˆ 2  is the residual variance of the raw residuals divided 

by the degrees of freedoms (n-p-1). Then, the following 
estimators that were found to be the optimal in [19] are 
considered: 

  

k
2
= max

1

m
j

,k
3
=

1

m
jj=1

p

1

p

,k
4
= median

1

m
j

,

k
5
= max

1

q
j

,k
6
=

1

q
jj=1

p

1

p

,k
7
= median

1

q
j

,   (2.2)

 

where mj =
ˆ 2

ˆ j
2  and qj =

max

(n p) ˆ 2 + max ˆ j
2 .  

The purpose of this paper is to see whether a 
simpler way we can develop some estimators for the 
ridge parameter in equation (1.4). As such, using the 
above estimators, we propose the following ridge 
regression estimators: 

   

k
8
=

k
l

l=2

7

l 1( )
,k

9
= median(k

1
,k

2
,..,k

7
), and k

10
= (k

i
)
1/ l 1( )

l=2

7

(2.3) 

where    l = 2,…,7 . Hence, these new ridge parameters 

are functions of other estimators of k that have shown 
to work well in the previous research.  

3. THE MONTE CARLO SIMULATION 

Since a theoretical comparison among the 
estimators is not possible, a simulation study has been 
conducted in this section. It contains two components  
 



Improved Ridge Regression Estimators for Binary Choice Models International Journal of Statistics in Medical Research, 2014, Vol. 3, No. 3      259 

(i) the design of the simulation study and (ii) results 
discussion. 

3.1. The Design of the Simulation Study 

The main focus of this paper is to compare the MSE 
properties of the ML and ridge regression estimator 
when the explanatory variables are collinear. 
Therefore, the main factor varied in the design of the 

simulation study is the degree of correlation (
 

2 ) 

between the explanatory variables. The subsequent 
equation defining the data generating process for the 
explanatory variables is used since it enables us to 
vary the strength of the correlation (see [10, 11] among 
others): 

  
x

ij
= 1

2( )
1/2( )

z
ij
+ z

ip
i = 1,2,...n, j = 1,2,...p.     (3.1) 

In equation (3.1) 
 
z

ij  
are pseudo-random numbers 

from the standard normal distribution. The parameter 
 determines the strength of the correlation and we 

consider three different values that corresponds to 
0.85, 0.95 and 0.99. We simulate  n  observations for 

the dependent variable using equation (1.1) where u
i
 

are random numbers generated using the standard 
normal distribution and the logistic distribution for the 
probit and logit models, respectively. Then the latent 
variable is made binary by applying equation (1.2). The 

parameter values are chosen so that 
 

' = 1

 

and all 

individual parameter values are equal to each other. 
We consider four, six and eight explanatory variables in 
the simulation. We also consider the number of 
observations that corresponds to 100, 200 and 400 
observations for the model consisting of four 
explanatory variables, 150, 200 and 400 observations 
for the model consisting of six explanatory variables 
and 200, 400 and 600 observations for the regression 
model consisting of eight explanatory variables. The 
reason we change the number of observations 

depending on the number of explanatory variables is to 
ensure convergence of the maximum likelihood 
estimator. The experiment is replicated (R) 2000 times 
by generating new pseudo-random numbers, while the 
MSE is calculated as follows: 

MSE =

ˆ( )
i
'

i=1

R
ˆ( )

i

R
,        (3.2) 

where ˆ j  is the estimator of  at the ith repetition. 

3.2. Result Discussion 

The estimated MSEs of the estimators for the logit 
model and for p=4, p=6 and p=8 are presented in 
Tables 1, 2 and 3 respectively and for probit model for 
p=4, p=6 and p=8 are presented in Tables 4, 5 and 6 
respectively. From these tables we see that the degree 
of correlation in general has a negative impact on the 
MSE of the different estimators. The effect of 
multicollineairty on the MSE is much more severe for 
the ML estimator than the ridge regression estimator. 
One may observe that the estimated MSE for the ridge 
regression estimator is much lower than the 
corresponding ML estimator when applying the ridge 
parameters from [19]. However, the new suggested 

ridge parameters (in particular k
8

 and
 
k
9

) outperform 

the older ones, especially in the presence of a high 
degree of collineairty among the explanatory variables. 
When looking at the number of explanatory variables 
we may see that increasing p leads to a higher 
estimated MSE for all estimators. Once again the 
benefit of applying ridge regression increases with the 
number of explantory variables and also the advantage 
of using the new ridge parameters suggested in this 
paper. The final factor affecting the performance of the 
different estimation methods is the number of 
observations. Increasing this factor leads to a decrease 

Table 1: Estimated MSE for the Logit Model when p=4 

 n ML k1

 
k2

 
k3

 
k4

 
k5

 
k6

 
k7

 
k8

 
k9

 
k10

 

100 1.34 0.93 0.48 0.75 0.68 0.29 0.28 0.28 0.19 0.19 0.18 

200 0.55 0.43 0.36 0.45 0.43 0.13 0.13 0.13 0.14 0.14 0.17 

0.85 

400 0.27 0.23 0.22 0.24 0.24 0.10 0.10 0.10 0.12 0.12 0.15 

100 4.10 2.49 0.47 0.96 0.80 0.32 0.31 0.31 0.23 0.23 0.23 

200 1.78 1.17 0.55 0.90 0.80 0.18 0.17 0.17 0.18 0.18 0.20 

0.95 

400 0.79 0.58 0.44 0.58 0.55 0.14 0.15 0.15 0.18 0.18 0.22 

100 21.0 11.58 0.28 0.52 0.40 0.39 0.35 0.35 0.28 0.27 0.31 

200 9.16 5.22 0.38 0.85 0.65 0.23 0.21 0.21 0.20 0.20 0.21 

0.99 

400 4.23 2.46 0.52 1.00 0.82 0.19 0.19 0.19 0.21 0.21 0.23 
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Table 2: Estimated MSE for the Logit Model when p=6 

 n ML k1

 
k2

 
k3

 
k4

 
k5

 
k6

 
k7

 
k8

 
k9

 
k10

 

100 1.70 1.31 0.63 1.08 1.00 0.29 0.28 0.28 0.22 0.21 0.31 

200 1.18 0.94 0.59 0.88 0.83 0.21 0.21 0.20 0.19 0.19 0.33 

0.85 

400 0.52 0.45 0.39 0.47 0.46 0.14 0.14 0.14 0.19 0.19 0.30 

100 5.36 3.72 0.62 1.49 1.28 0.34 0.32 0.32 0.25 0.25 0.29 

200 3.65 2.58 0.69 1.45 1.29 0.26 0.25 0.24 0.22 0.22 0.34 

0.95 

400 1.62 1.22 0.66 1.07 1.00 0.18 0.18 0.19 0.23 0.23 0.40 

100 28.5 18.3 0.31 0.78 0.63 0.44 0.37 0.36 0.30 0.29 0.26 

200 19.6 12.7 0.36 1.04 0.83 0.33 0.29 0.28 0.25 0.25 0.26 

0.99 

400 8.89 5.85 0.57 1.54 1.29 0.23 0.22 0.22 0.24 0.24 0.33 

 

Table 3: Estimated MSE for the Logit Model when p=8 

 n ML k1

 
k2

 
k3

 
k4

 
k5

 
k6

 
k7

 
k8

 
k9

 
k10

 

100 2.29 1.88 0.73 1.37 1.27 0.56 0.53 0.52 0.38 0.38 0.50 

200 0.96 0.84 0.58 0.80 0.77 0.27 0.26 0.26 0.26 0.26 0.46 

0.85 

400 0.22 0.20 0.16 0.19 0.19 0.07 0.07 0.07 0.08 0.08 0.13 

100 7.59 5.66 0.74 1.91 1.64 0.67 0.61 0.60 0.48 0.47 0.54 

200 2.92 2.30 0.85 1.59 1.46 0.38 0.36 0.36 0.35 0.35 0.64 

0.95 

400 1.92 1.56 0.76 1.29 1.21 0.31 0.31 0.30 0.34 0.34 0.61 

100 40.01 27.68 0.69 1.03 0.84 0.86 0.69 0.67 0.59 0.55 0.46 

200 16.87 11.88 0.61 1.76 1.45 0.50 0.44 0.43 0.42 0.41 0.53 

0.99 

400 10.73 7.63 0.74 2.05 1.75 0.42 0.39 0.39 0.40 0.40 0.62 

 

Table 4: Estimated MSE for the Probit Model when p=4 

 n ML k1

 
k2

 
k3

 
k4

 
k5

 
k6

 
k7

 
k8

 
k9

 
k10

 

100 0.82 0.63 0.33 0.49 0.46 0.19 0.18 0.18 0.16 0.16 0.17 

200 0.30 0.26 0.22 0.26 0.25 0.10 0.11 0.11 0.14 0.14 0.15 

0.85 

400 0.13 0.12 0.12 0.13 0.12 0.08 0.08 0.08 0.10 0.10 0.10 

100 2.18 1.46 0.40 0.75 0.64 0.23 0.22 0.22 0.19 0.19 0.21 

200 0.89 0.66 0.41 0.58 0.54 0.16 0.16 0.16 0.21 0.21 0.23 

0.95 

400 0.39 0.32 0.27 0.33 0.32 0.14 0.15 0.15 0.19 0.19 0.20 

100 11.11 6.51 0.31 0.64 0.52 0.30 0.26 0.26 0.24 0.23 0.26 

200 4.50 2.72 0.42 0.86 0.71 0.20 0.20 0.20 0.22 0.23 0.23 

0.99 

400 2.05 1.31 0.50 0.85 0.75 0.21 0.22 0.22 0.28 0.28 0.29 

 

of the estimated MSE. Here one may see that the ridge 
regression outperforms the ML for all different sample 
sizes. However, the benefit of ridge regression 
estimators is higher in small sample sizes. From the 
simulation study we can conclude that the ridge 

regression estimators outperform the ML estimator. 
Furthermore, we show that one may improve the MSE 
properties of the ridge regression estimator by applying 
the new ridge parameters proposed in this paper, 
especially when there is a high multicollinearity 
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between the explanatory variables and when many 
independent variables are included in the regression 
model. 

4. EMPIRICAL APPLICATION 

The benefit of applying ridge regression estimators 
are demonstrated by an empirical application where we 
use a dataset collected by the US National Institute of 
Diabetes and Digestive and Kidney Diseases.

1
 This 

dataset is based on a sample from a population 
consisting of women who were at least 21 years old, of 
Pima Indian heritage and living near Phoenix, Arizona. 
The data were collected by the US National Institute of 
Diabetes and Digestive and Kidney Diseases and 
these women were then tested for diabetes according 
to the World Health Organization criteria (more 
information about the dataset may be found in [20]). 
The explanatory variables are the number of 

                                            

1
This dataset is publically available via the package MASS in R. It is denoted 

PIMA.tr. 

pregnancies (X1), plasma glucose concentration in an 
oral glucose tolerance test (X2), diastolic blood 
pressure measured in hg (X3), skin triceps skin fold 
thickness measured in mm (X4), body mass index (X5), 
diabetes pedigree function (X6) and age (X7). According 
to [20] these variables were chosen because they have 
been found to be significant risk factors for diabetes 
among Pimas and other populations. Hence, these 
explanatory variables explains the dependent variable 
which takes on the value one if the person has 
diabetes and zero otherwise.

2
  

The results of the data analyses by using the logit 
and probit model are presented in Tables 7 and 8 
respectively. The standard errors are obtained by using 
bootstrapping techniques. We clearly see that all of the 
significant coefficients are positive which means that all 
of the explanatory variables increases the probability of 
getting diabetes. This is natural since the variables 
were chosen by [20] where risk factors assumed to 

                                            

2
Diabetes was defined as a plasma glucose concentration greater the 200 

mg/dl two hours following the ingestion of 75 gm of a carbohydrate solution. 

Table 5: Estimated MSE for the Probit Model when p=6 

 n ML k1

 
k2

 
k3

 
k4

 
k5

 
k6

 
k7

 
k8

 
k9

 
k10

 

150 0.84 0.69 0.47 0.65 0.62 0.23 0.23 0.23 0.26 0.26 0.35 

200 0.56 0.48 0.39 0.48 0.47 0.20 0.20 0.21 0.25 0.25 0.32 

0.85 

400 0.27 0.24 0.24 0.26 0.25 0.17 0.17 0.17 0.20 0.20 0.22 

150 2.51 1.83 0.64 1.19 1.08 0.29 0.28 0.28 0.31 0.31 0.44 

200 1.68 1.25 0.62 1.04 0.97 0.26 0.26 0.26 0.32 0.32 0.46 

0.95 

400 0.74 0.60 0.47 0.62 0.60 0.24 0.25 0.26 0.32 0.32 0.41 

150 13.12 8.64 0.45 1.17 0.97 0.36 0.31 0.31 0.31 0.30 0.35 

200 8.80 5.80 0.54 1.33 1.13 0.30 0.29 0.29 0.31 0.32 0.39 

0.99 

400 3.99 2.74 0.69 1.43 1.27 0.27 0.30 0.31 0.39 0.40 0.54 

 

Table 6: Estimated MSE for the Probit Model when p=8 

 n ML k1

 
k2

 
k3

 
k4

 
k5

 
k6

 
k7

 
k8

 
k9

 
k10

 

200 0.99 0.84 0.29 0.54 0.50 0.34 0.30 0.30 0.23 0.23 0.25 

400 0.54 0.49 0.35 0.46 0.45 0.22 0.21 0.21 0.21 0.22 0.32 

0.85 

600 0.33 0.31 0.25 0.30 0.30 0.15 0.16 0.16 0.18 0.18 0.24 

200 7.58 4.94 0.58 1.33 1.17 0.70 0.61 0.60 0.50 0.49 0.51 

400 2.72 1.83 0.60 1.07 1.00 0.35 0.33 0.33 0.34 0.34 0.54 

0.95 

600 1.05 0.90 0.53 0.80 0.76 0.27 0.27 0.28 0.32 0.32 0.49 

200 35.50 22.10 0.72 1.04 0.88 0.91 0.71 0.69 0.64 0.59 0.50 

400 14.65 9.08 0.61 1.60 1.39 0.50 0.43 0.42 0.42 0.42 0.59 

0.99 

600 7.92 4.93 0.70 1.67 1.48 0.40 0.38 0.39 0.42 0.43 0.68 
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Table 7: Estimated Parameters using the Probit Model 

Estimators  x1 x2 x3 x4 x5 x6 x7 

ˆ
j  0.06 0.02 0.00 -0.00 0.05 1.06 0.02 

se ˆ
j( )  0.04 0.01 0.01 0.01 0.03 0.40 0.01 

ML 

t-value 1.37 3.69 0.19 -0.12 1.70 2.68 1.67 

ˆ
j  0.06 0.02 0.00 0.00 0.05 1.05 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.03 0.39 0.02 

  
k
1

 

t-value 1.38 4.56 0.26 -0.08 1.63 2.68 1.39 

ˆ
j  0.06 0.01 0.02 0.01 -0.01 0.48 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.21 0.01 

  
k

2
 

t-value 1.52 3.65 2.88 1.15 -0.57 2.31 1.53 

ˆ
j  0.06 0.02 0.02 0.01 0.02 0.78 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.28 0.01 

k
3

 

t-value 1.58 4.41 1.61 0.58 0.72 2.77 1.67 

ˆ
j  0.06 0.02 0.02 0.01 0.01 0.76 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.28 0.01 

  
k

4
 

t-value 1.59 4.36 1.70 0.62 0.64 2.67 1.66 

ˆ
j  0.06 0.01 -0.03 0.02 -0.02 0.24 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.13 0.01 

k
5

 

t-value 1.53 3.35 3.54 1.40 -1.18 1.81 1.44 

ˆ
j  0.06 0.02 0.02 0.01 0.02 0.78 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.28 0.01 

k
6

 

t-value 1.59 4.40 1.59 0.57 0.73 2.81 1.68 

ˆ
j  0.06 0.02 0.02 0.01 0.02 0.78 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.29 0.01 

k
7

 

t-value 1.59 4.37 1.62 0.58 0.73 2.67 1.68 

ˆ
j  0.06 0.01 0.02 0.01 -0.01 0.50 0.02 

se ˆ
j( )  0.03 0.00 0.01 0.01 0.02 0.22 0.01 

  
k
8

 

t-value 1.66 3.76 2.86 1.12 -0.49 2.26 1.54 

ˆ
j  0.06 0.02 0.02 0.01 0.01 0.77 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.28 0.01 

  
k
9

 

t-value 1.59 4.37 1.67 0.60 0.68 2.73 1.68 

ˆ
j  0.06 0.01 0.02 0.01 0.00 0.65 0.02 

se ˆ
j( )  0.04 0.00 0.01 0.01 0.02 0.26 0.01 

  
k
10

 

t-value 1.63 4.10 2.22 0.85 0.14 2.56 1.62 

Note: ˆ j  is the jth value (from 1,…,p) of the parameter vector ˆ . 
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Table 8: Estimated Parameters using the Logit Model 

Estimators  x1 x2 x3 x4 x5 x6 x7 

ˆ
j  0.10 0.03 0.00 0.00 0.08 1.81 0.04 

se ˆ
j( )  0.08 0.01 0.02 0.02 0.05 0.80 0.03 

ML 

t-value 1.34 3.90 0.21 -0.08 1.83 2.27 1.39 

ˆ
j  0.10 0.03 0.01 0.00 0.08 1.78 0.04 

se ˆ
j( )  0.08 0.01 0.02 0.02 0.05 0.71 0.03 

  
k
1

 

t-value 1.35 3.91 0.28 -0.04 1.76 2.52 1.60 

ˆ
j  0.08 0.02 0.04 0.03 -0.04 0.29 0.02 

se ˆ
j( )  0.05 0.01 0.01 0.02 0.03 0.15 0.02 

  
k

2
 

t-value 1.57 3.07 3.30 1.46 -1.30 1.90 1.40 

ˆ
j  0.09 0.02 0.04 0.02 -0.02 0.70 0.03 

se ˆ
j( )  0.06 0.01 0.01 0.02 0.03 0.30 0.02 

  
k
3

 

t-value 1.57 3.37 2.79 1.22 -0.70 2.31 1.48 

ˆ
j  0.09 0.02 0.04 0.02 -0.02 0.67 0.03 

se ˆ
j( )  0.06 0.01 0.01 0.02 0.03 0.29 0.02 

  
k

4
 

t-value 1.62 3.44 2.86 1.26 -0.76 2.27 1.48 

ˆ
j  0.07 0.02 0.05 0.03 -0.04 0.06 0.02 

se ˆ
j( )  0.05 0.01 0.01 0.02 0.03 0.05 0.02 

  
k
5

 

t-value 1.57 3.04 3.50 1.56 -1.48 1.37 1.42 

ˆ
j  0.09 0.02 0.04 0.03 -0.03 0.54 0.03 

se ˆ
j( )  0.05 0.01 0.01 0.02 0.03 0.25 0.02 

k
6

 

t-value 1.63 3.32 3.07 1.35 -0.96 2.22 1.45 

ˆ
j  0.09 0.02 0.04 0.03 -0.03 0.54 0.03 

se ˆ
j( )  0.05 0.01 0.01 0.02 0.03 0.27 0.02 

  
k
7

 

t-value 1.63 3.30 3.07 1.36 -0.97 2.02 1.45 

ˆ
j  0.08 0.02 0.05 0.03 -0.04 0.23 0.02 

se ˆ
j( )  0.05 0.01 0.01 0.02 0.03 0.14 0.02 

  
k
8

 

t-value 1.62 3.13 3.37 1.50 -1.33 1.70 1.41 

ˆ
j  0.09 0.02 0.04 0.03 -0.03 0.54 0.03 

se ˆ
j( )  0.05 0.01 0.01 0.02 0.03 0.26 0.02 

  
k
9

 

t-value 1.63 3.31 3.07 1.35 -0.97 2.12 1.45 

ˆ
j  0.09 0.02 0.04 0.03 -0.03 0.46 0.03 

se ˆ
j( )  0.05 0.01 0.01 0.02 0.03 0.22 0.02 

  
k
10

 

t-value 1.62 3.26 3.16 1.40 -1.09 2.12 1.43 

Note: ˆ j  is the jth value (from 1,…,p) of the parameter vector ˆ . 
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have a positive affect on the probability of receiving 
diabetes. This result holds for both the probit and the 
logit models. We also see that a decrease of the 
bootstrapped standard errors for all variables which 
clearly shows the benefit of applying ridge regression 
methods. We also see an increase of the t-statistics for 
most cases which further shows the usefulness of 
applying the ridge regression estimation technique. An 
example of such a case is X3 for which the variable is 
insignificant of both the probit and logit model when 
using ML. However, when we use ridge regression 

(besides the classical 
  
k

1
 estimator suggested by [5, 6] 

it often becomes significant. Hence, the general result 
shows that the ridge regression may reduce the 
standard errors of the estimated parameters. The 
newly proposed ridge regression estimators that are 
combinations of the previous ridge parameter performs 
well and show a greater stability than the old ones. 

Especially the new ridge regression estimator 
  
k

8
 is 

always either the best (with the lowest standard error) 
or close to the optimal ridge parameter when looking at 
the cases that minimizes the standard errors and 
maximizes the t-statistics. Hence, the result from this 
example shows the benefit of the ridge regression 
estimator. However, a much more thorough 
investigation is needed in order to give conclusive 
evidence of to what degree these risk factors effect the 
probability of receiving diabetes. 

5. SUMMARY AND CONCLUDING REMARKS 

This paper proposed some new estimators for 

estimating the ridge parameter for binary chocie 

models. These new estimators are investigated along 

with some of the existing popular estimators using 

Monte Carlo simulations. In the design of the 

experiment we mainly focuses on the effect of 

multicollineairity and at the same time we also change 

the number of observations and the number of 

explanatory variables. The results from the simualtion 

study clearly indicate that the ridge regression 

estimators outperform ML estimator in the sence of 

smaller MSE criterion. Furthermore, it is also shown 

that the proposed estimators have in general better 

MSE properties than the rest estimators from the 

previous research. This is in particular true in the 

presence of high degree of collinearity between the 

explanatory variables and when there are many 

explanatory variables included in the regression model. 

The benefit of ridge regression techniques is then 

shown by an empirical example where it is investigated 

how some risk factors affects the probability of 

receiving diabetes.  
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