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Abstract: In the setting of survival analysis, the time-dependent area under the receiver operating characteristic curve 
(AUC) has been proposed as a discrimination measure of interest. In contrast with the diagnostic setting, the definitions 
of time-dependent sensitivity and specificity are required. This paper evaluates the time-dependent profile of the 

resulting AUC(t), which has not been previously assessed. We show that, even when the effect of a binary biomarker on 
the hazard rate is constant, the value of AUC(t) varies over time according to the prevalence of the marker. The Time-
profile of the continuous biomarker is illustrated with numerical integration, and data on several prognostic factors in AML 

are examined. 
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1. INTRODUCTION 

Prospective cohort studies are commonly 

conducted to assess and compare the prognostic value 

of several biomarkers in a population of interest, using 

a right-censored endpoint. In such a survival setting, 

there has been a growing interest in predictive 

accuracy measures [1], ranging from measures of the 

proportion of variation explained by the covariates, 

which extend the R2  to survival data [2,3], to 

reclassification measures that focus on the incremental 

value of biomarkers compared to pre-existing risk 

scores [4]. Concept of discrimination encompasses 

measures such as sensitivity, specificity, Receiver 

Operating Characteristic (ROC) curve and area under 

the ROC curve and is related to how a biomarker or a 

model can distinguish low from high risk patients, in a 

direct extension of the diagnostic settings where we 

aim at distinguishing between patients with and without 

the disease. Calibration and discrimination are the 

main components for describing predictive accuracy 

and discrimination appears to be of primary interest 

since, if a model have poor discrimination, no 

calibration can correct the model. On the contrary, a 

model with good discrimination can be recalibrated [5]. 

Recently, Heagerty and colleagues [6] introduced 

the concepts of time-dependent sensitivity and 

specificity, and the area under the resulting time-

dependent ROC curve (AUC) to apply discrimination  
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measures to the setting of prognostic biomarkers. On 

the model of cases and control in the diagnostic 

setting, they defined several types of time-dependent 

case and time-dependent control. Briefly, cases can be 

defined as “cumulative” or “incident” and controls can 

be defined as “dynamic” or “static”, resulting in three 

different types of discrimination measures. In addition 

to the choice of discrimination measure, because the 

outcome status is time-dependent, discrimination 

measures such as sensitivity, specificity, ROC curves 

and their AUC values are functions of time as well. 

Thus, when evaluating the predictive accuracy of any 

biomarker for distinguishing t-year survivors, both the 

choice the discrimination measure and the choice of t 

may influence the result. The use of varying values of t 

to evaluate the predictive accuracy of biomarkers is not 

rare, notably in the biomedical litterature where the 

time-dependent AUC is increasingly used and plotted 

over time. For example, in a recent work, Maisel et al. 

[7] reported the prognostic value of baseline copeptin 

and cardiac troponin based on trial data from 1,967 

patients with chest pain. They compared the time-

dependent AUC values for survival up to 180 days, at 

several time points, to conclude that copeptin was of 

prime interest for short-term (<30 days) mortality 

prediction and that cardiac troponin was stronger for 

long-term (>60 days) outcome prediction. This 

suggests that the prognostic impact of these 

biomarkers is time-variant. Time varying effect of a 

covariate is a well-known cause of non-proportional 

hazards, which can be handled through the useof time-

dependent coefficients in the classical semi-parametric 

Cox proportional hazards model [8]. Intuitively, one 

could expect time-dependent AUC to vary in the same 
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direction as the time-varying coefficients. Nevertheless, 

it appears that time-varyingeffect in the not the 

onlysource of variation across time of the accuracy 

measures. The aim of this work was to study the time 

profile of the time-dependent AUC, in the specific case 

of a time-fixed effect of a biomarker. In Section 2, we 

present several definitions of the time-dependent AUC 

in the standard setting of a baseline biomarker and 

univariate survival data. Section 3 presents real data 

from a recent clinical study conducted with 278 patients 

with acute myeloblasticleukaemia, which further 

motivated this work and data from an ancient trial on 

primary biliary cirrhosis which is often used to illustrate 

methodological issues in survival analysis [9]. Section 4 

presents some properties of the time-dependent AUC 

as a function of time in the case of a binary prognostic 

biomarker and exponential survival times, and Section 

5 assesses the expected time-profile in the more 

complex case of a continuous biomarker and Weibull 

failure times using numerical integration. Finally, some 

discussion is provided in Section 6. 

2. TIME-DEPENDENT AUC 

In the diagnostic setting, the outcome D is a binary 

variable (D=1 for cases and D=0 for controls), and the 

ROC curve for a continuous diagnostic marker Z plots 

the true positive rate or sensitivity, 

TPR(c)=Pr(Z>c|D=1) against the false positive rate, or 

one minus the specificity, FPR(c)=Pr(Z>c|D=0) for all 

possible threshold values c. The area under the ROC 

curve, or AUC, is then defined as:  

AUC = TPR(c)
FPR(c)

c

+

         (1) 

A simple interpretation of AUC is the probability that 

the diagnostic test will correctly order a random couple 

(i,j) of case and control, which, assuming that higher 

values of the diagnostic test are associated with higher 

probabilities of the disease, is:  

AUC = P(Zi > Z j Di = 1, Dj = 0)          (2) 

To extend the diagnostic to the prognostic setting, 

one must account for the feature of survival data. Let T 

denote the time to some event of interest. We consider 

the practical situation of a time-independent biomarker 

assessed at baseline, denoted by Z, and we assume 

that higher values of Z are associated with shorter 

event times. The survival time T can be seen as a time-

dependent binary outcome via the counting process 

representation Ni
*(t) . 

Several extensions of the cross-sectional 
discriminative measures have been proposed [8], 
which differ in how the time-dependent “cases” (events) 
and “controls” (non-events) are defined. Time-
dependent cases can be defined either as incident 
cases, corresponding to patients who failed at t (T=t) or 
cumulative cases, corresponding to patients who failed 

by t (T t). We subsequently define incident true 

positive rate (TPRI (c,t) = P(Z > c T = t) , and cumulative 

true positive rate (TPRC (c,t) = P(Z > c T t) . Time-

dependent controls are mostly defined as dynamic, 
corresponding to patients still free of the event at t (T>t) 
and thus defining a dynamic false positive rate 

(FPRD (c,t) = P(Z > c T > t) . Combining these 

definitions, the two commonly used time-dependent 
AUCs, namely cumulative/dynamic and incident/ 
dynamic AUC(t), are defined as follows: 

AUCC ,D (t) = P(Zi > Z j Ti t,Tj > t)          (3) 

AUCI ,D (t) = P(Zi > Z j Ti = t,Tj > t)         (4) 

Due to the nature of time-to-event data, we only 

observe X=T C, where C represents an independent 

censoring time. Several estimators of the AUC
C,D

(t) and 

the AUC
I,D

(t)have been proposed to cope with 

censoring. For cumulative/dynamic AUC(t), estimators 

can be based on estimates of the conditional survival 

function P(T > t Z = z) , using either the Cox model to 

derive the estimate Ŝn (t z)  [10] or a nearest neighbour 

estimator for the bivariate distribution function of (Z,T) 

[11], or based on the inverse probability of censoring 

weighted (IPCW) estimator [12,13]. For 

incident/dynamic AUC(t), semi-parametric methods 

using a Cox model have been proposed to estimate 

incident sensitivity and dynamic specificity, while 

standard numerical integration techniques are used to 

compute an estimate for AUC
I,D

(t). Non-parametric 

methods have also been proposed [14]. Most of these 

estimators have been made available in standard 

softwares such as R [15] with the timeROC, 

risksetROC, survivalROC and survAUC packages 

[16,17,18,19]. 

3. ILLUSTRATING EXAMPLE 

We used prospectively recorded data to assess the 

prognostic value of biomolecular markers in acute 

myeloblasticleukaemia (AML). This cohort study was 

nested into a randomised controlled trial that showed 

the event-free survival and overall survival benefit of 

gemtuzumabozogamicin (GO) during induction and 

consolidation in AML patients aged 50-70 years (ALFA-
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0701 study) [20]. We used three biomarkers based on 

analysis of karyotype by single nucleotide 

polymorphism array (lesions of SNP-A) or molecular 

analysis (DNMT3A mutation, or NPM1 mutation), all 

measured at baseline as potential predictors of death. 

Among the 278 patients enrolled in the study, 131 died 

during follow-up, with 1-year and 2-years overall 

survival rates estimated at 71.3% (95%CI: 66.1% – 

76.8%) and 48.4% (95%CI: 42.1% – 55.7%), 

respectively and median survival of 22.2 months. Table 

1 reports the estimated hazards ratios of death (data 

truncated at 2 years) of these biomarkers, which exhibit 

varying strengths of association with binary covariates 

from 1.4 (NPM1 wild type) to 2.5 (SNP-A lesions). 

We further assessed the discriminative value of 

these biomarkers, first based on the AUC
C,D

(t) 

computed for increasing values of time using the 

timeROC R package as illustrated in Figure 1 (upper 

panel). There were some surprising findings. First, at 

some specific time points, there was no direct 

relationship between the value of the AUC
C,D

(t) and the 

estimated HR for binary covariates. For instance, while 

the estimated HR of SNP-A was higher than that of 

Table 1: ALFA-0701 Study: Estimated Hazards Ratio (HR) of Death with Ninety-Five Percent Confidence Intervals 
(95%CI) for Potential Predictors  

Variable HR 95%CI p-value Prevalence 

SNP-A lesions 2.52 (1.68-3.77) <0.001 54% 

NPM1 Wild 1.39 (0.95-2.03) 0.089 66% 

DNMT3A mutated 2.21 (1.31-3.72) 0.003 34% 

 

 

Figure 1: ALFA-0701 study. Time dependent AUC of biomarkers for discrimination of mortality over time. Curves smoothed by a 
locally weighted polynomial regression. Upper panel refers to AUC

C,D
(t) and lower panel to and AUC

I,D
(t)time profiles.  
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DNMT3A, the AUCC ,D (t)  associated with DNMT3A was 

sometimes higher than that of SNP-A. Second, the time 

profiles of these AUC
C,D

(t) were not all the same, with 

some exhibiting an increase over time (such as that of 

NPM1) and others having different trends over time 

(e.g., SNP-A). 

When computing the AUC
I,D

(t) using the risksetROC 

R package, time profiles appeared somewhat different 

(Figure 1, lower pannel), with rather constant values 

over time ranked in agreement with increasing hazards 

ratios. 

In all cases, there was no statistical evidence of 

non-proportionality of hazards based on weighted 

Schoenfeld residuals [21], with p-values ranging from 

0.22 to 0.78 according to the prognostic marker.  

The second example is based on data from the 

Mayo Clinic trial in primary biliary cirrhosis (PBC) 

conducted between 1974 and 1984. A total of 424 PBC 

patients, referred to Mayo Clinic, were followed until 

either death or liver transplantation (median follow-up 

of seven years). Patients ‘age and presence of ascites 

at enrollment in the study were both predictors of 

event-free survival (Table 2), with no evidence for a 

time-varying effect (p-value for non-proportionality of 

hazards: 0.123 and 0.3). Time profiles of 

cumulative/dynamic and incident/dynamic AUC(t) were 

both decreasing for ascites, whereas age exhibited a 

rather constant incident/dyamic AUC(t) and a 

decreasing then increasing cumulative/dynamic AUC(t) 

We thus attempted to obtain further insights in the 

time profiles of the AUC(t). 

4. THE TIME-DEPENDENT AUC FOR A BINARY 
MARKER AND AN EXPONENTIAL SURVIVAL TIME 

We first analytically derived the cumulative/dynamic 
AUC and the incident/dynamic AUC in the particular 
case of an exponentially distributed survival time and a 
binary marker. We assume that Z is distributed 
according to a Bernoulli distribution of probability p and 
T according to an exponential distribution of conditional 

mean (T Z = z) = ( 0 exp( Z )) 1 . Let =exp( ) be the 

hazard ratio associated with Z. To account for tied Zs, 

previous equations (3) and (4) have to be modified as 
follows:  

AUCC ,D (t) = P(Zi > Z j Ti t, Tj > t)

+
1

2
P(Zi > Z j Ti t, Tj > t)

        (5) 

AUCI ,D (t) = P(Zi > Z j Ti = t, Tj > t)

+
1

2
P(Zi = Z j Ti = t, Tj > t)

         (6) 

Using Bayes formula, AUC
C,D

(t) and AUC
I,D

(t) can 

then be expressed as functions of t, p, 0  and  as 

follows:  

AUCC ,D (t) =

1

2
1+

p(1 p)(e 0t e 0 t )

1 (1 p)e 0t + pe 0 t( ){ } (1 p)e 0t + pe 0 t{ }

 (7) 

AUCI ,D (t) =

1

2
1+

p(1 p)( 1)e 0t (1+ )t

(1 p)e 0t + p e 0 t{ } (1 p)e 0t + pe 0 t{ }

    (8) 

According to the hazard ratio  and the prevalence 

p of the marker, various time profiles of AUC
C,D

(t) and 

AUC
I,D

(t) can be found, as illustrated in Figure 2, and 

this despite the hazard ratio associated with the marker 

being constant. Indeed, AUC
C,D

(t) and AUC
I,D

(t)are 

constant only when the biomarker has no prognostic 

value ( =1), with a value of 0.5, as expected.  

When t tends to , both AUC
C,D

(t) and AUC
I,D

(t)tend 

to a finite value independently of the hazard ratio . 

This limit is related to the prevalence of the biomarker 

for AUC
C,D

(t)and is always equal to 0.5 for AUC
I,D

(t) 

(see 7.1 for demonstration).  

limt AUCC ,D (t) = 0.5 + 0.5p  

limt AUCI ,D (t) = 0.5  

Moreover, the higher the hazard ratio, the sooner 

the limit is reached. When t=0, AUC
C,D

(0) is 

Table 2: Primary Biliary Cirrhosis Study: Estimated Hazards Ratio (HR) of Death with Ninety-Five Percent Confidence 
Intervals (95%CI) for Potential Predictors (Age was Standardized) 

Variable HR 95%CI p-value Prevalence 

Ascites 6.63 (4.20-10.46) <0.001 8% 

Age 1.27 (1.10-1.48) 0.002 - 
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indeterminate while AUC
I,D

(t) is related to both the 

hazard ratio and the prevalence, as follows: 

AUCC ,D (0) = 0.5 +
1

2

P(1 P)( 1)

(1 P)+ P
 

AUC
C,D

(t) appears to either monotonically increases 

if 1<  2 or increases up to a maximum and then 

decreases if >2, but AUC
I,D

(t) always has a maximum 

(see 7.2 for demonstration in the specific case where 

p=0.5). 

Finally, except in the case where the biomarker has 

no prognostic value (where 

AUCI ,D (t) = 0.5 t), AUCC ,D (t)  is always higher than 

AUC
I,D

(t) which is a general result independent of the 

distribution of the biomarker and the failure times (see 

7.3 for demonstration). 

During the first 24 months of the alfa-study, an 

increasing profile of AUC
C,D

(t) is expected, whereas, 

AUC
C,D

(t) for NPM should be rather constant. 

Discrepancies between expected and observed time-

profiles could be due to an insufficient sample size 

and/or to the polynomial smoothing. Observed 

AUC
I,D

(t) are closer to their expected profiles (Figure 

3).  

5. TIME-DEPENDENT AUC FOR A CONTINOUS 
BIOMARKER 

The profiles of AUC
C,D

(t) and AUC
I,D

(t) in more 

complex situations when the marker Z is continuous 

were investigated using numerical integration. Given 

the marginal distribution of marker and survival 

distribution of time conditional on the marker, 

theoretical values OF AUC
C,D

(t) and AUC
I,D

(t) can be 

obtained by:  

 

Figure 2: Profiles of AUC
C,D

(t) (plain lines) and AUC
I,D

(t) (dashed lines) for varying p with fixed =log(1.5) and 0 = 0.01  (upper 
panel) and varying  with fixed p=0.3 and 0 = 0.01  (lower panel). 
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AUCC ,D (t) =
F(t;Z = z)[1 F(t,Z = c)]

[1 F(t)]F(t)C
g(z)g(c)dzdc   (9) 

AUCI ,D (t) =
f (t;Z = z)[1 F(t,Z = c)]

[1 F(t)] f (t)C
g(z)g(c)dzdc (10) 

Failure times were generated using the Weibull 

distribution with a decreasing hazard (shape=0.5), 

constant hazard (shape=1, i.e. the exponential 

distribution) or increasing hazard (shape=2) and data 

were not censored. Marker Z was normally distributed, 

with mean 0 and variance 1 (Z N(0,1)). As illustrated 

for a binary biomarker, we assessed no (HR=1), mild 

(HR=1.5), moderate (HR=2) and high (HR=4) 

prognostic value of the marker. AUC
C,D

(t) and AUC
I,D

(t) 

were computed by numerical integration of formula (9) 

and (10).  

 

Figure 3: Time profiles of AUC
C,D

(t) (plain line) and AUC
I,D

(t)(dashed line) for different distributions of the failure times and with 
hazards ratio of 1 (black line), 1.5 (blue line), 2(green line) and 4 (red line). Left column displays marginal survival functions for 
the 4 hazard ratios, in the 3 cases of Weibull failure times with decreasing (upper plots), constant (middle plots) and increasing 
(lower plots) hazards. Central and right columns of the figure display the resulting cumulative/dynamic and incident/dynamic 
AUCs 
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Figure 4 illustrates that, whatever the distribution of 

survival times, the AUC
C,D

(t) monotonically increased 

with time, contrary to the AUC
I,D

(t) which monotonically 

decreased, though in a somewhat narrower range. As 

previously demonstrated for binary biomarkers, the 

values of the AUC
C,D

(t) are greater than the values of 

the AUC
I,D

(t). In contrast to the binary setting, clear-cut 

crossing of the AUC
I,D

(t) was no longer observed, and 

the higher the HR, the higher were the values of both 

AUC
C,D

(t) and AUC
I,D

(t). Nevertheless, choosing two 

different time points for two biomarkers of distinct 

prognostic values may achieve a difference in the 

AUC(t) favoring the biomarker with the lowest 

prognostic value. For instance, in the case of a Weibull 

failure times distribution with increasing hazard, the 

value of AUC
C,D

(t) was 0.701 at time 40 for a biomarker 

with mild prognostic value (HR=2) and 0.752 at time 

160 for a biomarker with moderate prognostic value 

(HR=1.5).  

6. DISCUSSION 

Discrimination measures for survival outcomes have 

led to several extensions of the classically defined 

AUC, widely used in the diagnostic setting. Three time-

dependent measures have been proposed by Heagerty 

and al. [5] according to how cases (events) an controls 

(non-events) are defined: Cumulative/Dynamic 

(AUC
C,D

(t)), Incident/Dynamic (AUC
I,D

(t)) and 

Incident/Static AUC
I,S

(t). The first two definitions have 

been more extensively studied and are increasingly 

used in the medical literature. Nevertheless, no clear 

guidance has emerged in the statistical literature 

regarding the choice of these definitions for cases and 

controls [22]. Arguments favoring AUC
C,D

(t) are that 

cumulative/dynamic definitions of cases and controls, 

respectively, are more natural and intuitive, and thus 

can be seen as direct extensions of those in the 

diagnostic setting. Notably, they may appear more 

 

Figure 4: PBC study. AUC
C,D

(t) (left panel) and AUC
I,D

(t) (right panel) time profiles for age (upper panel) and ascites (lower 
panel). Plain lines are empirical curves smoothed by a locally weighted polynomial regression, and dashed lines are theoretical 
profiles from corresponding Weibull conditional distributions. 
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appropriate for clinical decision-making, such as 

enrolment in clinical trials. On the other hand, by using 

AUC
I,D

(t), the incident true positive rate and the 

dynamic false positive rate parallel the multiple 

contributions that a subject can make to the likelihood 

function. Moreover, AUC
I,D

(t) can be averaged over the 

entire the follow-up period to obtain a time-independent 

summary measure that is directly related to a global 

concordance measure, whereas no such meaningful 

averaging have been proposed for AUC
C,D

(t). 

However, the interpretation of trends of AUC values 

over time has never been studied in a theoretical 

framework, particularly in the case of a fixed 

association where one could imagine that 

discrimination would be constant across time. In this 

paper, using analytical expression of both AUC
C,D

(t) 

and AUC
I,D

(t) in the simple case of a binary marker and 

exponential survival times or numerical integration for 

more complex cases with a continuous marker, we 

highlighted several interesting properties. First, at a 

given timepoint, the value of AUC
C,D

(t) of a biomarker is 

alwas higher than that of the AUC
I,D

(t). Second, we 

showed that in case of a continuous biomarker, 

AUC
C,D

(t) mostly increased while AUC
I,D

(t) decreased 

over time. Given these potential differences, the 

definition of the chosen AUC(t) should be clearly 

reported when applied in the medical literature, and the 

choice of the time point of interest should be carefully 

justified. 

Third, in the context of binary time-fixed outcomes, 

the discriminatory measure has been directly related to 

the measure of association, and a recent study has 

shown that the relation between the AUC and the odds 

ratio depends on the distribution of the explanatory 

variable [23]. Similarly, in the survival setting, using a 

binary biomarker and exponential failure times, we 

showed that the AUC
C,D

(t) and AUC
I,D

(t) depended not 

only on the effect of the biomarker on the hazard of 

death but also on its prevalence. This explains at least 

partially the results observed in the ALFA-0701 study. 

Finally, it should be underlined that both empirical 

AUC
C,D

(t) and AUC
I,D

(t) can be quite different from their 

model-based theoretical values. This is illustrated bye 

time-profile of discriminative values of two predictors in 

the PBC study, namely age and presence of ascites 

(Figure 4). While empirical cumulative/dynamic AUC(t) 

of age exhibit a decreasing then increasing profile, the 

profile of the corresponding Weibull model is 

increasing. These discrepancies seem milder for 

incident/dynamic AUC(t). Such differences could be 

due to the fact that smoothing does not perform very 

well, and that early and late estimation of AUC(t), 

corresponding to few event, are unreliable. Similarly to 

what has been stated in the context of proportion or in 

the survival setting, model-based measures might be 

preferable to empirical non parametric estimations 

[24,25].  

Thus, based on these previous points, we warned 

against the use of discrimination measures such as 

AUC(t) when assessing and comparing the predictive 

value of biomarkers. This warning is in agreement with 

previous reports in the context of logistic regression, 

where testing for improvement in AUC has been shown 

to be equivalent and less powerful than testing whether 

the new predictor variable is significantly different from 

zero in multivariable regression models [26,27,28]. 

Otherwise, as an illustration of the discriminatory 

performance of a biomarker using a single measure, 

the use of time-independent discriminatory measures, 

such as the global concordance index proposed by 

Harrell and modified by Uno [29,30] the concordance 

probability estimate proposed by Gonen [31], or the 

integration of time-dependent AUC [5,32,33] may be 

interesting alternatives. 
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7. APPENDIX 

7.1. Limits when t Tends to  

Equation (7) can be rewritten as:  

 

with 

v(t) = (1 p) 0t + p 0t            (2) 

when t tends to  the limit of (1 v(t)) is equal to 1 and  

 

with the limits of the numerator and denominator being 

equal to 1 and (1 p), respectively. Thus, 
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Equation (8) can be rewritten as:  

 

with 

     

   

      

        

Because >1, when t tends to  the limits of the 

numerator and denominator of F are equal to 0 and 

(1 p)2 0 , respectively. Thus, 

 

7.2. Monotonicity in the Case where p=1 p=0.5 

7.2.1. AUC
C,D

(t) 

Let f (t) = 0t 0t  and g(t) = 0t + 0t  

 

 

 

with 

 

 

When t=0, D(t) = 2 0 > 0  

When t , D(t) is the same sign as 

4( 1) 0e
0 (1+ )t

0
3 0t . It is thus negative for +1>3 

i.e. >2 and positive for 2  

7.2.2. AUC
I,D

(t)  

Let f (t) = ( +1) 0t  and g = ( 0
0t + 0

0t )( 0t+ 0t )  

 

 

with 

D(t) = 0 ( 1) 0
(1+3 ) 0t + 0 (1 ) 0

(3+ ) 0t  

When t=0 D(t) = {( 1) 0}
2
> 0  When t , D(t) 

is the same sign as 0 (1 ) 0
(3+ ) 0t  which is <0  

7.3. Relation between AUC
C,D

(t) and AUC
I,D

(t)  

First, AUC
C,D

(t) and AUC
I,D

(t) can be written as a 
function of the corresponding definitions of time-
dependent True Positive Rate (TPR(t)) and False 
Positive Rate (FPR(t)) Cumulative TPR is defined as 

TPRC (c,t) = Pr(X > c T t) , Incident TPR is defined as 

TPRI (c,t) = Pr(X > c T = t)  and Dynamic FPR is defined 

as FPRDc,(t) = Pr(X > c T > t) . 

 

 

Second, TPR
C
(c,t) can be expressed knowing 

TPR
I
(c,t) and the distribution of failure times f(t):  

 

Assuming that AUC>0.5, if ti < t j  we can write that 

Pr(X > c |T = ti ) Pr(x > c |T = t j )  

Hence, on [0,t]:  

 

 

 

 

Thus, AUC
C,D

(t)  AUC
I,D

(t) 

7.4. Weibull Failure Times and Binary Biomarker 

As for exponential failure times, AUCC ,D (t)  and 

AUCI ,D (t)  can be expressed as a function of p, 0 ,  

and t as follows, with 1 = 0exp( ) : 
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         (A.1) 

 
         (A.2) 
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