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Abstract: In matched cohort studies exposed and unexposed individuals are matched on certain characteristics to form 
clusters to reduce potential confounding effects. Data in these studies are clustered and thus dependent due to 
matching. When the outcome is a Poisson count, specialized methods have been proposed for sample size estimation. 

However, in practice the variance of the counts often exceeds the mean (i.e. counts are overdispersed), so that Poisson 
methods don’t apply. We propose a simple approach for calculating statistical power and sample size for clustered 
Poisson data when the proportion of exposed subjects in a cluster is constant across clusters. We extend the approach 

to clustered count data with overdispersion, which is common in practice. We evaluate these approaches with simulation 
studies and apply them to a matched cohort study examining the association of parental depression with health care 
utilization. Simulation results show that the methods for estimating power and sample size performed reasonably well 

under the scenarios examined and were robust in the presence of mixed exposure proportions up to 30%. 
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1. INTRODUCTION 

Count data appear frequently in randomized clinical 

trials and in observational studies. Interest is often in 

comparing incidence rates among two or more groups. 

For example, in a retrospective study, Kornek et al. [1] 

compared annual relapse rates, counts of new T2/fluid-

attenuated inversion recovery lesions and contrast-

enhancing lesions on magnetic resonance imaging, 

and counts of adverse events, between patients with 

and without natalizumab treatment. Rothman and 

Greenland [2] and Graham et al. [3] compared breast 

cancer incidence rates for subjects exposed to X-ray 

fluoroscopy during treatment for tuberculosis to those 

not exposed. In some studies, subjects may form 

clusters. A common example is a matched cohort 

design, where exposed subjects are matched to 

unexposed subjects to form clusters. The matching is 

formed either by design in randomized clinical trials 

such as a hospital or a health care provider defining a 

cluster, where exposure is randomized within clusters, 

or in observational studies by matching exposed and 

unexposed individuals on covariates to reduce 

confounding effects [4,5].  

Several quantities are involved in matched cohort 

studies, including the number of clusters, the number of  
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subjects per cluster (cluster size), and the proportion of 

exposed subjects in a cluster (exposure proportion). 

Studies with constant or approximately constant 

exposure proportion across clusters are common. An 

example of clustered count data is the study by Sills et 

al. [6], who used a matched cohort design to examine 

the association between parental depression and 

children’s health care use. The exposed children were 

0-17 years of age, enrolled in Kaiser Permanente of 

Colorado for at least six months during a study period 

of July 1997 to December 2002. They were linked with 

at least one parent/subscriber with depression 

diagnosis (exposure). Unexposed children were 

selected from a pool of similar children whose parents 

did not have a depression diagnosis and were matched 

to exposed children on age, gender, membership 

eligibility, and enrollment period. Among exposed 

children, 85.6% had two matched controls, the 

remaining had one matched control. Outcome 

measures included number of clinic visits of any type 

during the enrollment period, which was obtained from 

the child’s payment files and electronic medical charts. 

Sample size and power estimation are not 

straightforward in planning matched cohort studies with 

count outcome due to dependence of subjects within a 

cluster and possible overdispersion of count outcome. 

Several authors considered sample size estimation for 

studies with Poisson outcomes where the mean and 

variance of count outcome are equal. Among them, Ng 

and Tang [7] examined four methods for comparing 
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means of two independent Poisson samples. Amatya 

[8] developed methods for sample size estimation in 

matched cohort studies with Poisson outcomes, and 

demonstrated that their methods performed better than 

similar methods previously proposed. These previous 

results provide the necessary methods in studies 

where the count outcome follows a Poisson distribution 

conditional on random cluster effects. However, in 

practice count data tend to be overdispersed (i.e. the 

variance is greater than the mean) [9-12]. Friede and 

Schmidli [13] extended the results of Ng and Tang and 

developed sample size and power estimation for 

independent count data with overdispersion.  

We are not aware of methods for estimating sample 

size and power for exposure effects in matched cohort 

studies where count outcomes are also overdispersed. 

In this paper, we develop and evaluate a simple 

approach for sample size and power estimation for an 

exposure effect in matched cohorts studies with a 

count outcome overdispersed under the assumption of 

constant exposure proportion. We consider two 

scenarios based on whether the conditional distribution 

of the count outcome given random cluster effects and 

covariates is just Poisson or overdispersed. We refer to 

these data as clustered Poisson data and clustered 

count data with overdispersion, respectively. 

In Sections 2.1, we started with Ng and Tang’s 

analytic methods for comparing means of two 

independent Poisson samples [7]. We then provide a 

general expression for power and sample size for count 

data in Section 2.2 and emphasize that the key is to 

obtain the variance of ˆ
1 , (Var( ˆ1) ), where ˆ

1  is 

maximum likelihood estimate (MLE) of the coefficient of 

an exposure effect, referred to as the log rate ratio. In 

Section 2.3 we provide an asymptotic formula for 

Var( ˆ1)  for clustered Poisson data with a constant 

exposure proportion across all clusters. In Section 2.4, 

we first discuss the Var( ˆ1)  for independent count data 

with overdispersion, and then propose an asymptotic 

formula for Var( ˆ1)  for clustered count data with 

overdispersion. In Section 3 we use simulations to 

evaluate the performance of these formulas across a 

range of parameter values. We also assess the 

robustness of our approach by allowing a portion of 

clusters to have different exposure proportions. Section 

4 illustrates application of these methods to the Kaiser 

study of association between parental depression and 

children’s health care use. We close the paper with 

some discussions in Section 5. 

2. STATISTICAL METHODS 

2.1. Comparing Means of Two Independent Poisson 
Samples 

For independent Poisson data Yj , assume Yj x j  ~ 

Poisson ( μ j ) with μ j = e
0+ 1x j  where x j  is the indicator 

for exposure (1 for exposed and 0 for unexposed) for 

subject 
 
j, j = 1,…,M , 0  is the coefficient determining 

the log incidence rate for the unexposed group, and 1  

is the coefficient of the exposure effect. Ng and Tang 
[7] compared four test statistics for testing equality of 

two Poisson means, μ0 = μ1  (i.e., 1 =0) where μ0 = e
0  

and μ1 = e
0+ 1 . Among the four test statistics, the Wald 

test statistic, 

W =

ˆ
1

Var( ˆ1)
           (1) 

was found to have a robust type I error rate (0.04-0.06) 
and to have empirical power close to the pre-chosen 

power level based on simulation studies. Let n0  and n1  

be the numbers of unexposed and exposed subjects 

with n0 + n1 = M , then Var( ˆ1)  for independent Poisson 

data, obtained using a delta method, is 

Var( ˆ1) =VP (
ˆ
1) =

1

n0μ0
+
1

n1μ1
         (2) 

where subscript P  in VP (
ˆ
1)  represents Poisson data. 

2.2. A General Expression for Power and Sample 
Size 

Because of the established theoretical and empirical 
properties of the Wald statistic and its good 
performance for testing equality of means for 
independent Poisson samples [7], we base our 
methods on the Wald statistic and use the following 

general statistical power formula for testing 1  = 0 

versus 1  = 1
*  for count data: 

Power = Z /2 +
1
*

Var( ˆ1)
         (3) 

where  is the standard normal cumulative distribution 

function (CDF), Z /2  is the / 2  quantile value of the 

standard normal distribution, and 1
*  is the 

hypothesized alternative (i.e. detectable effect) value. 

Given the sample sizes n0  and n1  (or the total sample 

size and the exposure proportion), the unexposed 
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group incidence rate ( μ0 ), and the log rate ratio to be 

detected ( 1
*) , statistical power can be calculated from 

(3). Given 0 , 1
* , statistical power, and exposure 

proportion, n0  and n1  can be calculated by inverting 

(3). 

The form of Var( ˆ1)  used in (3) depends on whether 

count data are independent or clustered, and whether 
they are conditionally Poisson distributed or 
overdispersed. For independent Poisson data this 
variance is given in equation (2); for clustered and/or 

overdispersed count data, formulas for Var( ˆ1)  are 

given below. 

2.3. Asymptotic Variance of ˆ
1  for Clustered 

Poisson Data 

Let Yij  denote the count outcome for the jth  

subject in the ith  cluster where j =1,…, n , i=1,…, N , 

and the exposure indicator variable xij  is 1 for exposed 

and 0 for unexposed subjects. In this paper we 
employed a statistical model that assumes a common 
random cluster effect for all subjects within a cluster to 
analyze clustered count data [14-16]. With a log link 
function, for clustered Poisson data we have 

Yij i ~ Poisson ( ij ), ij = e
0+ 1xij+ i          (4) 

where i  is a cluster-specific random effect 

independent across clusters. The inclusion of i  

induces a correlation among the outcome measures 

within a cluster. If i  is assumed to be N(0, 2 ) , then 

marginal (unconditional on i ) moments are 

E(Yij ) = μij = e
0+ 1xij+

2 /2
 and Var(Yij ) = μij + μij

2 (e
2

1) . 

The second term μij
2 (e

2

1)  in Var(Yij )  is due to 

clustering. Note that we use  for means conditional on 

random cluster effects and μ  for marginal means. It 

has been shown that for clustered Poisson (CP) data 
with a constant exposure proportion for all clusters, the 

asymptotic variance of ˆ1  can be obtained in a closed 

form [14,15]: 

Var( ˆ1) =VCP (
ˆ
1) =

1

Nn

1

(1 R)μ0
+
1

Rμ1
        (5) 

where N  is number of clusters and n  is cluster size, 

R  is the exposure proportion, μ0 = e
0+

2 /2  and 

μ1 = e
0+ 1+

2 /2 . Subscript CP  in VCP (
ˆ
1)  represents 

clustered Poisson data. 

2.4. Asymptotic Variance of ˆ1  for Clustered Count 

Data with Overdispersion 

2.4.1. Independent Overdispersed Count Data 

Count data are often overdispersed due to 
unobserved subject heterogeneity [11,17-19]. A 
number of statistical models have been proposed to 
accommodate overdispersion [20-26]. Overdispersed 
count data can be modeled by assuming Var(Y ) = μ  

where >1   is called the scale or dispersion 

parameter. Friede and Schmidli [13] developed sample 
size and power estimation for independent count data 
with overdispersion by replacing the variance in (1) with 

V0 (
ˆ
1) = V0 (

ˆ
1) , where subscript O  in V0 (

ˆ
1)  

represents overdispersed count data. With simulation 
they demonstrated that their approach gave good 
approximations to target power. 

Another approach for analyzing count data with 
overdispersion is to allow random variation in the 
conditional mean by introducing a subject-specific 

random multiplicative term  j ;    overdispersion 

parameter  depends on the distribution of  j . Note 

that subscript j  is for subject, and subscript i  for 

cluster is not needed here for independent count data. 

It is assumed in general that j  is independent across 

subjects and has a known parametric distribution with 

mean 1. A common choice is j ~ gamma (1/ , ) so 

that E( j ) = 1and Var( j ) = . Then 

Yj j ~ Poisson ( j ), j = je
0 + 1x j         (6) 

and 

Var(Yj ) = μ j + μ j
2
= μ j (1+ μ j )          (7) 

where μ j  = exp( 0 + 1x j ) [24], the overdispersion 

parameter = (1+ μ j ).  In this paper, we use the model 

in (6) and the variance form in (7) to extend the 
approach of Friede and Schmidli [13] to clustered count 
data with overdispersion as detailed in the following 

section. For model (6), the variance of ˆ
1  for 

independent overdispersed count data is 

Var( ˆ1) =V0 (
ˆ
1) =

1

Nn
0

(1 R)μ0
+ 1

Rμ1
 

where 0 = 1+ e 0  for unexposed and 1 = 1+ e 0+ 1  for 

exposed. 
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2.4.2. Clustered Count Data with Overdispersion 

When both overdispersion and clustering are 
present in count data, models (4) and (6) can be 
extended to 

Yij ( ij , i ) ~ Poisson ( ij ), ij = ije
0+ 1xij+ i         (8) 

where ij , assumed to have E( ij ) = 1 , represents 

overdispersion due to subject heterogeneity, and i  

represents random cluster effects [27]. There is no 

closed form solution for Var( ˆ1)  for model (8). 

However, it has been shown [27] that the variance of 

Yij  is  

Var(Yij ) = μij + μij
2 (e

2

1)+ μij
2 e

2

         (9) 

where μij
2 (e

2

1)  is the extra variance due only to 

clustering but not overdispersion (see Section 2.3 for 
clustered Poisson data). We propose to modify 
equation (5) by applying overdispersion parameters to 

obtain the variance of ˆ1,VCO (
ˆ
1) , when both clustering 

and overdispersion are present. The subscript CO  in 

VCO (
ˆ
1)  represents for clustered count data with 

overdispersion. We consider two overdispersion 

parameters: 0 = 1+ e 0+
2

 for unexposed and 

1 = 1+ e 0+ 1+
2

 for exposed. We propose the following 

approximation of Var( ˆ1)  for clustered count data with 

overdispersion, 

Var( ˆ1) =VCO (
ˆ
1)

1

Nn
0

(1 R)μ0
+ 1

Rμ1
      (10) 

where μ0  and μ1  are the same as those given in 

equation (5). 

3. SIMULATIONS AND RESULTS 

Under constant exposure proportion across clusters 

we simulated clustered Poisson data and clustered 

count data with overdispersion, and then evaluated the 

performance of the formulas in Sections 2.3 and 2.4.2 

for sample size and power calculation. We also tested 

the robustness of these formulas in the presence of 

different exposure proportions for 10%, 20% and 30% 

of clusters. 

3.1. Simulations 

3.1.1. Clustered Poisson Data 

We simulated clustered Poisson data under model 

(4) assuming i ~ N(0,
2 ) . Because the unexposed 

group incidence rate in clustered Poisson data is 
associated with statistical power, in order to make valid 
comparisons of type I error rate and empirical power, 
we organized the simulation by different unexposed 

group incidence rates ( e 0+
2 /2

). Thus in simulations we 
specified unexposed group incidence rate, and varied 

0  and 2  to achieve the specified rate. In detail, we 

specified the unexposed group log incidence rate 

( 0  +
2

/2) to be 0.5, 0.8,1.0, or 1.5, and then varied 

0   from 0.2 to 1.25 and 2  from 0 to 1.5 to obtain 

these incidence rates. This approach allows us to focus 
on the primary driver of power, unexposed incidence 

rate, while also examining any smaller effects of 0  

and 2  separately, on power. This approach is 

practically useful also, since incidence rates are 
typically better known by investigators than are the 

specific parameters 0  and 2 . We used two 

exposure proportions 0.5 (matching ratio=1:1, n=2) and 

0.33 (matching ratio=1:2, n=3), and 1 =0.25 and 0.4. 

Given these parameters and target power=90%, 

sample sizes for unexposed and exposed subjects ( n0  

and n1 ) were calculated using the power formula (3) 

and Var( ˆ1)  in (5). For each combination of 0 , 1,
2 ,  

 and exposure proportion, 3000 clustered Poisson 

datasets with sample sizes n0  and n1  were simulated. 

Each simulated dataset was analyzed using SAS 
PROC NLMIXED (SAS Institute Inc., Cary, NC, v9.2) to 
fit model (4) for clustered Poisson regression and 
empirical power was calculated as the percentage of 

datasets with p<0.05 against the null hypothesis ( 1 =0) 

based on the Wald test statistic. We also set 1 =0 to 

evaluate type I error rates. 

To evaluate the robustness of the formula to the 

assumption of constant exposure proportion, we first 

calculated the required number of clusters as described 

above under a fixed exposure proportion (i.e., 0.33 

(matching ratio=1:2)). We then allowed a portion of 

clusters to have different exposure proportions (i.e., 0.5 

(matching ratio=1:1)). As a result, the sample size 

decreased slightly. 

3.1.2. Clustered Count Data with Overdispersion 

To simulate clustered count data with 
overdispersion under model (8), we used the same 
approach and same parameter values as above for 
simulating clustered Poisson data, with the addition of 

overdispersion using ij  ~ gamma (1/ , ) with  

equal to 1.0 or 2.0. Given the above parameters and 

target power 90%, n0  and n1  were calculated based on 

the Wald test statistic using the power formula (3) and 
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Var( ˆ1)  in (10). Using the calculated n0  and n1 , and 

each combination of the parameter values, 3000 
datasets of clustered count data with overdispersion 
were simulated. Each simulated dataset was analyzed 
by maximizing the full likelihood function from model 
(8). This was accomplished in SAS PROC NLMIXED 
using the general(ll) statement by specifying a negative 
binomial conditional density and a cluster specific 
normal random effect. Empirical power was calculated 
as the percentage of datasets rejecting the null 

hypotheses (p<0.05). We also set 1 =0 to evaluate 

type I error rates. In addition, we examined the 
robustness of the power formula to the constant 
exposure proportion assumption as above. 

3.2. Simulation Results 

We evaluated our approaches by comparing type I 

error rates to nominal value 0.05 and by comparing the 

empirical powers to the pre-chosen target powers 

under which the sample sizes were determined and the 

count data were simulated. 

3.2.1. Clustered Poisson Data 

Our simulation results showed that estimates of 1  

were unbiased under the null and alternative 
hypotheses (data not shown). Type I error rates, under 

the null hypothesis 1 =0, were near 0.05 ranging from 

0.04 to 0.06 under different intercept ( 0 ), exposure 

proportions, and variance of random cluster 

effects (
2 ) (data not shown).  

Empirical power (Table 1) was close to target power 

under 1 =0.25, different values of 0 , variance of 

random cluster effects ( 2 ), and exposure proportions. 

For a fixed 1 , power is driven mainly by baseline 

incidence rate exp( 0 + 2 /2), as shown by the large 

increases in required numbers of clusters as 

Table 1: Empirical Power Obtained from 3000 Simulated Clustered Poisson Datasets with Target Power=90%, 

Constant Exposure Proportions 0.33 (Matching Ratio=1:2) or 0.5 (Matching Ratio=1:1), and 1 =0.25 

0 + 2 /2
*
 0  2   Exposure proportion 

(exposed: unexposed) 

Number of 
clusters (N) 

Total number of 
subjects (Nn) 

Empirical  

power (%) 

1.25 0.5 89.7 

1 1 89.2 

0.75 1.5 

0.5 (1:1) 67 134 

86.9 

1.25 0.5 88.1 

1 1 87.3 

1.5 

0.75 1.5 

0.3 (1:2) 

 

48 

 

144 

 

86.7 

0.8 0.4 90.5 

0.5 1.0 88.5 

0.25 1.5 

0.5 (1:1) 111 222 

88.7 

0.8 0.4 88.6 

0.5 1.0 87.6 

1.0 

0.25 1.5 

0.3 (1:2) 

 

79 

 

237 

 

87.5 

0.8 0 90.4 

0.5 0.6 90.5 

0.2 1.2 

0.5 (1:1) 135 270 

89.2 

0.8 0 89.7 

0.5 0.6 88.5 

0.8 

0.2 1.2 

0.3 (1:2) 

 

97 

 

291 

 

88.2 

0.5 0 90.4 

0.2 0.6 90.6 

0.0 1.0 

0.5 (1:1) 182 364 

89.3 

0.5 0 89.1 

0.2 0.6 88.6 

0.5 

0.0 1.0 

0.3 (1:2) 

 

130 

 

390 

 

88.4 

*exp( 0 +
2
/2) is the mean incidence rate for unexposed subjects. 
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unexposed incidence rate decreases. This is consistent 
with the asymptotic variance in (5), which in addition to 
sample sizes and exposure effect depends only on this 
quantity. Lower incidence rates provide fewer events 
and less information to estimate the exposure effect. 
For a given baseline incidence rate (column 1), power 

decreased only slightly when 2  increased and 0  

decreased to achieve the same unexposed incidence 

rate. However the influences of both 0  and 2  were 

small and empirical power remained above 86% within 
the range of parameters we tested. Note that these 
variances of random cluster effects represent very 

large between cluster variation; for 2 =1.5, the 95% 

range of cluster-specific incidence rates spans a factor 

of e1.96 1.5=11
 above and below the cluster-specific 

incidence rate of e 0+ 1x  for an average cluster (one with 

i  = 0). These results suggest that our newly proposed 

sample size approach performs reasonably well for 
clustered Poisson data. Similar results were obtained 

for exposure proportion 0.5 (1:1) and 1 =0.4 (data not 

shown). 

Table 2 shows statistical power when 

1 =0.25, exposure proportion for most clusters was 

0.33 (matching ratio=1:2, n=3) and there was some 

variation in exposure proportion across clusters. When 

the majority of clusters had exposure proportion 0.33 

(matching ratio=1:2) and a proportion of clusters 

ranging from 10% to 30% had exposure proportion 0.5 

(matching ratio=1:1) (and thus the sample size dropped 

accordingly), empirical power dropped, but still 

remained above 83% for parameters tested. These 

results indicate that the formulas for sample size 

calculation for clustered Poisson data are reasonably 

robust to moderate deviation from the assumption of 

constant exposure proportion.  

3.2.2. Clustered Count Data with Overdispersion 

Our simulation results again showed that estimates 

of 1  were unbiased under the null and alternative 

hypotheses (data not shown). Type I error rates, under 

the null hypothesis 1 =0, were near 0.05 ranging from 

0.04 to 0.06 under different exposure proportions, 

intercepts ( 0 ), variance of random cluster effects 

 (
2 ), and subject heterogeneity ( ) (data not shown). 

Table 3 shows empirical power for clustered count 
data with overdispersion for exposure proportion 0.33 

(matching ratio=1:2) and 1 =0.25. As expected, the 

required number of clusters increases with increased 

overdispersion ( ). Patterns of sample size across 

individual parameters are more complex than for 
clustered Poisson data, but across the wide range of 
conditions we considered empirical power ranged from 
89.2% to 95.4% for all combinations of parameters 
tested with target power 90%. Similar results were 
obtained for exposure proportion 0.5 (matching 

ratio=1:1) and 1 =0.4 (data not shown). These results 

suggest that the sample size calculation based on the 
newly proposed method performs well across a variety 

Table 2: Empirical Power Obtained from 3000 Simulated Clustered Poisson Datasets with Target Power=90% and 

Constant Exposure Proportion=0.33 (Matching Ratio=1:2), 1 = 0.25 and with Mixed Exposure Proportions 

Empirical power (%) 
0 + 2 /2

*
 0  2  Number of clusters 

(N)
**
 

All clusters 

0.33 (1:2) 

90% 1:2 

10% 1:1 

80% 1:2 

20% 1:1 

70% 1:2 

30% 1:1 

1.25 0.5 88.1 86.7 86.2 85.8 

1 1 87.3 86.2 86.0 83.9 

1.5 

0.75 1.5 

48 

86.7 85.5 83.9 83.3 

0.8 0.4 88.6 87.5 87.1 86.6 

0.5 1.0 87.6 86.6 86.5 85.3 

1.0 

0.25 1.5 

79 

87.5 87.4 86.4 86.1 

0.8 0 89.7 89.3 88.6 86.1 

0.5 0.6 88.5 87.6 87.8 87.2 

0.8 

0.2 1.2 

97 

88.2 87.3 87.5 85.3 

0.5 0 89.1 88.3 87.6 87.6 

0.2 0.6 88.6 88.0 85.9 85.7 

0.5 

0 1 

130 

88.4 87.0 87.3 86.3 

exp( 0 +
2
/2) is the mean incidence rate for unexposed subjects. 

**There are 3 subjects in each cluster (one exposed and 2 unexposed). Thus the total sample size=3*number of clusters. 
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of conditions for clustered count data with 
overdispersion.  

In Table 3 we also show empirical power when the 

majority of clusters had 0.33 exposure proportion 

(matching ratio=1:2) and a proportion of clusters 

ranging from 10% to 30% had 0.5 exposure proportion 

(matching ratio=1:1). Empirical power changed slightly 

with varying exposure proportions but remained above 

87% for all parameter combinations considered despite 

the loss of some subjects and reduction of total sample 

size. These results indicate that the formulas for 

sample size estimation continue to be robust to 

moderate deviation from the assumption of constant 

exposure proportion for clustered count data with 

overdispersion.  

4. EXAMPLE: ASSOCIATION BETWEEN PARENTAL 
DEPRESSION AND CHILDREN’S HEALTH CARE 
USE 

The Kaiser Permanente Colorado study of health 
care use by children exposed to parents with a 
diagnosis of depression was described briefly in the 
Introduction. We compared the incidence of total 
clinical visits between exposed and unexposed 
children. There were a total of 26,104 matched 
clusters, of which 20,883 (80.0%) had 0.33 exposure 
proportion (matching ratio=1:2). The remaining clusters 
had 0.5 exposure proportion (matching ratio=1:1). The 
mean and variance of the total number of clinical visits 
were 1.50 and 5.34, respectively, indicating the 
presence of overdispersion. These matched cohort 
data were analyzed by fitting model (8) using SAS 

Table 3: Empirical Power Obtained from 3000 Clustered Count Datasets with Overdispersion when Target Power=90% 

and  1 = 0.25 ,  with Constant Exposure Proportion 0.33 (Matching Ratio=1:2), and with Mixed Exposure 

Proportions 

     Empirical powers (%) under mixed exposure proportions for clusters  

 
0 + 2 /2

*
 0  2   Number of 

clusters (N)
**
 

All clusters 
0.33 (1:2) 

90% 1:2 

10% 1:1 

80% 1:2 

20% 1:1 

70% 1:2 

30% 1:1 

1.25 0.5 372 91.2 90.2 90.2 89.3 

1 1.0 464 92.2 92.5 91.6 91.4 

1.5 

0.8 1.4 556 95.4 95.4 94.0 93.6 

0.8 0.4 387 90.2 88.6 87.5 87.3 

0.5 1.0 495 91.4 90.6 90.3 89.6 

1.0 

0.25 1.5 613 94.8 94.1 93.8 93.3 

0.8 0 348 90.1 90.2 89.3 88.5 

0.5 0.6 437 90.2 90.4 89.1 87.1 

1 

0.8 

0.2 1.2 556 91.6 90.8 90.4 89.4 

1.25 0.5 695 91.2 90.7 89.4 88.9 

1.0 1.0 878 92.9 92.2 91.8 91.3 

1.5 

0.8 1.4 1063 94.8 94.6 93.9 93.8 

0.8 0.4 695 90.0 88.2 88.2 87.3 

0.5 1 910 92.6 92.2 91.3 90.4 

1.0 

0.25 1.5 1146 95.1 94.5 94.1 93.7 

0.8 0 601 89.5 89.4 89.3 88.3 

0.5 0.6 777 90.8 90.3 90.1 88.1 

0.8 

0.2 1.2 1015 92.4 91.6 91.7 90.9 

0.5 0 634 89.3 90.2 89.2 88.5 

2 

0.2 0.6 811 90.2 89.9 89.5 88.3 

 

0.5 

0 1 962 91.4 89.7 89.7 88.9 

exp( 0 +
2
/2) is the mean incidence rate for unexposed subjects; **There are 3 subjects in each cluster (one exposed and 2 unexposed). Thus for the balanced 

cluster case the total sample size=3*number of clusters, and is reduced accordingly when unbalanced clusters are considered. 
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NLMIXED. The parameter estimates are ˆ
0 =0.04 

(intercept), ˆ
1 =0.45 with 95% CIs (0.42, 0.47) 

(exposure effect), ˆ 2 =0.4 (variance of random cluster 

effects), and ˆ = 0.77  (subject heterogeneity). Both 

clustering and overdispersion are present. 

Assuming exposure effect size ˆ1 =0.45, based on 

the sample size/power formulas in Section 2.4.2, we 

would have needed only 91 and 120 matched clusters 

(matching ratio=1:2) to achieve 80% and 90% power, 

respectively. We verified the power calculations using a 

bootstrap approach with the following steps: 1) 

randomly select 91 or 120 clusters out of the 20,883 

available clusters with matching ratio=1:2; 2) analyzed 

the random sample using model (8) with NLMIXED; 3) 

repeat steps 1 and 2 1000 times. Empirical powers 

were calculated as the proportion of bootstrap datasets 

with p-value for the exposure effect less than 0.05. The 

empirical powers were 79% and 88% for sample sizes 

based on true powers 80% and 90%, respectively.  

We now show how the methods we have provided, 
along with information from the Kaiser study, would be 
used in designing a future study. We consider detecting 
an increase in incidence rate of 30% for total clinic 
visits of children exposed to a parent diagnosed with 

depression, i.e. incidence rate ratio=1.30 or 1 = 

log(1.3)=0.262. We assume a two-sided level 0.05 test 
with 90% power, and an incidence rate for children not 
exposed to a parent diagnosed with depression similar 

to that noted in the previous study, exp( ˆ0 + ˆ 2 /2) 

=exp(0.04 + 0.4/2) = 1.27. We further assume two 
unexposed children for each exposed child. If only 

clustering was considered with 2 = 0.40, the required 

sample sizes using equations (3) and (5) are n1 = 153 

and n0 = 306, or 153 matched clusters of one exposed 

and two unexposed children; if both clustering and 

overdispersion were considered with = 0.77 and 2 = 

0.40, the required sample sizes using equations (3) 

and (10) are n1 = 369 and n0 = 738, or 369 clusters of 

one exposed and two unexposed children. Accounting 
for overdispersion the required number of clusters 
increased dramatically.  

5. DISCUSSIONS 

In this paper we provided simple formulas for 
sample size and power calculation for matched cohort 
study designs when the outcome is a count and the 
exposure proportion is constant or nearly constant 
across clusters. We considered both clustered Poisson 
data, which has previously been discussed [8, 28], and 
clustered count data with overdispersion, which to our 
knowledge has not been previously considered. We 

derived theoretical expressions for the variance of the 
estimated exposure effect for the clustered Poisson 
case, and provided an approximation for the variance 
of the estimated exposure effect for the clustered count 
data with overdispersion. Simulation studies showed 
that the sample size formula based on a Wald test 
statistic yielded robust type I error rate (0.04-0.06) 
under the null hypothesis and gave empirical power 
close to the target power across a range of parameter 
values for both clustered Poisson data and clustered 
count data with overdispersion. In relation to previous 
work, we noticed that for clustered Poisson data, our 
calculated power is slightly lower than the targeted 
power, yet it was slightly higher than the empirical 
power in Amatya [8] although we used the same 

formula for Var( ˆ1) . The discrepancy could be due to 

two factors. First, we used Var( ˆ1)  under the 

alternative hypothesis for our test statistic, while 

Amatya used Var( ˆ1)  under both null and alternative 

hypotheses for their test statistic. Second, the selected 
baseline incidence rates were much lower in their 
Table 1 than those in our Table 1. 

Simulations also showed that these sample size 

and power estimates are robust to moderate deviations 

from the assumption of constant exposure proportion. 

Inclusion of up to 30% of clusters with a different 

exposure proportion only slightly reduced empirical 

power (less than 4%). This is important because 

practically studies will typically be designed with 

constant exposure proportion, but during 

implementation the final achieved exposure proportions 

may not be constant due to unavailability of some 

subjects. 

The number of clusters required to achieve a target 

power increased dramatically for clustered count data 

with overdispersion compared with clustered Poisson 

data (Tables 1 and 3). This emphasizes the importance 

of incorporating overdispersion during the planning 

phase. In real count data the conditionally Poisson 

assumption is typically not satisfied, and overdispersion 

tends to be the norm. 

Although most of the times the empirical power is 

lower than the true (90%) in Table 1 for clustered 

Poisson data, the majority is within 1% and the greatest 

difference from the true is 3.3%. The empirical power is 

almost always greater than the true (90%) in Table 3 

for clustered Poisson data with overdispersion, the 

majority is within 2% and the greatest difference from 

the true is 5.1%. We suspect the overestimation of 

sample size thus the empirical power is due to slightly 

overestimation of Var( ˆ1)  for clustered count data with 
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overdispersion. This phenomenon warranties future 

exploration of a correcting method.  

Our results apply to a within cluster treatment or 

covariate such as would occur when clusters are 

identified and some subjects within each cluster 

receive the treatment, or when subjects with and 

without a covariate value are identified from a database 

and matched on other characteristics. These results 

complement the situation of cluster randomized 

designs where all subjects in a cluster receive the 

same treatment or covariate level. In the latter case the 

results of Gao [14] and Demidenko [15] do not apply, 

and the standard methods for cluster randomized 

designs [27, 29, 30] can be used. 

For clarity of presentation we have discussed 

subjects within clusters, but these methods would also 

apply to other forms of clustering, for example a count 

outcome measured on subjects while on a treatment 

and while off the treatment, as in a time series 

intervention design. Here, subjects are clusters and 

treatment is a within cluster variable. 

The reasons for us to consider only random cluster 

effects models rather than a general population-

average model (i.e., Generalized Estimating Equations 

(GEE)) are two-fold: first, it has been shown that the 

results from GEEs and random-effects model were 

comparable in analyzing clustered count data [31]. Our 

preliminary analyses also showed that the empirical 

power based on GEEs was very close to the empirical 

power based on random cluster effects model. Second, 

it is advantageous to use random cluster effects model 

in deriving the sample size and power formulas 

because of its explicit definition of the model and 

available moment-generating functions.  
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