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Abstract: Background: Poor performance of risk prediction models in a new setting is common. Recalibration methods
aim to improve the prediction performance of a model in a validation population, however the extent of its application in
the validation of diabetes risk prediction models is not yet known.

Methods: We critically reviewed published validation studies of diabetes prediction models, selected from five recent
comprehensive systematic reviews and database searches. Common recalibration techniques applied were described
and the extent to which recalibration and impacts were reported analysed.

Results: Of the 236 validations identified, 22.9% (n = 54) undertook recalibration on existent models in the validation
population. The publication of these studies was consistent from 2008. Only incident diabetes risk prediction models
were validated, and the most commonly validated Framingham offspring simple clinical risk model was the most
recalibrated of the models, in 4 studies (7.4%).

Conclusions: This review highlights the lack of attempt by validation studies to improve the performance of the existent
models in new settings. Model validation is a fruitless exercise if the model is not recalibrated or updated to allow for
greater accuracy. This halts the possible implementation of an existent model into routine clinical care. The use of
recalibration procedures should be encouraged in all validation studies, to correct for the anticipated drop in model

performance.
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BACKGROUND

The use of risk prediction models in a validation
population is expected to have an effect on the
performance of the model (usually a drop in the
performance) due to the differences between
development and validation populations, particularly
the variances in outcome frequency between the
populations, case-mix and measurements used for the
variables and outcome determination [1]. In an effort to
improve the performance of a model in a new setting,
updating strategies have been proposed [2, 3]. The
updating strategies range from simple adjustment of
models’ parameters to more complex model
alterations. Simple updating methods, termed re-
calibration, describes the re-estimation of the model
intercept (or baseline risk parameter) with or without re-
estimation of the regression coefficients.

The recalibration of risk prediction models is
encouraged, where the resulting updated model
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combines the prediction information that was captured
in model development with the information of the new
population. This lends to the concept that risk
prediction models should be based on as many
individuals’ data as possible. Too often, existent
models are externally validated and when performance
is disappointing, a new prediction model is developed.
This results in a large number of models available,
which are all poorly externally validated [4]. For
illustration, a systematic review by Noble and
coworkers [5] found that between 1993 and 2011, over
145 models were developed to predict prevalent or
incidents diabetes, of which only a few were externally
validated. This is of concern, considering that use of
accurate and validated risk models is increasingly
advocated as a basis for risk screening in strategies to
prevent the occurrence of diabetes among those at
high risk, to promote early detection among those with
prevalent undiagnosed diabetes, and tailoring the
complexity and intensity of the management among
those with diagnosed diabetes, to the risk of
subsequent complications. Indeed, with diabetes
mellitus growing to the epidemic proportions around the
world, and considering the complexity of the interaction
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of factors contributing to diabetes occurrence and
related complications, the ability of risk prediction
models to incorporate a multitude of risk factors,
accounting for this complexity, cements their
importance in diabetes prevention and control
strategies. Beyond the field of diabetes and non-
communicable diseases in general, with the opening
era of personalised healthcare, prediction models will
be increasingly used to assist clinical decision making.
Efforts to limit the number of prediction models through
careful updating of existing models to work in various
settings, have a potential to improve their uptake in
routine practice.

A recent validation study applied simple updating
methods to diabetes risk prediction models, and
reported some improvement, although non-optimal, of
models performance [6]. However, the extent of the
application of recalibration strategies in the validation of
diabetes risk prediction models is not yet known. In this
paper, we critically review the level of reporting,
method of choice and extent of use of recalibration
methods in validation studies, through a systematic
review of studies on the validation of incident and
prevalent diabetes risk prediction models, in an attempt
to make conclusions on the extent of recalibration in
diabetes risk prediction research.

METHODOLOGY

Building on the five most comprehensive review
articles on both incident and prevalent diabetes risk
prediction models by Buijsse et al. (2011) [7], Collins et
al. (2011) [8], Noble et al. (2011) [5], Thoopputra et al.
(2012) [9], and Brown et al. (2012) [10], additional
relevant articles were identified through a systematic
literature review according to the PRISMA guidelines,
where necessary [11]. We searched PubMed for all
published studies aimed at validating diabetes risk
prediction models using the following string search:
(("diabetes” OR “diabetes mellitus” OR “type 2
diabetes”) AND (“risk score” OR “prediction model” OR
“predictive model” OR “predicting” OR “prediction rule”
OR “risk assessment” OR “algorithm”) AND
(“validation” OR ‘validate”)).

Studies were included if they validated risk scores,
models or questionnaires and the outcome was
prevalent undiagnosed or incident diabetes in adults
(aged =>18 years). Studies undertaking internal
validation were excluded as model recalibration should
not be required at this early stage. Additionally, studies
aimed at validating guidelines in new populations were

excluded. Models that were developed outside of the
logistic, cox or Weibull development methods were
excluded due to the inability to validate these models
(e.g. classification tree analysis method). There was no
restriction on the variables included in the models, both
non-invasive and invasive models were included.
Additionally, there was no restriction on sample size or
country. The data extracted included country/setting,
name of the models validated, whether the study aimed
at validation alone or with development of a model and
the presence of a discussion and action (or lack
thereof) on the recalibration of models. We reviewed
the included studies with the aim of providing the
reader with a comprehensive list of validated models,
instances and prevalence of model recalibration, as
well as the possible increase in performance of the
updated model.

RESULTS

Overview of Included Studies

Following the sifting process, a total of 94 articles
were included (Figure 1). These articles included 70
models and 236 validations were conducted. Figure 2
depicts the distributions of risk prediction model
validation. Included published studies undertook the
validation of existent diabetes risk prediction model/s,
where validation refers to the process of evaluating the
performance of a model. Studies were focussed on
external validation which goes beyond the assessment
of model performance in all or a portion of the
developmental datasets by assessing the performance
in an independent dataset. The validation of a model
can be grouped by a hierarchy proposed by Justice et
al. (1999) [12], according to the reproducibility and
historic, geographic, methodologic, spectrum and
follow-up period transportability (Text Box 1).
Additionally, one paper can report on the validation of
more than one model. Many studies undertook the
validation of a model(s) as an added section to the
development of a model in their population group
(48.8%). Details of the included studies are provided in
Table 1; published between 1997 and 2014, but most
appeared in 2005-2011. Articles reporting recalibration
of existent models only appeared from 2008 onwards
with the most appearing in 2010. The number and
combination of predictors was variable, with age, sex,
body mass index and waist circumference being the
most commonly used variables. The study setting was
highly heterogeneous; models were validated in 31
countries across 5 continents (only 1 from Africa).
Models predicting incident diabetes were more
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837 articles identified through
database searching (PUBMED)

210 articles identified through
systematic reviews

847 articles after duplicates removed

h 4

157 full-text articles assessed for
eligibility

b4

681 records excluded on
abstract

A 4

94 articles included in review

Figure 1: Flow diagram of selected studies.
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The numbers on the X-axis indicate the number of models for each frequency, and the number at the tip of each bar indicate the
frequency of model validation. The top 3 validated incident diabetes models are: 15 times — Framingham offspring simple clinical
diabetes model; 14 times — San Antonio clinical risk model; 11 times — Cambridge diabetes risk score. The top 3 validated
prevalent diabetes models: 13 times — Full prevalent FINDRISC risk model; 11 times — Rotterdam risk predicative model 1; 9
times — Cambridge diabetes risk model.
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Text box 1: A Hierarchy of External Validation of Predictive Systems — Adapted from Justice et al. [12]

Level of validation

Cumulative generalizability evaluated

0: Internal validation

Reproducibility

1: Prospective validation

Level 0 + historic transportability

2: Independent validation

Level 1 + geographic transportability, methodologic transportability, spectrum

transportability

3: Multisite validation

Level 2 at multiple sites

4: Multiple independent validation

Level 3 by multiple investigators

5: Multiple independent validations with life-table analyses

Level 4 + follow-up period transportability

commonly validated (62.7%) when compared to
prevalent diabetes risk prediction. The development,
recalibration and use of incident and prevalent risk
prediction models vary and will therefore be discussed
separately.

Incident Diabetes Risk Prediction Models

The most commonly validated model was the
Framingham offspring simple clinical risk model [13]
(10.1%) followed by the San Antonio clinical risk model
[14] (9.5%). Validations were ranked according to the
levels of transportability. There was no evidence of
level 4 or 5 diabetes risk prediction validation. The
most common form of validation (level 2) tested the
models’ geographic, methodologic and spectrum
transportability in addition to the reproducibility and
historic transportability (62.8%). This included models
which were validated in the same country as their
development but a different city or cohort to
development, as well as validation of a model for a
different outcome.

Prevalent Diabetes Risk Prediction Models

The Finnish diabetes full risk model was the most
frequently validated prevalent diabetes risk prediction
model (14.8%) [15, 16], followed by the Rotterdam
predictive model 1 (12.5%). As with incident risk
models, hierarchy level 2 was the most common level
of validation (81.8%), with no level 4 or 5 validation.

Recalibration Methods

Multiple updating methods exist [2, 3, 17-19],
varying in the complexity and the number of
parameters that are adjusted or re-estimated. The term
‘recalibration’ is used to describe basic techniques to fit
a predictive model to a new setting. The development
of the model dictates the recalibration methods
available. The mathematical model chosen for

development may follow logistic regression, cox or
Weibull principles. The intercept, or equivalent, of risk
models is determined by the prevalence of the outcome
in the population in which the model was developed
and the updating of this intercept aims to solve the
discrepancy between the mean predicted risk and
mean observed risk resulting in better calibration. To
be noted, recalibration, through either method, does
not change the discriminatory ability of the risk
prediction model as the relative ranking of the predicted
probabilities remain the same [20].

Logistic regressions are the most commonly used
for risk prediction research. Recalibration methods,
described by Steyerberg [1] and Janssen et al. [3], aim
to update the intercept of logistic models to better
account for the prevalence in the validation population.
The intercept can be updated by fitting a logistic
regression model with a linear predictor as the only
covariate in the updating set or by calculating a
correction factor that is based on the mean predicted
risk and observed outcome frequency in the validation
population. When the outcome frequency is not
particularly low or high, the correction factor will equal
the calibration intercept. The final correction factor is
simply added to the intercept of the original model. This
is considered the most basic form of logistic model
updating. An additional method, termed logistic
calibration, fits a logistic regression model with a linear
predictor as the only covariate in the updating set [3].
The calibration slope is used to recalibrate (multiply by)
the original regression coefficients. The closer the
calibration slope is to 1, the less adjustment the original
regression coefficients required. The intercept is also
updated by adding the calibration intercept to the
intercept of the original prediction model.

Survival models available for risk prediction
research depend on the distribution assumptions that
can be made. Weibull models are generalised
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exponential models with the inclusion of shape
(survival rate), allowing for more flexibility on the types
of data that the model can fit. The model has a hazard
function which measures how likely the outcome/event
will take place as a function of the length of observation
[21]. While exponential distribution has a constant
hazard function, the Weibull distribution hazard rate
can increase or decrease in relation to time. The
Weibull model is a popular method for parametric data.
When distribution assumptions of the survival time
(time until diagnosis) cannot be met, the Cox
proportional hazard model can be used. Additionally,
cox models are used when the risk factors have a
multiplicative effect on the hazard function and can be
extended for multiple regression situations [22]. Cox
models do not have an intercept but rather an
equivalent, the ‘baseline survival function’ or ‘baseline
risk’. This baseline information is almost never given by
authors of published medical articles that report a cox
model, however it can be recalculated [23]. Cox models
are often referred to as semi-parametric, as the
baseline hazard function is non-parametric, while the
linear predictor in the cox model is fully parametric.

The incorporation of diagnosis time in both of these
models allows for them only to be used for the
development of incident diabetes risk prediction models
(as opposed to prevalent diabetes prediction). The
choice of model is researcher dependent and each
come with their own advantages, parametric models
are more precise with smaller standard errors, while it
is easier, and can prevent biases, not having to make
assumptions of the underlying hazard function nature
or shape with semi-parametric models. The
recalibration of all survival analysis models use Kaplan-
Meier to determine the average incidence rates and
update the model to the validation population incidence

rate [17]. Additionally available, the mean values of
each variable within the model which were derived from
the validation population is replaced by the mean
values of the same variables from the validation
population. These methods are described in more
detail by D’ Agostino (2001) [17]. Text box 2 details the
components of the various models that are altered
during recalibration.

Reporting of Recalibration

Of the 236 validations of diabetes risk prediction
models in alternate populations, 54 (22.9%) reported
the use of recalibration methods in an effort to increase
performance of the existent models. The reporting of
the recalibration method was clear, the only article to
not report the method of recalibration was
Bozorgmanesh et al. (2011) [24]. 42 of these studies
(77.8%) reported an increase in model performance
following the recalibration of the original model (seven
studies did not report the original or recalibrated model
performance [25-28]). Every recalibration was carried
out on an incident diabetes risk prediction model, with
most of them being logistic regression models (75.9%).
Additionally, 68.5% of recalibrations were carried out in
level 3 calibrations. There was no one model that was
recalibrated significantly more often than others. The
Framingham offspring simple clinical model was
recalibrated four times (7.4%) [14, 24, 28, 29], while the
DPoRT, concise Finnish, German, KORA base, KORA
clinical, QDScore and San Antonio clinical diabetes risk
models were recalibrated three times (5.6%).

DISCUSSION

The validation of existent models in a new
population is highly encouraged, preventing the

Text box 2: Mathematical formula for key models illustrating change before and after recalibration — adapted from

Janssen et al. [3] and Houwelingen [23]

Model Formula Components Recalibration change
Logistic 1/{1 + EXP[-(R, + B4 x predictor, Intercept: Ry Update intercept: R, + correction factor
+...+ n x predictor,]} Variable coefficient: B4- Bn Update intercept: B, + correction factor
Coefficient: linear predictor X Beaiibration
Cox Ho(t)EXP(xB) where Baseline hazard function: Ho(t) Update incidence rate of validation cohort: Ho(t)
XB = Ba(x1 = Mi+ .+ Bn(Xn = M) Prognostic index: xB Update mean value of variable in validation cohort: B
Regression coefficient: 8
Mean of risk factor: M
Weibull (Bo + B1 In(t))EXP(xB) where Hazard function: 8o + B+ In(t) Update incidence rate of validation cohort: 8, of (8o +
XB = Ba(x1 = Mis s Bo(Xn— Mn) Prognostic index: xB B1 In(t)
Regression coefficient: B Update mean value of variable in validation cohort: 8
Mean of risk factor: M
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availability of numerous models, where few have been
externally validated. The common method of
developing and validating models simultaneously in a
database in which previous risk prediction research has
not been, defeats this purpose. Ideally, should a
database suitable for diabetes risk prediction research
be available, models should first be validated in an
attempt to find an existent model that can perform at an
optimum discrimination and calibration. Should a model
show systematic overestimation or underestimation of
risk, and the performance be too low to allow for
accurate prediction and successful implementation,
recalibration techniques can be employed in an effort to
increase the performance of the model.

The aim of this study was to determine the extent to
which model recalibration was undertaken in validation
of diabetes risk models. This review of available
published literature on the validation of diabetes risk
prediction models showed that although validation of
existent models is occurring, the attempt to fit these
models to the new setting is poor. Additionally, we
wished to determine if this recalibration was successful
in increasing model performance when incorporating
information for the validation population. Most studies
that undertook the recalibration of models were able to
show that model performance can be increased with
basic recalibration techniques. The new models retain
their importance in a new setting, taking into account
the underlying incidence of the outcome and the
variable relative importance of each risk factor from the
development to the validation population. This increase
in performance though simple recalibration is important
in the effort to encourage the updating of models during
validation. The statistical effort in recalibrating a model
is slight and the final product of a model better fitted to
the population in question and increased model
performance worth the added step.

Although we aimed to comprehensively review all
published papers on development and validation of
undiagnosed diabetes risk prediction models, it should
be highlighted that we may have missed some
published validation studies. However, the overall
result would not be expected to differ significantly with
the possible inclusion of more model validation studies.

CONCLUSION

Without recalibration in the validation of a diabetes
risk prediction model, the ability of these models to
generate an accurate point estimate of an individual’s
diabetes risk may be inadequate. The importance of

generalizability and validation of current models is
repeatedly emphasized in literature, however this is
fruitless if extra efforts are not taken to fit the model as
best as possible to the new setting. Unfortunately, only
a relatively small number of validation studies have
included recalibration in their methodologies.
Additionally, no prevalent diabetes risk prediction
models were recalibrated in an attempt to better fit the
model to the validation population. An increased focus
on the validation, and particularly recalibration, of
existent models will improve the generalizability of the
models and likely lead to greater application of
diabetes risk prediction models in daily clinical practice.
The question that remains is, when is a model ruled
sufficiently validated and recalibration / updated?
Future research should address this question and allow
for the determination of how many validation studies,
what type of adjustments need to be made and most
importantly, what is optimum performance to justify the
implementation of the risk prediction model into clinical
practice.
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