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Abstract: In medical studies, the longitudinal data sets obtained from more than one response variables and covariates 
are mostly analyzed to investigate the change in repeated measurements of each subject at different time points. In this 
study, the usability of multivariate models in the analysis of these kind of data sets is investigated, because it provides 
the joint analysis of multiple response variables over time and enables researchers to examine both the correlations of 
response variables and autocorrelation between measurements from each response variable over time. It has been 
shown that different parameter estimation methods affect the results in the analysis of multivariate unbalanced 
longitudinal data. We investigated that autocorrelation structure over time between measurements from same response 
variable should be truly specified. We also illustrated and compared the simpler, more standard models for fixed effects 
with multivariate models provided by SAS on a real-life data set in the joint analysis of two response variables. Results 
show that misspecification of autocorrelation structures has a negative impact on the parameter estimates and 
parameter estimation method should become of interest. 
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1. INTRODUCTION 

A longitudinal study is a long-term observational 
study performed over a period of time to study 
measurements gathered for the same subjects 

repeatedly. In many medical and epidemiological trials, 
longitudinal studies have repeated measurements for 
more than one response variables and covariates over 
time. As an example, longitudinal studies of 
Alzheimer’s disease investigate different predictors and 
different response variables likely to be affected by 

these different predictors over time in the decline of 
disease [1].  

Life course researches are interested in the 
individual development over time by analyzing several 
longitudinal covariates and responses related to the 
growth, health and lifestyle of subjects over time [2].  

These longitudinal multivariate studies require 
special statistical methods in order to take into account 
1) errors likely to be correlated for each response 
variable over time, 2) errors correlated among 

response variables measured at the same time point 
and 3) variances likely to be different for different 
response variables. 

Multivariate repeated measurements model with a 
Kronecker product covariance, random coefficient 
mixed model and structural equation models can 
provide an opportunity to study this kind of longitudinal 
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data sets under the consideration of the joint evaluation 

of multiple response variables over time [3-5]. Gao et 

al. (2006) [6] compared three approaches by using 
balanced longitudinal data with equally spaced time 
points. However, under the joint analysis of multivariate 
longitudinal data, some points such as the case that 
the sequence of time points is no longer common for all 

subjects, the misspecification of autocorrelation 
structure for errors within subject over time and 
parameter estimation methods (maximum likelihood 
(ML), restricted maximum likelihood (REML), minimum 
variance quadratic unbiased estimation (MIVQUE0)) 
should become of interest.  

In this study we investigate multivariate repeated 
measurements model with a Kronecker product 

covariance for multiple responses measured 
uncommon set of time points under the consideration 
of first-order autoregressive (AR1), compound 
symmetry (CS) and unstructured (UN) autocorrelated 
errors within subject over time. Because variance 
components are estimated from unbalanced data, 

research was directed herein toward estimation 
methods (ML, REML and MIVQUE0) whose properties 
do not depend on balanced data in SAS version 9.2. 
We consider bivariate repeated measurements model 
with a Kronecker product covariance as the special 
case of multivariate models for two response variables. 

We also compared these models with the simpler and 
more standard fixed effects models in SAS PROC REG 
and PROC GENMOD procedures [15].  

We illustrate a real-life Genetic Analysis Workshop 
19 (GAW 19) longitudinal data containing replications 
taken unequally spaced time points between 1991 and 
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2011. Subjects are measured at four different time 
points during the study. Our primary interest is to 

assess the interrelationships among two responses, 
when unequally spaced time points are coded in the 
model as equally spaced time points (i.e., 1, 2, 3, 4) or 
unequally spaced time points (i.e. 1,2,…, 16). 

2. BIVARIATE REPEATED MEASUREMENTS 
MODEL WITH A KRONECKER PRODUCT 
COVARIANCE  

We assume that the multivariate distribution of 
longitudinal responses follow the multivariate normal 
distribution. The general model definition is as follows 

Yi = Xi + i             (1) 

where Yi is the qx1 vector of outcomes for i
th

 subject, 
Xi is the q (p +1)  matrix of p predictors for i

th
 subject, 

 is the (p +1) 1  vector of fixed effects and i is the 
error vector for i

th
 subject.  

Let a bivariate longitudinal data set arise when a set 
of response variables Y1  and Y2  and the covariates 

X1,…Xp  are measured repeatedly over time for 

multiple subjects. Yijk  is the response of the 

ith (i = 1,2,…,N )  subject on the 
 
jth ( j = 1,2,…,ni )  time 

point for kth (k = 1,2)  response variable [7,8]. 

We used bivariate repeated measurements model 

using a Kronecker product covariance which allows 
researchers to analyze bivariate longitudinal data sets 
under three alternative variance-covariance structures 
of the measurement error within each subject by the 
REPEATED statement in the PROC MIXED procedure 
in SAS: UN@AR(1), UN@CS and UN@UN [6]. The 

Kronecker products specifying the covariance of 
UN@AR(1), UN@CS and UN@UN for the relationship 
between Y1  and Y2  are given in Eq.(2): 

V i =
Y1
2

Y1Y2

Y1Y2 Y2
2 i =

Y1
2

i Y1Y2 i

Y1Y2 i Y2
2

i

     (2) 

where 

 

i =

1 ni 1

1 ni 2

ni 1 ni 2 1

 for AR(1) 

autocorrelated errors, 

 

i =

1

1

1

 for CS 

autocorrelated errors and 

 

i =

1 1 ni 1

1 1 ni 1

ni 1 ni 2 1

 

for UN autocorrelated errors [9].  

This approach using the covariance structures for 
bivariate repeated measurements obtained by 
Kronecker product covariance allows to specify inter-
response correlation, i.e. the correlated errors for the 
same response variable measured at different time 

points (eg. i =

1

1

1

 in UN@CS structure), 

intra-response correlation, i.e. the errors likely to be 
correlated among response variables measured at the 

same time point Y1Y2
=

Y1Y2

Y1
2

Y 2
2

 and the variances 

of errors likely to be different for two response 
variables. The inter-responses correlation Y1Y2

 of the 

bivariate process is assumed to be same for two 
responses measured at the same time point. If Y1Y2

 is 

0, then the responses are independent. Bivariate model 
also assumes a common intra-response correlation [4].  

3. PARAMETER ESTIMATION METHODS 

Two frequently used approaches for estimating all 

variance and covariance parameters are maximum 
likelihood (ML) and residual/restricted maximum 
likelihood (REML) estimation methods [10]. Both 
methods simplifies many common statistical analyses 
involving repeated measures [4]. In particular, REML is 
used as a method for fitting linear models. In contrast 

to ML estimation, REML can produce unbiased 
estimates of variance and covariance parameters.  

Minimum variance quadratic unbiased estimator 
(MIVQUE) [11] available in SAS PROC MIXED for 
estimating variance components is an alternative 
method which does not require a normality assumption 
as in ML and REML and may be used when ML does 
not converge. Instead of ML or REML, the non-iterative 

MIVQUE method can be used to estimate variance 
components [12] 

Newton Raphson (NR) or Expectation Maximization 
(EM) can be carried out as an optimization technique in 
PROC MIXED for the maximization of the likelihood 
functions [13, 14]. Lindstrom and Bates (1988) [14] 
showed that NR algorithm is preferred to the EM 



372     International Journal of Statistics in Medical Research, 2015, Vol. 4, No. 4 Bahçecitapar et al. 

algorithm. PROC MIXED uses NR algorithm to 
optimize either a full (ML) or residual (REML) likelihood 
function. 

4. NUMERICAL EXAMPLE 

The data is taken from 19th Genetic Analysis 

Workshop (GAW 19) (http://www.gaworkshop.org/). 
Longitudinal real phenotype data (systolic and diastolic 
blood pressure, hypertension diagnosis, anti-
hypertensive medication usage, age, sex, cigarette 
smoking) collected at up to four time points taken from 
959 subjects in 20 large families. The systolic blood 

pressure (SBP) and diastolic blood pressure (DBP) are 
measured in four different time periods for Hispanic 
samples. The measurement periods are unequally 
time-spaced as Visit1: between 1991-1996, Visit2: 
between 1997-2000, Visit3: between 1998-2006 and 
Visit4: between 2009-2011.  

In this study, we first analyzed this multivariate 
longitudinal data in SAS by both simple linear 

regression in PROC REG procedure and longitudinal 
data analysis in PROC GENMOD procedure. In all 
analysis, two different presentations for specifying visits 
of subjects, fist one is VISIT which indicates that all 
assessments are equally spaced and the other is 
UNEQVISIT which indicates real visits of subjects. 

Because subjects are measured four times during the 
study, the variable VISIT used in the MODEL statement 
takes 1, 2, 3 and 4 values. However, the variable 
UNEQVISIT takes values from 1 to 16. The illustration 
of some raw data from GAW 19 is given in Table 1. 

The following commands invoke the PROC REG 
procedure. We fit a linear regression model, with SBP 
or DBP as the Y (outcome) variable and VISIT or 

UNEQVISIT as the X (independent or predictor) 
variable. We analyzed four linear regression models to 

predict the relationship between time and SBP/DBP 
outcomes. Information concerning model fits were 
obtained. The F-statistics for the overall models for 
SBP and DBP were found to be highly significant. 
Under VISIT, the results were as for SBP, F=41.63, 
p<.0001; for DBP, F=24.44, p<.0001 and under 

UNEQVISIT, for SBP, F=46.41, p<.0001; for DBP, 
F=29.26, p<.0001. From Table 2, each parameter was 
found to be significantly different from zero (p<.0001). 
Table 2 shows that there is a positive relationship 
between these two variables. When VISIT increases by 
one, SBP is predicted to increase by 3.56 units, and 

this is a significant relationship (t-value = 6.45, 
p<.0001). In the regression analysis of unequally time 
points, it is found that when UNEQVISIT increases by 
one, SBP is predicted to increase by 0.82 units, and 
this is a significant relationship (t-value = 6.81, 
p<.0001). The R-square values for each model which 

are the square of the correlation between the two 
variables are given in Table 3. 

proc reg data=gen; 

model SBP DBP = VISIT; 

run; 

 

proc reg data=gen; 

model SBP DBP = UNEQVISIT; 

run; 

In order to take into account errors likely to be 

autocorrelated over time, we also analyzed this data 
set with SAS PROC GENMOD [15]. The main 
advantage of PROC GENMOD is that it can handle 
general linear models as well as more complex ones. It 
can analyze correlated data in repeated measures 

Table 1: Raw Data from GAW 19 for PROC REG Procedure 

d SEX YEAR VISIT UNEQVISIT SBP DBP Bp VAL 

200031 1 1992 1 1 117 77 SBP 117 

200031 1 1997 2 6 129 81 SBP 129 

200031 1 2002 3 10 127 82 SBP 127 

200031 1 2009 4 15 133.5 86 SBP 133.5 

300138 1 1992 1 1 132 79 DBP 79 

300138 1 1998 2 7 129 75 DBP 75 

300138 1 2003 3 11 125 71 DBP 71 

300138 1 2009 4 15 126 68.5 DBP 68.5 

: 

. 

: 

. 

: 

. 

: 

. 

: 

. 

: 

. 

: 

. 

: 

. 

: 

. 
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study when measures are assumed to be multivariate 
normal.  

Table 3: The R-Square Values of PROC REG Analysis 

 R
2
 

Model1 0.0599 

Model2 0.0663 

Model3 0.0346 

Model4 0.0428 

 

We could perform this analysis in PROC GENMOD 
under unequally time points with the following syntax: 

proc genmod data=gen; 
class id Bp; 

model VAL=UNEQVISIT*Bp / dist=normal; 
repeated subject=id / corrw type=UN; 
run; 

 

proc genmod data=gen; 
class id Bp; 

model VAL= UNEQVISIT *Bp / dist=normal; 
repeated subject=id / corrw type=CS; 
run; 

proc genmod data=gen; 
class id Bp; 
model VAL= UNEQVISIT *Bp / dist=normal; 
repeated subject=id / corrw type=AR(1); 
run; 

Tables 4 and 5 display model-based parameter 
estimates for each autocorrelation structure (AR(1), 
UN, CS) in the model with VISIT and UNEQVISIT 
variables, respectively.  

From Tables 2, 4 and 5, it can be seen that in 

PROC GENMOD procedure, the change in both SBP 
and DBP over time can be analyzed separately. In 
PROC GENMOD, the examination of time points in the 
format of unequally time points change the results. 
When time points are assigned as equally time points, 
for all autocorrelation structures the change in both 

DBP and SBP over time was found to be significant 
(p<.0001). PROC GENMOD under consideration of 
unbalanced data and UN autocorrelation structure 
found the change over time in DBP responses 
insignificant (p=0.5703). 

PROG REG and PROC GENMOD give merely 
simpler solution and these approaches do not 
correspond to joint analysis. For the joint analysis of 

this multivariate longitudinal data set, the following SAS 

Table 2: Parameter Estimates for Linear Regression Models in PROC REG Procedure with SBP/DBP and 
VISIT/UNEQVISIT Variables 

Model 1: SBP = 0 + 1  VISIT  

Variable df Parameter Estimates St.Error t-value P > t  

0  1 112.730 1.512 74.54 <.0001 

1  1 3.560 0.552 6.45 <.0001 

Model 2: SBP = 0 + 1   UNEQVISIT  

Variable df Parameter Estimates St.Error t-value P > t  

0  1 114.464 1.219 93.85 <.0001 

1  1 0.824 0.120 6.81 <.0001 

Model 3: DBP = 0 + 1  VISIT  

Variable df Parameter Estimates St.Error t-value P > t  

0  1 68.547 1.041 65.82 <.0001 

1  1 1.880 0.380 4.94 <.0001 

Model 4: DBP = 0 + 1  UNEQVISIT  

Variable df Parameter Estimates St.Error t-value P > t  

0  1 69.325 0.839 82.54 <.0001 

1  1 0.450 0.083 5.41 <.0001 
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codes fit a bivariate repeated measurements model 

using a Kronecker product covariance for two response 
variables in PROC MIXED procedure. We note that the 
variable VISIT is used in the model, indicating equally 
spaced measurements and the variable. UNEQVISIT is 
used to indicate unequally spaced measurements. The 
variables VISITC and UNEQVISITC are treated as a 

class variable in the REPEATED statement in PROC 
MIXED procedure which have the same values as in 
VISIT and UNEQVISIT variables.  

proc mixed data=gen covtest noclprint method=…;  

class id Bp VISITC;  

model Y=Bp*VISIT/s noint;  

repeated Bp VISITC /type=UN@AR1 subject=id r 

rcorr;  

where Y="DBP" or Y="SBP"; 

run; 

In SAS, this model under unequally spaced time 
points for UN@AR1 covariance structure is also 
implemented with PROC MIXED as follows: 

proc mixed data=gen covtest noclprint method=…;  

class id Bp UNEQVISITC;  

model Y=Bp*UNEQVISIT/s noint;  

repeated Bp UNEQVISITC /type=UN@AR1 

subject=id r rcorr;  

where Y="DBP" or Y="SBP"; 

run; 

Results are shown in Tables 6-8. Model 5 and 
Model 6 represent the multivariate repeated 
measurement models with a Kronecker product 
covariance under equally and unequally spaced time 
intervals, respectively. For Model 6, results cannot be 
computed for the structure UN@UN because of the 

inequality of the time intervals under ML and REML 
estimation methods. 

Model 5: Multivariate Repeated Measurement 
Model with a Kronecker product covariance under 
equally spaced time intervals 

Model 6: Multivariate Repeated Measurement 
Model with a Kronecker product covariance under 
unequally spaced time intervals 

Smaller values of AIC indicates a better fit. 
According to the assignment of time points as VISIT 
variable, Model 5 with UN@UN covariance structure 
under REML provide a better fit to the data set. On the 

other hand, in Model 6 (i.e. model based on unequally 
time points) with UN@UN Kronecker product 

Table 4: Parameter Estimates Obtained by PROC GENMOD Procedure with VISIT Variable 

 UN CS AR(1) 

Parameter Estimate 

(St.Error) 

Z p-value Estimate 

(St.Error) 

Z p-value Estimate 

(St.Error) 

Z p-value 

Intercept 93.0239 

(1.3743) 

67.69 <.0001 90.6387 

(1.1946) 

75.88 <.0001 89.7423 

(1.1480) 

78.17 <.0001 

VISIT DBP -7.7879 

(0.5738) 

-13.57 <.0001 -5.4836 

(0.3989) 

-13.75 <.0001 -3.4780 -9.60 <.0001 

VISIT SBP 9.3727 

(0.4897) 

19.14 <.0001 10.9269 

(0.3771) 

28.98 <.0001 11.8903 32.38 <.0001 

 

Table 5: Parameter Estimates Obtained by PROC GENMOD Procedure with UNEQVISIT Variable 

 UN CS AR(1) 

Parameter Estimate 

(St.Error) 

Z p-value Estimate 

(St.Error) 

Z p-value Estimate 

(St.Error) 

Z p-value 

Intercept 115.3872 

(16.7080) 

6.89 <.0001 91.9565 

(1.0072) 

91.30 <.0001 91.0556 

(0.9675) 

94.12 <.0001 

UNEQVISIT DBP -1.2034 

(2.1204) 

-0.57 0.5703 -1.4888 

(0.0894) 

-16.66 <.0001 -0.7614 

(0.0786) 

-9.68 <.0001 

UNEQVISIT SBP 2.7518 

(1.3212) 

2.08 0.0373 2.7487 

(0.0814) 

28.98 <.0001 3.0300 

(0.0807) 

37.53 <.0001 
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Table 6: Parameter Estimates by ML for Multivariate Repeated Measurement Models with a Kronecker Product 
Covariance Using VISIT or UNEQVISIT Variable 

Model5 Model6

Fixed Effects (St.Error) UN@AR1 UN@CS UN@UN UN@AR1 UN@CS UN@UN

Slope DBP 6.072*

(0.562)

2.882*

(0.333)

19.527*

(0.228)

6.385*

(0.142)

0.592*

(0.073)

NA

Slope SBP 10.337*

(0.802)

5.210*

(0.470)

32.293*

(0.335)

10.622*

(0.232)

1.083*

(0.103)

NA

Random effects (St.Error)

DBP SBP 0.962*

(0.006)

0.970*

(0.003)

NA 0 0.973*

(0.003)

NA

Fit Statistics

-2 Ln L 11234.8 11146.2 10837.3 12019.1 11156.4 NA

AIC 11246.8 11158.2 10865.3 12031.1 11168.4 NA

BIC 11265.4 11176.8 10908.7 12049.7 11187.0 NA

 

Table 7: Parameter Estimates by REML for Multivariate Repeated Measurement Models with a Kronecker Product 
Covariance Using VISIT or UNEQVISIT Variable 

Model5 Model6

Fixed Effects (St.Error) UN@AR1 UN@CS UN@UN UN@AR1 UN@CS UN@UN

Slope DBP 6.079*

(0.563)

2.885*

(0.333)

19.528*

(0.229)

6.385*

(0.142)

0.593*

(0.074)

NA

Slope SBP 10.348*

(0.802)

5.215*

(0.471)

32.293*

(0.336)

10.622*

(0.232)

1.084*

(0.103)

NA

Random effects (St.Error)

DBP SBP  
0.962*

(0.006)

0.970*

(0.003)

NA 0 0.973*

(0.003)

NA

Fit Statistics

-2 Ln L 11233.7 11147.2 10839.5 12025.0 11163.4 NA

AIC 11241.7 11155.2 10863.8 12033.0 11171.4 NA

BIC 11254.1 11167.6 10900.7 12045.4 11183.8 NA

 

parameter estimates cannot be obtained by using ML 
and REML methods. Model 6 with UN@UN under 
MIVQUE0 estimation method gives the smaller AIC 
value. The slope parameter represents the average 
change during this longitudinal study for each BP over 
time and they seem to increase over time. All these 

changes are significantly different from zero (p < 
.0001). In Tables 6 and 7, ML and REML give similar 
results. However, MIVQUE0 method can solve 
UN@UN Kronecker product covariance. In Table 8, 
MIVQUE0 method give bigger parameter estimates 

under the consideration of equally spaced time points 
and it is seen that DBP SBP  value is the smallest for 
equally spaced time points. For Model 6, although ML, 
REML and MIVQUE0 give similar results for UN@AR1, 
MIVQUE0 method give different results for UN@CS in 
Table 8. In Tables 6 and 7, the results under ML and 

REML methods also reveal a strong positive correlation 
between DBP and SBP.  

PROC GENMOD and PROC MIXED procedures 
find all parameter estimates significant for equally time 
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points. Besides PROC MIXED, for unequally time 
points, in the presence of UN autocorrelated errors the 

change in DBP is insignificant (p=0.5703) in PROC 
GENMOD.  

5. CONCLUSION 

Multivariate repeated models are useful approaches 
for multiple responses over time and can be computed 

using standard statistical package like the SAS system. 
SAS PROC MIXED is easily extendable to multivariate 
response in longitudinal studies. In this study, we point 
out that in the analysis of bivariate longitudinal data set, 
the indication of time points for unbalanced longitudinal 
study as equally or unequally paced time points differ 

the parameter estimations. We consider three different 
autocorrelation structures for errors (UN, CS and AR1) 
over time in this paper. Data are also analyzed by 
PROC REG and PROC GENMOD procedures. 
Bivariate repeated measurements model with a 
Kronecker product covariance is analyzed by PROC 

MIXED. Besides PROC REG and PROC GENMOD, 
multivariate analysis approach in PROC MIXED give 
the change in responses over time together with the 
possible correlation of two response variables. We also 
remark the effect of maximum likelihood, restricted 
maximum likelihood and minimum variance quadratic 

unbiased estimation on multivariate joint analysis of 
unbalanced longitudinal data. In accordance with the 
coding equally spaced time points, under all 
autocorrelation structures over time, the model works 
well. However, ML and REML parameter estimates are 
non-available for UN@UN Kronecker covariance, when 

time points were coded as unequally. If we code as 
unequally space, the parameter estimation method and 

the specification of errors likely to be autocorrelated 
should be noticed in the analysis of unbalanced 
multivariate longitudinal data sets.  
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