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Abstract: Problem: The recent 2014 Ebola virus outbreak in Western Africa is the worst in history. It is imperative that 
appropriate statistical and mathematical models are used to identify risk factors and to monitor the development and 
spread of the disease.  

Method: Deaths data due to Ebola virus disease (EVD) in Guinea, Liberia, and Sierra Leone from October 10, 2014 to 
March 24, 2015 were collected via Situation Reports published by the World Health Organization [1]. Conditional 
autoregressive (CAR) models were applied to account for the spatial dependency in the countries along with the 
temporal dimension of the disease. Bayesian change-point models were used to identify key changes in growth and drop 
time points in the spatial distribution of deaths due to EVD within each country. Country-specific Poisson and negative 
binomial mixed models of covariate effects were applied to understand the between-country variability in deaths due to 
EVD.  

Results: Both CAR models and generalized linear mixed models identified statistically significant covariate effects; 
however, the CAR models depended on the interval of data analyzed, whereas the mixed models depended on the 
underlying distribution assumed. Bayesian change-point models identified one significant change-point in the distribution 
of deaths due to EVD within each country.  

Practical Application: CAR models, Bayesian change-point models, and generalized linear mixed models demonstrate 
useful techniques in modeling the incidence of deaths due to EVD.  
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1. INTRODUCTION 

Ebola virus disease (EVD) is an often fatal human 

and primate disease that has an estimated fatality rate 

of up to 90% [1]. The recent 2014 Ebola epidemic is 

the largest outbreak in history and affected multiple 

countries in Africa, particularly Guinea, Liberia, and 

Sierra Leone. Although other countries outside of Africa 

were also affected, the countries in Western Africa 

experienced the most cases of infection and death due 

to EVD. Thus, given the severity of the situation, recent 

attention has been focused on utilizing mathematical 

and statistical models to ascertain the development 

and spread of EVD and help authorities focus their 

efforts on important risk factors and surveillance efforts 

to help eradicate EVD. 

The inherent nature of Ebola disease calls for the 

need to use features that account for the spatial 

dependency between neighboring or communicating 

countries along with the temporal dimension of the 

disease. Replicate data are collected and the statistical  
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procedure used to analyze them must account for 

spatial and temporal characteristics to be processed.  

It is necessary before any action to determine its 

actual progression, at least as accurately as 

reasonably possible. As mentioned in Dallatomasina et 

al. [2], epidemiologic characteristics of the outbreak 

using different countriesand even in the rural areas is 

vital. McKinley et al. [3] usedapproximate likelihood-

based inference for epidemic models and expressed 

the challengesdue to the evaluation of the likelihood. 

Those authors proposed a Markov Chain Monte Carlo 

and Sequential Monte Carlo algorithms for parameter 

estimates. Statistical inference in a stochastic discrete-

time based (SEIR) epidemic model has been proposed 

by Lekone and Finkenstadt [4]. Extension of that model 

to the continuous time type has been developed by 

McKinley et al. Those authors suggested a time point 

at which the transmission parameter decays. Following 

the same idea, we have proposed a change point in the 

weekly count of deaths due to EVD, and build models 

at two levels where the counts are modelled without 

and with the presence of the change point, 

respectively. Our goal is to bridge the gap by 

presenting several probabilistic models from the 

statistical tools and the needs of EVD management 

centers. 
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Dealing with heterogeneous and spatial 

populations, the hierarchical Bayesian model or the 

conditional autoregressive model (CAR) as proposed 

by Millar [5] or Hossain et al. [6] could serve as an 

alternate methodology. Millar [5] stated that the use of 

hierarchical Markov Chain Monte Carlo methods are 

computationally viable methods. We have constructed 

CAR models using the full data and then used data 

based on disjoint time intervals identified from the 

change point analyses.  

Count data are often modeled using the Poisson 

distribution, which assumes that the mean and 

variance are equal. The existence of overdispersion is 

frequent in modeling count data, especially data 

measured over time. Ignoring overdispersion can lead 

to underestimating standard errors in regression 

coefficients and thus biased statistical inferences (e.g., 

Type I Error; Gardner et al. [7]). As recommended by 

Navarro et al. [8], the negative binomial distribution can 

be used to model the part of the variance, which the 

Poisson distribution is unable to identify. We construct 

generalized linear mixed models to model the deaths 

due to EVD using a Poisson distribution and with a 

negative binomial distribution.  

The goals of this paper are to use data on the 

recent outbreak of EVD in Western Africa to build and 

compare statistical models to understand the 

development of disease. We identify starting and 

dropping time points of the disease as well as growth 

periods, and identify statistical covariates of the 

disease. The data on deaths due to EVD were 

collected in Guinea, Liberia, and Sierra Leone from 

October 10, 2014 to March 24, 2015. Models used in 

this study included Bayesian disease mapping models, 

change-point models, and generalized linear mixed 

models. One major role of the paper is to build a 

stochastic model in order to capture some of the 

disease characteristics. Doing so, we are providing 

pointers as to how to assist medical workers in their 

efforts to manage the epidemic as suggested in 

Dallatomasina et al. [2]. 

The paper is organized as follows: data description 

and preliminary analyses as shown in Section 2, and 

the description of the space time-mixture of the 

Poisson regression with the use of the CAR model 

along with the Bayesian change-point model as 

described in Section 3. The model formulations, 

estimation processes and prior distributions are 

presented. Next, we introduce the generalized linear 

mixed model with both a Poisson and negative 

binomial distribution. Section 4 discusses the results 

and comparisons from all the models. Lastly we end 

with a conclusion in Section 5. 

2. THE DATASET  

Data on counts of deaths due to EVD in Guinea, 

Liberia, and Sierra Leone from October 10, 2014 to 

March 24, 2015 were collected via Situation Reports 

from the World Health Organization’s (WHO) website 

(http://apps.who.int/ebola/en/current-situation/ebola-

situation-report). Due to the inconsistency in how 

frequently Situation Reports were published by the 

WHO for each country, deaths due to EVD data were 

aggregated into weekly counts, for a total of 25 weeks 

per country. Given the association between lower 

temperatures and EVD outbreak in Africa (Ng et al. [9]), 

data on mean temperatures (˚F) were collected as a 

covariate. In particular, mean temperatures for Guinea, 

Liberia, and Sierra Leone, respectively. To keep 

consistent with deaths due to EVD, temperature data 

were also aggregated into weeks, for a total of 25 

weekly mean temperatures for each country.  

To be used as an offset term in some of the 
statistical models, internally standardized expected 

death counts, Eit ,  were calculated based on 

recommendations by Carlin and Louis [10] as: 

Eit = nit y,  

where 
 
y = it yit / it nit , i = 1,2, 3 and t = 1,2,…,25 . Here, 

nit  represents the number of individuals at risk for 

country i  at time t. Calculated as such, the expected 
death counts represent the average death rate over all 
countries for the entire observation period.  

2.1. Preliminary Analyses 

A preliminary study shows basic information about 

the disease. Table 1 presents a summary of these 

statistics by country and aggregated across country. 

The average number of deaths due to EVD over the 25 

week period for Guinea is 60.96 (SD = 25.17) for 

Guinea, 89.28 for Liberia (SD = 61.90), and 111.68 for 

Sierra Leone (SD = 76.32). The number of deaths 

range from 28 to 112 for Guinea, 18 to 247 for Liberia, 

and 4 to 307 for Sierra Leone. Figure 1 presents the 

distribution of number of deaths due to EVD 

aggregated across country. It shows a peak and the 

study is to investigate the inference under each model 

and location. 

The data was further divided into each country. 

Figure 2 shows the number of deaths due to EVD for 
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Table 1: Descriptive Statistics of Deaths Due to Ebola Virus Disease by Country 

 Deaths Due to Ebola Virus Disease 

Area Mean SD Min Median (25%, 75%) Max 

Guinea 60.96 25.17 28 54 (41, 84) 112 

Liberia 89.28 61.90 18 72 (45, 121) 247 

Sierra Leone 111.68 76.32  4 85 (60, 150) 307 

Combined 87.31 61.43  4 70 (45, 112) 307 

Note. SD = standard deviation; 25% = 25th percentile; 75% = 75th percentile. Estimates were obtained from weekly counts based on 25 weeks of observed data. 

 

 

Figure 1: Histogram of the Number of Deaths Due to EVD Aggregated Across Country. 

each country that appears to be decreasing over time. 

The pattern shown in Figure 1 can be seen in Figure 2 

except for Sierra Leone. There is a change in the 

disease aggressiveness indicative of a change in the 

behavior of the disease growth. As reported by the 

USAID and its various offices, Liberia was one of the 

first countries to have received financial assistance and 

personal support from the US government. It had the 

most cases of suspected, probable and confirmed EVD 

cases as reported in http://www.usaid.gov/sites/default/ 

files/documents/1864/09.17.14%20-%20USG%20West 

%20Africa%20Ebola%20Outbreak%20Fact%20Sheet

%20%236.pdf. And it looks like the disease would be 

spread going northwards. We will test other basic 

characteristics associated with the data collected in 

those areas such as time and temperature. 

3. STATISTICAL MODELS AND RESULTS 

Given that the distribution of deaths due to EVD 

counts is skewed (see Figure 1), the distribution of the 

counts is unlikely to follow a normal distribution. A 

distribution that is commonly used to model count data 

is the Poisson distribution. A discrete random variable, 

Y, is said to have a Poisson distribution, defined by a 

rate parameter > 0,  if for y = 0,1,2,…,  the probability 

mass function of Y is given by 

f (Y = y) =
ye

y!
,  

where e is Euler’s number (2.71828…). The mean and 
variance of a Poisson-distributed random variable are 

both equal to , that is, E(Y ) =Var(Y ) = . In the case 

where data are overdispersed under the Poisson 
model, that is Var(Y ) > E(Y ),  the negative binomial 

model is more appropriate. The negative binomial 
distribution can be derived as a mixture distribution of a 
Poisson random variable, where the rate parameter 
itself is a random variable and follows a gamma 
distribution. A discrete random variable, Y ,  is said to 

have a negative binomial distribution, defined by 
μ, > 0,  if for 

 
y = 0,1,2,…,  the probability mass function 

of Y  is given by: 

f (Y = y) =
( 1

+ y)

( 1)y!

μ

1+ μ

y
1

1+ μ

1/

,  

where ( )  is the gamma function. The mean and 

variance of a negative binomial-distributed random 
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variable are E(Y ) = μ  and Var(Y ) = μ + μ2,  

respectively. Importantly, as 0,  the negative 

binomial approaches Poisson ( = μ) . 

3.1. Conditional Autoregressive Bayesian Disease 
Mapping Models for Full Data 

Disease mapping models are often applied in 

epidemiological settings to understand the incidence or 

prevalence of a specific disease. The data are counts 

of observed cases or deaths within multiple regions 

coupled with potentially relevant background 

information (Lawson [11]). One popular disease 

mapping model is the conditional autoregressive (CAR) 

model. This model gets its name from the type of 

random effect specified (i.e., conditional 

autoregressive) used to account for the spatial 

dependency among the observed data. Fitting 

hierarchical model using Markov Chain Monte Carlo 

(MCMC) methods is possible even for overdispersed 

count data.  

Bayesian statistics have gained great attention due 

to the computing power available and the flexibility that 

the models offer. Applications can be found in many 

fields and in medical disease progression (Gelman et 

al. [12]). Computations are commonly carried out using 

R/WinBUGS and SAS. In the present study, for the 

EVD death count data, with the characteristics as time 

expressed in weeks and the temperature in degrees 

Celsius or Farenheit, the following CAR modelis 

specified as,  

yit ui , xit ~ Poisson( Eit ),  

log( ) = log(Eit )+ 0 + 1 weeki + 2 temperatureit + ui ,  

for i = 1,2,3  countries, 
 
t = 1,2,…,25  weeks, and 

ui ~ CAR( u
2 ) . In this case, Eit  is treated as an offset 

so that the model can be rewritten as, 

log
Eit

= 0 + 1 weeki + 2 temperatureit + ui  

so that the relative death rates are modeled rather than 

the observed death counts. The following independent 

diffuse prior distributions are specified for the model 

parameters, 

( 0 ) ~ 1  

( 1) ~ 1  

( 2 ) ~ 1  

(ui ) ~ Inverse Gamma(1000,1000).  

To facilitate interpretation of the intercept estimate, 

the covariate week is centered at 1 and the covariate 

temperature is centered around the mean of each 

group. Parameterized as such, the intercept represents 

the unadjusted relative death rate at week 1 (i.e., the 

beginning of the observed data) (Raudenbush & Bryk 

[13]). Descriptive statistics for the temperature variable 

are displayed in Table 2. 

 

Figure 2: Number of Deaths Due to EVD by Week for Guinea, Liberia, and Sierra Leone. 
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The CAR model is estimated in WinBUGS (Lunn et 

al. [14]) using a Metropolis-Hastings algorithm with 

20,000 iterations, a burn-in period of 2,000 iterations, 

and thinning set to 5 to reduce the autocorrelation in 

parameter draws from the posterior distribution.  

Results of the CAR model show that both 

covariates, week and temperature, are significantly 

associated with relative death rates due to EVD (see 

Table 3). Specifically, the effects are negative 

indicating that an increase in time and temperature are 

associated with significantly lower death rates from 

EVD. Figure 3 reveals that the algorithm appears to 

converge for the intercept and slope parameters, but 

convergence is questionable for the variance 

component. Further examination reveals that the 

density plots (see Figure 4) for the intercept and slope 

parameters are normally distributed, but the density 

plot for the variance component is severely positively 

skewed.  

The model results displayed in Table 3 shows that 

both the temperature and week are significant and 

underlines the fact that there is need to investigate the 

convergence of the MCMC process. The negative 

association in the EVD outbreak and the mean 

temperatures is also parallel to the findings in Ng et al. 

[9]. Given the large standard deviation of the CAR 

random effect (SD = 742.4) for the model in Table 3, 

coupled with the severely skewed density plot in Figure 

4, potential subsequences of data within each country 

over time are examined using Bayesian change-point 

models. As can be seen in Figure 2, it appears that 

there is a change in the rate of deaths due to EVD for 

Guinea, Liberia, and Sierra Leone, with less variability 

towards the end of the observed data. Identifying 

important change-point(s) within each country will help 

separate different subsequences of data and may 

reduce the standard deviation of the CAR random 

effect.  

3.2. Bayesian Change-Point Models 

A Poisson process is used to model the frequency 
of occurrences. Because of interventions and aids from 
foreign countries, a change point analysis model is 

applied. That is, Yt ~ Poisson( )  for 0 < t < k  and 

Yt ~ Poisson(μ)  for t > k . As is common in change-point 

models, deaths due to EVD are assumed to follow a 
common distributional form (i.e., Poisson in this case), 
but have different parameters (i.e., rate or intensity) 
from one segment to another (Hawkins, [15]). A 
change-point model is estimated in each country 
separately to identify unique patterns of data that are 
independent of other countries. That is, for each 

Table 2: Descriptive Statistics of Temperature by Country 

 Temperature (˚F)  

Area Mean SD Min Median (25%, 75%) Max 

Guinea 81.12 1.09 79 81 (80, 82) 83 

Liberia 80.76 1.13 79 81 (80, 81) 83 

Sierra Leone 80.52 1.42 77 81 (80, 82) 83 

Combined 80.80 1.23 77 81 (80, 82) 83 

Note. SD = standard deviation; 25% = 25th percentile; 75% = 75th percentile. 

Table 3: Summary of Conditional Autoregressive Model 

  95% Credible Interval 

Parameter Mean SD LL UL 

Intercept 0.427 0.022 0.381 0.469 

Week  -0.034 0.002 -0.037 -0.030 

Temperature -0.092 0.010 -0.113 -0.072 

ˆu
2  27.900 742.4000 0.482 66.930 

Statistic Estimate    

pD 90.789    

DIC 2552.970    

Note. SD = standard deviation, LL = lower limit, UL = upper limit. Week is centered at 1; temperature is centered around the mean of each country. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3: Time Series Plots for Parameters in CAR Model: (a) Intercept, (b) Slope for week, (c) Slope for temperature, and (d) 
CAR random effect.  

country, let Yt
c  be the number of deaths due to EVD in 

week t  for 
 
t = 1,…,25  and country c = 1,2,3 . Assuming 

that change point occurs at week k  and that the 
number of deaths due to EVD in week t  is a Poisson 
random variable, the change-point model is specified 
for each country as, 

 
Yt
c ~ Poisson( ), t = 1,…,k;c = 1,2,3  

 
Yt
c ~ Poisson(μ), t = k +1,…,n;c = 1,2,3  

The following independent diffuse prior distributions 

were specified for k ,  and μ , 

(k) ~ Uniform(1,25)  

( ) ~ Normal(0,1e6)  

(μ) ~ Normal(0,1e6)  

Parameters are estimated in SAS 9.3 ® (SAS 

Institute Inc. [16]) with PROC MCMC using a two-block 

random walk Metropolis algorithm with 20,000 

iterations, a burn-in period of 2,000 and thinning set to 

5 to reduce the autocorrelation in parameter draws 

from the posterior distributions. In the first block, the 

change point parameter is estimated; in the second 

block, the rate parameters of the Poisson distributions 

are estimated.  

Results demonstrate that the change points occur at 

approximately weeks 14, 9, and 16 for Guinea, Liberia, 
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     (a)      (b) 

 

     (c)      (d) 

Figure 4: Density Plots for Parameters in CAR Model: (a) Intercept, (b) Slope for week, (c) Slope for temperature, and (d) CAR 
random effect. 

 

Table 4: Summary of Change-Point Models by Country 

 Country 

Statistic Guinea Liberia Sierra Leone 

k̂  

Mean 13.991 8.502 15.475 

SD 0.578 0.288 0.324 

95% HPD interval [13.000, 14.899] [8.0512, 9.000] [15.010, 15.981] 

ˆ  

Mean 76.286 134.500 142.000 

SD 2.476 4.081 3.094 

95% HPD interval [71.643, 81.170] [126.600, 142.700] [135.800, 147.700] 

μ̂  

Mean 43.045 68.106 66.665 

SD 2.038 2.038 2.644 

95% HPD interval [39.092, 47.048] [64.156, 72.022] [61.706, 72.128] 

pD 1.857 2.025 2.172 

DIC 278.081 864.764 1055.747 

Note. k̂ = change point parameter estimate; ˆ = rate parameter estimate for first subsequence; μ̂ = rate parameter for second subsequence; SD = standard 

deviation; HPD = highest posterior density; pD = effective number of parameters; DIC = deviance information criteria.  

and Sierra Leone, respectively (see Table 4). Such an 

integrated estimation will be used later too. This 

suggests that Liberia was the first to have received 

support that has great impact, then followed by Guinea 

and then Sierra Leone. As expected, the rate 

parameters are smaller for each country after the 

change point, indicating a decrease in deaths due to 

EVD. Examination of time series plots suggest 

convergence of the algorithms for each parameter in 

the change-point models and the density plots suggest 

only one change-point is needed within the observed 

data for each country (see Figures 5-7).  

The analysis of the death for each country shows 

the mean and corresponding intervals are different for 

each country. In particular, it is suggestive of the 

change point described in Table 4.  
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(a) 

 
(b) 

 
(c) 

Figure 5: Time Series and Density Plots for Parameters in Change-Point Model for Guinea: (a) Change-point k̂ , (b) Rate 
parameter weeks 1-13 ˆ , and (c) Rate parameter weeks 14-25 μ̂ . 
 

 
(a) 

 
(b) 

 
(c) 

Figure 6: Time Series and Density Plots for Parameters in Change-Point Model for Liberia: (a) Change-point k̂ , (b) Rate 
parameter weeks 1-13 ˆ , and (c) Rate parameter weeks 14-25 μ̂ . 
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(a) 

 

(b) 

 

(c) 

Figure 7: Time Series and Density Plots for Parameters in Change-Point Model for Sierra Leone: (a) Change-point k̂ , (b) Rate 
parameter weeks 1-13 ˆ , and (c) Rate parameter weeks 14-25 μ̂ . 

The change point occurred earlier in Liberia, but 

also lasted the longest. Sierra Leone had a late 

occurrence in the change point, indicative of the fact 

that the disease has started there later on in time. But 

they have a shorter length before the change point was 

noticed. This is due to the fact that the awareness and 

support was much better targeted than in the other 

locations. 

3.3. Conditional Autoregressive Bayesian Disease 
Mapping Models for Data Based on Change-Point 
Models 

Given the occurrence of a change point in deaths 

due to EVD within each country, data are separated 

into two disjoint intervals before re-estimating the CAR 

models. Specifically, the deaths due to EVD data are 

separated into weeks 1-13 and weeks 14-25. In fact 

there is a belief that the epidemic will decrease after 

reaching a peak (http://www.cdc.gov/mmwr/pdf/other/ 

su6303.pdf). Week 13 is used as the change point 

because it is the average approximate change point. 

The CAR model as described in Section 3.1, is 

specified for weeks 1-13, 

yit ui , xit ~ Poisson( Eit ),  

log( ) = log(Eit )+ 0 + 1 weeki + 2 temperatureit + ui ,  

for i = 1,2,3  countries, t = 1,2,…,13  weeks, and 

ui ~ CAR( u
2 ) . Eit  is specified as an offset term. 

Similar to before, to facilitate interpretation of the 
intercept estimate, the covariate week is centered at 1 
and the covariate temperature is centered around the 
mean of each group (this time using data only from 
weeks 1-13). Parameterized as such, the intercept 
represents the unadjusted relative death rate at week 1 
(i.e., the beginning of the observed data). The same 
prior distributions and estimation procedure are 
followed in this CAR model as in the CAR model 
applied to the full data (see model at beginning of this 
section).  

Results of the CAR model using data on weeks 1-

13 now reveal that only temperature is significantly 

associated with relative death rates due to EVD (see 

Table 5). Specifically, after controlling for week, 

increases in temperature are associated with 

significantly lower death rates from EVD. As expected, 
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Table 5: Summary of Conditional Autoregressive Models Weeks 1-13 

  95% Credible Interval 

Parameter Mean SD LL UL 

Intercept 0.266 0.029 0.207 0.324 

Week  0.001 0.004 -0.006 0.009 

Temperature -0.154 0.013 -0.179 -0.129 

ˆu
2  18.650 237.800 0.460 64.4500 

Statistic Estimate    

pD 17.667    

DIC 1632.760    

Note. SD = standard deviation, LL = lower limit, UL = upper limit. Week is centered at 1; temperature is centered around the mean of each country. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8: Time Series Plots for Parameters in CAR Model for Weeks 1-13: (a) Intercept, (b) Slope for week, (c) Slope for 
temperature, and (d) CAR random effect. 
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     (a)      (b) 

 

     (c)      (d) 

Figure 9: Density Plots for Parameters in CAR Model for Weeks 1-13: (a) Intercept, (b) Slope for week, (c) Slope for 
temperature, and (d) CAR random effect. 

splitting the data into disjoint subsequences does 

reduce the standard deviation of the variance 

component (i.e., SD using weeks 1-25 = 742.4 vs. SD 

using weeks 1-13 = 237.8). Moreover, the model fit 

also improves (DIC = 1632.76 vs. DIC = 2552.97).  

Figure 8 reveals a similar pattern to the CAR model 

using the full data, that is, that the algorithm appears to 

converge for the intercept and slope parameters, but 

convergence is questionable for the variance 

component. Again, the density plots (see Figure 9) for 

the intercept and slope parameters appear normally 

distributed but severely positively skewed for the 

variance component.  

Similarly, the CAR model isbuilt for weeks 14-25. 

Results of the CAR model using data on weeks 14-

25 now reveal that only week is significantly associated 

with relative death rates due to EVD (see Table 6). 

Specifically, after controlling for temperature, increases 

in time are associated with significantly lower death 

rates from EVD. Similar to the CAR model applied to 

data on weeks 1-13, the smaller subset of data does 

reduce the standard deviation of the variance 

component (i.e., SD using weeks 1-25 = 724.4 vs. SD 

using weeks 14-25 = 81.53). The model fit also 

improves (DIC = 690.845 vs. DIC = 2552.97). However, 

the question is then to identify the effect of the foreign 

aids. 

Figure 10 reveals a similar pattern to the previous 

CAR models, that is, that the algorithm appears to 

converge for the intercept and slope parameters but 

convergence is questionable for the variance 

component. The density plots (see Figure 11) for the 

intercept and slope parameters appear normally 

Table 6: Summary of Conditional Autoregressive Models Weeks 14-25 

   95% Credible Interval 

Parameter Mean SD LL UL 

Intercept 0.044 0.143 -0.248 0.315 

Week  -0.017 0.008 -0.032 -0.002 

Temperature -0.041 0.022 -0.084 0.000 

ˆu
2  12.780 81.530 0.491 64.480 

Statistic Estimate    

pD 35.925    

DIC 690.845    

Note. SD = standard deviation, LL = lower limit, UL = upper limit. Week is centered at 1; temperature is centered around the mean of each country. 
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distributed but severely non-normal for the variance 

component. 

3.4. Generalized Liner Mixed Model 

A popular set of models that are used to model non-

normal repeated measures outcomes are generalized 

linear mixed models (GLMMs). These models share 

similar characteristics to linear mixed models, except 

the modeling can be extended to non-normal 

outcomes. For the EVD death count data, the following 

country-specific random intercept model is specified,  

yit bi , xit ~ Poisson( Eit ),  

log( ) = log(Eit )+ 0 + 1 weeki + 2 temperatureit + bi ,  

for i = 1,2,3  countries, 
 
t = 1,2,…,25  time points, and 

bi ~ i.i.d.N(0, )  represents the random intercept 

describing between-country variation. Similar to the 

CAR models, Eit  is treated as an offset term.  

The model is estimated in SAS 9.3 ® (SAS Institute 

Inc. [16]) using PROC GLIMMIX with a Poisson 

distribution specified for the outcome and a log link. 

Given that there is only one variance component term 

in the model (i.e., for the intercept), the variance 

components of the model refreely estimated with no 

constraints (i.e., TYPE = VC in SAS).  

Results of the model show that both week and 

temperature are significantly related to relative death 

rates due to EVD. Specifically, increases in time and 

temperature are associated with significantly lower 

relative death rates due to EVD (see Table 7). After 

controlling for other parameters such as week and 

temperature in the model, there does not appear to be 

significant between-country variation (VC = 0.585, SE = 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10: Time Series Plots for Parameters in CAR Model for Weeks 14- 25: (a) Intercept, (b) Slope for week, (c) Slope for 
temperature, and (d) CAR random effect. 
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0.585). Moreover, the individual random effects for 

each country are not significantly different from zero. 

The large value of generalized 2 / df indicates 

significant overdispersion in the data (Gardner et al. 

[7]). To model the overdisperson, the same country-

specific random intercept is re-fit but using a negative 

binomial distribution instead of Poisson. Results show 

that the negative binomial model fit better than the 

Poisson model (-2 residual log pseudo-likelihood = 

136.6 vs. 1665.62) and the data no longer exhibit a 

concern for overdispersion (generalized 2 / df = 1.00 

vs. 25.26). However, in the new model, the only 

significant fixed effect is week, such that increases in 

time are associated with significantly lower death rates 

due to EVD. Similar to the Poisson model, after 

controlling for other parameters in the model, there 

does not appear to be significant between-country 

variation (VC = 0.552, SE = 0.563).  

 

     (a)      (b) 

 

     (c)      (d) 

Figure 11: Density Plots for Parameters in CAR Model for Weeks 14- 25: (a) Intercept, (b) Slope for week, (c) Slope for 
temperature, and (d) CAR random effect. 

 

Table 7: Summary of Generalized Linear Mixed Model: Poisson Distribution 

   95% Confidence Interval 

Type Estimate SE LL UL 

Fixed Effects 

Intercept 0.375 0.442 -1.527 2.277 

Week  -0.030 0.002 -0.033 -0.026 

Temperature -0.110 0.010 -0.131 -0.089 

Random Effects 

Overall VC 0.585 0.585   

Intercept (G) -0.879 0.442 -1.760 0.002 

Intercept (L) 0.507 0.442 -0.375 1.388 

Intercept (SL) 0.372 0.442 -0.509 1.253 

Statistic 

-2 Res LPL 1665.620    

Gen. 2  1818.360    

Gen. 2 / df 25.260    

Note. SE = standard error; LL = lower limit; UL = upper limit; VC = variance component; Res = residual; LPL = log pseudo-likelihood; Gen = generalized; G = 
Guinea; L = Liberia; SL = Sierra Leone. Week is centered at 1; temperature is centered around the mean of each country. 
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4. DISCUSSION 

This study sought to explore the impacts of the 

disease in Western Africa. Several (four) statistical 

models were applied to data on deaths due to EVD in 

Guinea, Liberia, and Sierra Leone over a 25 week 

period. The factors influencing the disease based on 

the data available from the WHO website have been 

used to fit longitudinal structure models. When all the 

counts were aggregated across country, results of a 

CAR model demonstrated that both week and 

temperature had statistically significant negative effects 

on relative death rates due to EVD. However, the 

variance component representing the spatial 

dependency in the data was approximately zero. The 

results also show that Liberia that had the earliest aid 

was able to recover faster and that Sierra Leone seems 

to have been able to control the disease spread.  

Bayesian change-point models revealed a 

significant change-point in the distribution of deaths 

due to EVD counts within Guinea, Liberia, and Sierra 

Leone. CAR models applied to the two disjoint intervals 

of data based on the change-point models showed that 

in weeks 1-13, only temperature had a statistically 

significant negative effect on relative death rates due to 

EVD, whereas in week 14-25, only week had a 

statistically significant negative effect on relative death 

rates due to EVD. Compared to using the full data, the 

CAR models applied to the disjoint data resulted in 

better model fit. In fact the CAR model is useful when 

the EVD incidence is increasing or decreasing phases. 

Overall, however, the variance components in these 

CAR models were approximately zero. 

The findings match with the presumption that 

because of foreign aids, the disease has been under 

control. The changes in attitudes were very detrimental 

in slowing the disease. Although an average drop was 

noticed, approaching the behavior from each country 

behavior and resources is recommended. The country 

specific factors can be further explored. 

When variance components are approximately zero, 

there are two primary interpretations from a statistical 

perspective: (1) after controlling for all other 

parameters in the model, there is not enough variation 

in the response to attribute any variation to the random 

effect, and (2) despite the near zero random effect, the 

random effect should be retained because it is 

essential to the dependent structure in the data 

(Kiernan, Tao, & Gibbs, [17]). In a statistical sense, it 

appears that little is gained by modeling the spatial 

dependency among data observed from contiguous 

countries.  

Table 8: Summary of Generalized Linear Mixed Model: Negative Binomial Distribution 

   95% Confidence Interval 

Type Estimate SE LL UL 

Fixed Effects 

Intercept 0.395 0.446 -1.526 2.315 

Week  -0.031 0.009 -0.049 -0.013 

Temperature -0.087 0.054 -0.195 0.021 

Scale 0.264 0.047  

Random Effects 

Overall VC 0.552 0.563   

Intercept (G) -0.844 0.437 -1.760 0.002 

Intercept (L) 0.500 0.437 -0.372 1.372 

Intercept (SL) 0.344 0.437 -0.528 1.216 

Statistic 

-2 Res LPL 136.600    

Gen. 2  71.680    

Gen. 2 / df 1.000    

Note. SE = standard error; LL = lower limit; UL = upper limit; VC = variance component; Res = residual; LPL = log pseudo-likelihood; Gen = generalized; G = 
Guinea; L = Liberia; SL = Sierra Leone. Week is centered at 1; temperature is centered around the mean of each country. 
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Similar to the CAR model using combined counts 

from all countries, results of a country-specific, random 

intercept generalized linear mixed model revealed that 

both week and temperature had statistically significant 

negative effects on relative death rates due to EVD. 

However, model fit statistics indicated that deaths due 

to EVD under the Poisson model were overdispersed. 

The results under the negative binomial model were 

similar to those of the CAR model applied to data from 

weeks 14-25, that is, only week had a statistically 

significant negative effect on relative death rates due to 

EVD. Compared to the Poisson model, the negative 

binomial model resulted in a better fit to the data, 

however; both models had small variance components 

indicating negligible between-country variation after 

controlling for other model parameters.  

5. CONCLUSION 

EVD is a substantive public health concern in 

Western Africa that warrants appropriate statistical and 

mathematical models to understand the development 

and spread of the disease. Statistical investigations will 

increasingly shed light on the steps needed in 

minimizing the spread and the effort to control the 

disease. Results of the current study demonstrate that 

CAR models are a viable modelling framework for the 

spatially dependent nature of Ebola data. Furthermore, 

Bayesian change-point models are useful in identifying 

critical changes over time in the distribution of deaths 

due to EVD. Moreover, a country-specific negative 

binomial mixed model is useful in modeling the serial 

dependency in Ebola data while also accounting for 

additional variability in the data that the Poisson model 

is unable to capture.  

As more data become available at the city-level, 

rather than the country-level, CAR models and other 

disease mapping models can be used to identify high 

risk clusters or areas where disease incidence is 

highest. Moreover, generalized linear mixed models 

can be applied to model the nested structure of the 

data with time nested within city, which is nested within 

country. These models will help identify key covariates 

at different levels (e.g., cost of delayed aid, socio-

economic measures, city and country) that can 

ultimately help reduce the development of current and 

future EVD outbreaks. The research results have 

implication for predicting the spread of Ebola in a city, 

within a country and between countries. Such 

information is critical for health care professionals and 

management to take appropriate action to allocate 

medical resources and take preventive action to limit or 

stop the spread of this disease.  
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