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Abstract: Background: Poor performance of risk prediction models in a new setting is common. Recalibration methods 
aim to improve the prediction performance of a model in a validation population, however the extent of its application in 
the validation of diabetes risk prediction models is not yet known.  

Methods: We critically reviewed published validation studies of diabetes prediction models, selected from five recent 
comprehensive systematic reviews and database searches. Common recalibration techniques applied were described 
and the extent to which recalibration and impacts were reported analysed. 

Results: Of the 236 validations identified, 22.9% (n = 54) undertook recalibration on existent models in the validation 
population. The publication of these studies was consistent from 2008. Only incident diabetes risk prediction models 
were validated, and the most commonly validated Framingham offspring simple clinical risk model was the most 
recalibrated of the models, in 4 studies (7.4%).  

Conclusions: This review highlights the lack of attempt by validation studies to improve the performance of the existent 
models in new settings. Model validation is a fruitless exercise if the model is not recalibrated or updated to allow for 
greater accuracy. This halts the possible implementation of an existent model into routine clinical care. The use of 
recalibration procedures should be encouraged in all validation studies, to correct for the anticipated drop in model 
performance. 
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BACKGROUND 

The use of risk prediction models in a validation 
population is expected to have an effect on the 
performance of the model (usually a drop in the 
performance) due to the differences between 
development and validation populations, particularly 
the variances in outcome frequency between the 
populations, case-mix and measurements used for the 
variables and outcome determination [1]. In an effort to 
improve the performance of a model in a new setting, 
updating strategies have been proposed [2, 3]. The 
updating strategies range from simple adjustment of 
models’ parameters to more complex model 
alterations. Simple updating methods, termed re-
calibration, describes the re-estimation of the model 
intercept (or baseline risk parameter) with or without re-
estimation of the regression coefficients.  

The recalibration of risk prediction models is 
encouraged, where the resulting updated model  
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combines the prediction information that was captured 
in model development with the information of the new 
population. This lends to the concept that risk 
prediction models should be based on as many 
individuals’ data as possible. Too often, existent 
models are externally validated and when performance 
is disappointing, a new prediction model is developed. 
This results in a large number of models available, 
which are all poorly externally validated [4]. For 
illustration, a systematic review by Noble and 
coworkers [5] found that between 1993 and 2011, over 
145 models were developed to predict prevalent or 
incidents diabetes, of which only a few were externally 
validated. This is of concern, considering that use of 
accurate and validated risk models is increasingly 
advocated as a basis for risk screening in strategies to 
prevent the occurrence of diabetes among those at 
high risk, to promote early detection among those with 
prevalent undiagnosed diabetes, and tailoring the 
complexity and intensity of the management among 
those with diagnosed diabetes, to the risk of 
subsequent complications. Indeed, with diabetes 
mellitus growing to the epidemic proportions around the 
world, and considering the complexity of the interaction 
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of factors contributing to diabetes occurrence and 
related complications, the ability of risk prediction 
models to incorporate a multitude of risk factors, 
accounting for this complexity, cements their 
importance in diabetes prevention and control 
strategies. Beyond the field of diabetes and non-
communicable diseases in general, with the opening 
era of personalised healthcare, prediction models will 
be increasingly used to assist clinical decision making. 
Efforts to limit the number of prediction models through 
careful updating of existing models to work in various 
settings, have a potential to improve their uptake in 
routine practice. 

A recent validation study applied simple updating 
methods to diabetes risk prediction models, and 
reported some improvement, although non-optimal, of 
models performance [6]. However, the extent of the 
application of recalibration strategies in the validation of 
diabetes risk prediction models is not yet known. In this 
paper, we critically review the level of reporting, 
method of choice and extent of use of recalibration 
methods in validation studies, through a systematic 
review of studies on the validation of incident and 
prevalent diabetes risk prediction models, in an attempt 
to make conclusions on the extent of recalibration in 
diabetes risk prediction research.  

METHODOLOGY 

Building on the five most comprehensive review 
articles on both incident and prevalent diabetes risk 
prediction models by Buijsse et al. (2011) [7], Collins et 

al. (2011) [8], Noble et al. (2011) [5], Thoopputra et al. 

(2012) [9], and Brown et al. (2012) [10], additional 
relevant articles were identified through a systematic 
literature review according to the PRISMA guidelines, 
where necessary [11]. We searched PubMed for all 
published studies aimed at validating diabetes risk 
prediction models using the following string search: 
((“diabetes” OR “diabetes mellitus” OR “type 2 
diabetes”) AND (“risk score” OR “prediction model” OR 
“predictive model” OR “predicting” OR “prediction rule” 
OR “risk assessment” OR “algorithm”) AND 
(“validation” OR ‘validate”)). 

Studies were included if they validated risk scores, 
models or questionnaires and the outcome was 
prevalent undiagnosed or incident diabetes in adults 
(aged >18 years). Studies undertaking internal 
validation were excluded as model recalibration should 
not be required at this early stage. Additionally, studies 
aimed at validating guidelines in new populations were 

excluded. Models that were developed outside of the 
logistic, cox or Weibull development methods were 
excluded due to the inability to validate these models 
(e.g. classification tree analysis method). There was no 
restriction on the variables included in the models, both 
non-invasive and invasive models were included. 
Additionally, there was no restriction on sample size or 
country. The data extracted included country/setting, 
name of the models validated, whether the study aimed 
at validation alone or with development of a model and 
the presence of a discussion and action (or lack 
thereof) on the recalibration of models. We reviewed 
the included studies with the aim of providing the 
reader with a comprehensive list of validated models, 
instances and prevalence of model recalibration, as 
well as the possible increase in performance of the 
updated model.  

RESULTS  

Overview of Included Studies 

Following the sifting process, a total of 94 articles 
were included (Figure 1). These articles included 70 
models and 236 validations were conducted. Figure 2 
depicts the distributions of risk prediction model 
validation. Included published studies undertook the 
validation of existent diabetes risk prediction model/s, 
where validation refers to the process of evaluating the 
performance of a model. Studies were focussed on 
external validation which goes beyond the assessment 
of model performance in all or a portion of the 
developmental datasets by assessing the performance 
in an independent dataset. The validation of a model 
can be grouped by a hierarchy proposed by Justice et 

al. (1999) [12], according to the reproducibility and 
historic, geographic, methodologic, spectrum and 
follow-up period transportability (Text Box 1). 
Additionally, one paper can report on the validation of 
more than one model. Many studies undertook the 
validation of a model(s) as an added section to the 
development of a model in their population group 
(48.8%). Details of the included studies are provided in 
Table 1; published between 1997 and 2014, but most 
appeared in 2005-2011. Articles reporting recalibration 
of existent models only appeared from 2008 onwards 
with the most appearing in 2010. The number and 
combination of predictors was variable, with age, sex, 
body mass index and waist circumference being the 
most commonly used variables. The study setting was 
highly heterogeneous; models were validated in 31 
countries across 5 continents (only 1 from Africa). 
Models predicting incident diabetes were more 
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Figure 1: Flow diagram of selected studies. 
 

 

Figure 2: Bar diagram illustrating of frequency of incident (top) and prevalent (bottom) models validation.  

The numbers on the X-axis indicate the number of models for each frequency, and the number at the tip of each bar indicate the 
frequency of model validation. The top 3 validated incident diabetes models are: 15 times – Framingham offspring simple clinical 
diabetes model; 14 times – San Antonio clinical risk model; 11 times – Cambridge diabetes risk score. The top 3 validated 
prevalent diabetes models: 13 times – Full prevalent FINDRISC risk model; 11 times – Rotterdam risk predicative model 1; 9 
times – Cambridge diabetes risk model.  
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Text box 1: A Hierarchy of External Validation of Predictive Systems – Adapted from Justice et al. [12] 

Level of validation Cumulative generalizability evaluated 

0: Internal validation Reproducibility 

1: Prospective validation Level 0 + historic transportability 

2: Independent validation 
Level 1 + geographic transportability, methodologic transportability, spectrum 

transportability 

3: Multisite validation Level 2 at multiple sites 

4: Multiple independent validation Level 3 by multiple investigators 

5: Multiple independent validations with life-table analyses Level 4 + follow-up period transportability 

 

commonly validated (62.7%) when compared to 
prevalent diabetes risk prediction. The development, 
recalibration and use of incident and prevalent risk 
prediction models vary and will therefore be discussed 
separately.  

Incident Diabetes Risk Prediction Models 

The most commonly validated model was the 
Framingham offspring simple clinical risk model [13] 
(10.1%) followed by the San Antonio clinical risk model 
[14] (9.5%). Validations were ranked according to the 
levels of transportability. There was no evidence of 
level 4 or 5 diabetes risk prediction validation. The 
most common form of validation (level 2) tested the 
models’ geographic, methodologic and spectrum 
transportability in addition to the reproducibility and 
historic transportability (62.8%). This included models 
which were validated in the same country as their 
development but a different city or cohort to 
development, as well as validation of a model for a 
different outcome.  

Prevalent Diabetes Risk Prediction Models 

The Finnish diabetes full risk model was the most 
frequently validated prevalent diabetes risk prediction 
model (14.8%) [15, 16], followed by the Rotterdam 
predictive model 1 (12.5%). As with incident risk 
models, hierarchy level 2 was the most common level 
of validation (81.8%), with no level 4 or 5 validation.  

Recalibration Methods 

Multiple updating methods exist [2, 3, 17-19], 
varying in the complexity and the number of 
parameters that are adjusted or re-estimated. The term 
‘recalibration’ is used to describe basic techniques to fit 
a predictive model to a new setting. The development 
of the model dictates the recalibration methods 
available. The mathematical model chosen for 

development may follow logistic regression, cox or 
Weibull principles. The intercept, or equivalent, of risk 
models is determined by the prevalence of the outcome 
in the population in which the model was developed 
and the updating of this intercept aims to solve the 
discrepancy between the mean predicted risk and 
mean observed risk resulting in better calibration. To 
be noted, recalibration, through either method, does 
not change the discriminatory ability of the risk 
prediction model as the relative ranking of the predicted 
probabilities remain the same [20]. 

Logistic regressions are the most commonly used 
for risk prediction research. Recalibration methods, 
described by Steyerberg [1] and Janssen et al. [3], aim 
to update the intercept of logistic models to better 
account for the prevalence in the validation population. 
The intercept can be updated by fitting a logistic 
regression model with a linear predictor as the only 
covariate in the updating set or by calculating a 
correction factor that is based on the mean predicted 
risk and observed outcome frequency in the validation 
population. When the outcome frequency is not 
particularly low or high, the correction factor will equal 
the calibration intercept. The final correction factor is 
simply added to the intercept of the original model. This 
is considered the most basic form of logistic model 
updating. An additional method, termed logistic 
calibration, fits a logistic regression model with a linear 
predictor as the only covariate in the updating set [3]. 
The calibration slope is used to recalibrate (multiply by) 
the original regression coefficients. The closer the 
calibration slope is to 1, the less adjustment the original 
regression coefficients required. The intercept is also 
updated by adding the calibration intercept to the 
intercept of the original prediction model.  

Survival models available for risk prediction 
research depend on the distribution assumptions that 
can be made. Weibull models are generalised 
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exponential models with the inclusion of shape 
(survival rate), allowing for more flexibility on the types 
of data that the model can fit. The model has a hazard 
function which measures how likely the outcome/event 
will take place as a function of the length of observation 
[21]. While exponential distribution has a constant 
hazard function, the Weibull distribution hazard rate 
can increase or decrease in relation to time. The 
Weibull model is a popular method for parametric data. 
When distribution assumptions of the survival time 
(time until diagnosis) cannot be met, the Cox 
proportional hazard model can be used. Additionally, 
cox models are used when the risk factors have a 
multiplicative effect on the hazard function and can be 
extended for multiple regression situations [22]. Cox 
models do not have an intercept but rather an 
equivalent, the ‘baseline survival function’ or ‘baseline 
risk’. This baseline information is almost never given by 
authors of published medical articles that report a cox 
model, however it can be recalculated [23]. Cox models 
are often referred to as semi-parametric, as the 
baseline hazard function is non-parametric, while the 
linear predictor in the cox model is fully parametric. 

The incorporation of diagnosis time in both of these 
models allows for them only to be used for the 
development of incident diabetes risk prediction models 
(as opposed to prevalent diabetes prediction). The 
choice of model is researcher dependent and each 
come with their own advantages, parametric models 
are more precise with smaller standard errors, while it 
is easier, and can prevent biases, not having to make 
assumptions of the underlying hazard function nature 
or shape with semi-parametric models. The 
recalibration of all survival analysis models use Kaplan-
Meier to determine the average incidence rates and 
update the model to the validation population incidence 

rate [17]. Additionally available, the mean values of 
each variable within the model which were derived from 
the validation population is replaced by the mean 
values of the same variables from the validation 
population. These methods are described in more 
detail by D’ Agostino (2001) [17]. Text box 2 details the 
components of the various models that are altered 
during recalibration.  

Reporting of Recalibration 

Of the 236 validations of diabetes risk prediction 
models in alternate populations, 54 (22.9%) reported 
the use of recalibration methods in an effort to increase 
performance of the existent models. The reporting of 
the recalibration method was clear, the only article to 
not report the method of recalibration was 
Bozorgmanesh et al. (2011) [24]. 42 of these studies 
(77.8%) reported an increase in model performance 
following the recalibration of the original model (seven 
studies did not report the original or recalibrated model 
performance [25-28]). Every recalibration was carried 
out on an incident diabetes risk prediction model, with 
most of them being logistic regression models (75.9%). 
Additionally, 68.5% of recalibrations were carried out in 
level 3 calibrations. There was no one model that was 
recalibrated significantly more often than others. The 
Framingham offspring simple clinical model was 
recalibrated four times (7.4%) [14, 24, 28, 29], while the 
DPoRT, concise Finnish, German, KORA base, KORA 
clinical, QDScore and San Antonio clinical diabetes risk 
models were recalibrated three times (5.6%).  

DISCUSSION 

The validation of existent models in a new 
population is highly encouraged, preventing the 

Text box 2: Mathematical formula for key models illustrating change before and after recalibration – adapted from 
Janssen et al. [3] and Houwelingen [23] 

Model Formula Components Recalibration change 

Update intercept: ß0 + correction factor  Logistic 1/{1 + EXP[-(ß0 + ß1 x predictor1 
+…+ ßn x predictorn)]} 

Intercept: ß0 

Variable coefficient: ß1- ßn Update intercept: ß0 + correction factor 

Coefficient: linear predictor x calibration 

Update incidence rate of validation cohort: H0(t) Cox Ho(t)EXP(x ) where  
x  = 1(x1  M1 + … + n(xn – Mn) 

Baseline hazard function: H0(t)  

Prognostic index: x   

Regression coefficient:  

Mean of risk factor: M 

Update mean value of variable in validation cohort:  

Update incidence rate of validation cohort: 0 of ( 0 + 
1 ln(t)) 

Weibull ( 0 + 1 ln(t))EXP(x ) where  
x  = 1(x1  M1 + … + n(xn – Mn) 

Hazard function: 0 + 1 ln(t) 

Prognostic index: x   

Regression coefficient:  

Mean of risk factor: M  

Update mean value of variable in validation cohort:  
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availability of numerous models, where few have been 
externally validated. The common method of 
developing and validating models simultaneously in a 
database in which previous risk prediction research has 
not been, defeats this purpose. Ideally, should a 
database suitable for diabetes risk prediction research 
be available, models should first be validated in an 
attempt to find an existent model that can perform at an 
optimum discrimination and calibration. Should a model 
show systematic overestimation or underestimation of 
risk, and the performance be too low to allow for 
accurate prediction and successful implementation, 
recalibration techniques can be employed in an effort to 
increase the performance of the model.  

The aim of this study was to determine the extent to 
which model recalibration was undertaken in validation 
of diabetes risk models. This review of available 
published literature on the validation of diabetes risk 
prediction models showed that although validation of 
existent models is occurring, the attempt to fit these 
models to the new setting is poor. Additionally, we 
wished to determine if this recalibration was successful 
in increasing model performance when incorporating 
information for the validation population. Most studies 
that undertook the recalibration of models were able to 
show that model performance can be increased with 
basic recalibration techniques. The new models retain 
their importance in a new setting, taking into account 
the underlying incidence of the outcome and the 
variable relative importance of each risk factor from the 
development to the validation population. This increase 
in performance though simple recalibration is important 
in the effort to encourage the updating of models during 
validation. The statistical effort in recalibrating a model 
is slight and the final product of a model better fitted to 
the population in question and increased model 
performance worth the added step.  

Although we aimed to comprehensively review all 
published papers on development and validation of 
undiagnosed diabetes risk prediction models, it should 
be highlighted that we may have missed some 
published validation studies. However, the overall 
result would not be expected to differ significantly with 
the possible inclusion of more model validation studies.  

CONCLUSION 

Without recalibration in the validation of a diabetes 
risk prediction model, the ability of these models to 
generate an accurate point estimate of an individual’s 
diabetes risk may be inadequate. The importance of 

generalizability and validation of current models is 
repeatedly emphasized in literature, however this is 
fruitless if extra efforts are not taken to fit the model as 
best as possible to the new setting. Unfortunately, only 
a relatively small number of validation studies have 
included recalibration in their methodologies. 
Additionally, no prevalent diabetes risk prediction 
models were recalibrated in an attempt to better fit the 
model to the validation population. An increased focus 
on the validation, and particularly recalibration, of 
existent models will improve the generalizability of the 
models and likely lead to greater application of 
diabetes risk prediction models in daily clinical practice. 
The question that remains is, when is a model ruled 
sufficiently validated and recalibration / updated? 
Future research should address this question and allow 
for the determination of how many validation studies, 
what type of adjustments need to be made and most 
importantly, what is optimum performance to justify the 
implementation of the risk prediction model into clinical 
practice.  
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