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Abstract: Objective: The main objective of this paper is to present a novel model for classifying senior patients into 

different apnea/hypopnea index (AHI) categories based on their clinical variables.  

Methods and Materials: The proposed model is a generalized regression neural network (GRNN). Three important 
variables were first selected from the original 30 clinical variables. The GRNN was trained using 75 patients that were 

randomly selected from the total117 patients. The remaining 42 patients were used for testing GRNN model. The design 
parameter of the network, i.e., the spread of the radial basis function, was empirically optimized. To alleviate the model 
complexity, the original AHI values were dichotomized into two different groups, i.e., AHI>13 and AHI<=13. The use of 

GRNN for this application appear fairly novel, notwithstanding that there is a host of literatures on predicting obstructive 
sleep apnea (OSA) syndrome from demographic or other easy means to assess clinical variables. 

Results: The proposed model has sensitivity and specificity of 95.7% and 50.0%, respectively, for the training cases, 

while 88.0% and 52.9%, respectively, for the testing cases.  

Conclusion: The proposed neural network model has outperformed existing classification approaches in terms of 
classification accuracy and generalization, thus it can be potentially used in clinical applications, which would lead to a 

reduction of the necessity of in-laboratory nocturnal sleep studies.  
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INTRODUCTION 

Sleep disordered breathing (SRBD) is present in 4% 

of men and 2% of women above 40 years of age. 

However, less than 3% of patients with SRBD 

syndrome are diagnosed due to lack of awareness of 

the disease among health care practitioners and 

patients. Polysomnography (PSG) has been used as a 

golden standard for diagnosing SRBD; however, this 

test is available only in selected centers [1-5]. 

Studies on using neural network techniques for 

prediction of OSA are fairly sparse until recent years. In 

2005, Fontenla et al. [6] presented a novel approach 

for sleep apnea classification. Their goal was to classify 

each apnea in one of three basic types: obstructive, 

central and mixed [6]. 

More recently, Liu et al. in 2007 [7, 8] developed an 

innovative signal classification method capable of 

differentiating subjects with sleep disorders which 

cause excessive daytime sleepiness (EDS) from 

normal control subjects who do not have a sleep  

 

 

*Address correspondence to this author at the Taipei Medical College, M P H, 
Mailman School of Public Health, Columbia University Diplomate, American 
Board of Neurological Surgery 1985, Research Consultant Emeritus, New York 
College of Traditional Chinese Medicine, Mineola, NY, USA;  
E-mail: prof.bing@gmail.com 

disorder. The aim of their study was to develop an 

artificial neural network to predict sleep disordered 

breathing in the elderly.  

CLINICAL SUBJECTS AND MATERIALS  

The data were collected during the period from 1 

January 2002 to 31 January 2003 at the Sleep 

Medicine Center, Changhua Christian Medical Centre, 

Taiwan. While patients’ confidentiality was maintained, 

accessing to patients’ records was approved by the 

ethics committee of Changhua Christian Medical 

Centre. Among the subjects who underwent nocturnal 

polysomnography (PSG), no patients with heart failure 

and chronic obstructive lung disease were admitted. 

Also the data belonged to subjects who were younger 

than 65 years were excluded. As a result, the clinical 

data included a total of 124 elderly aged from 65 to 

88.5 years. Out of the 124 subjects, a total of 117 

subjects had both weight and height, from which body 

mass index (BMI) was calculated. Apnea/hypopnea 

index (AHI), defined as the number of events of 

apnea/hypoxia per hour of sleep, was measured from 

PSG, which documented the objective sleep criteria. 

Although PSG has been the golden standard for the 

diagnosis of obstructive sleep apnea syndrome 

(OSAS), it is highly invasive, time-consuming, and 

expensive. 
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The ratio of females/males in this data is 1: 1.7. The 

mean age of male subjects is 71.6 ± 4.47 years, while 

that of females is 72.3 ± 5.47 years. All subjects have 

chief complaints of sleeping disturbance.  

The reasons for selecting this elderly age group are 

as follow. First, this field is a rather understudied entity, 

especially in sleep research on such an age group 

mentioned in this article. Indeed, all patients are 

vulnerable, but it is so much as those who are elderly. 

Thus, the difficulty of sleep study is due to the 

problems faced in obtaining volunteers as well as the 

possible philosophical and theological under-tones that 

people in general associate with ‘they do sleep when 

they are at the end stage of their life'. Moreover, there 

is as well the misconception of sleep study on 'those 

who haven't many years left anyhow' in general. Next, 

there are more than half of community-living people 

aged 65 year and over experience sleep disturbances. 

Third, sleep onset is often reported to be more difficult 

and nighttime awakenings more prevalent in the 

elderly.  

The datum source of clinical subjects includes this 

author's own study of 124 elderly aged from 65 to 88.5 

years. Predominantly, the data of the total sleep time 

(TST), except that related to body height and its 

distribution, have been reported elsewhere [9].  

Nocturnal In-Laboratory Polysomnography  

Nocturnal polysomnography (PSG) (Alice 4 Sleep 

Diagnostic System, Respironics, Carlsbad, CA. USA) 

was done from about 9:30 pm to 6:30am next morning 

in the sleep laboratory. The following parameters were 

measured and recorded by the PSG: (i) chest and 

abdominal wall motion by uncalibrated respiratory 

inductance plethysmography; (ii) heart rate by ECG; 

(iii) inspired and end-tidal carbon dioxide pressure 

(PETCO2), sampled at the nose or mouth at a rate of 

60 mL/min by mass spectrometry (model 1100 Medical 

Gas Analyzer, Perkin Elmer; Pomona, Calif.) or by 

capnography (model 1000 Capnograph, Nellcor, 

Hayward, Calif. USA); (iv) combined oral nasal air flow, 

sampled with a three-pronged thermistor placed at the 

upper lip; (v) arterial oxygen saturation by pulse 

oximetry (model N 200, Nellcor, Hayward, Calif., USA); 

(vi) oximeter pulse wave form; (vii) electro-oculogram; 

(viii) EEG in overnight PSG; (ix) chin electromyogram; 

(x) actigraphy (placed on the hand); and (xi) 

microphone placed over the neck to monitor snoring. 

The transducers and lead wires permitted normal 

positional changes during sleep. Bedtime and 

awakening time were at each subject’s discretion; the 

PSG was terminated after the final wakening.  

Clinical Classification of Obstructive Sleep Apnea 
Syndrome  

  

Apnea was defined as a decrease in airflow of  

90% for a minimum of 10 seconds. Hypopnea was 

defined as  30% decrease in airflow and desaturations 

required a  3% decrease in oxygen saturation for a 

minimum of 10 seconds. The apnea hypopnea index 

(AHI) was calculated as the sum of apneas and 

hypopneas divided by nocturnal hours of sleep.  

Based on the protocol of American Academy of 

Sleep Medicine Task Force (1999) [11]. The degree in 

severity of sleep apnea is defined in Table 1.  

Table 1: Degrees of Severity of Sleep Apnea (Elevated 
AHI) 

Sleep variables with Apnea 
(changes of AHI) 

The Degree

Apnea (AHI<5) Zero degree

Apnea (AHI 5~15) first degree,

Apnea (AHI 15~30) second degree,

Apnea (AHI>30) third degree,

 

In terms of the staging of sleep, it follows 

Rechtschaffen et al’s. criteria (1963) [12].  

The METHOD Description  

Generalized regression neural network (GRNN) is a 

special type of neural networks. And GRNN is a 

universal approximator that can approximate a 

continuous function to an arbitrary accuracy, given a 

sufficient number of neurons [14]. Comparing to 

conventional multilayer perceptron networks, GRNN 

has several advantages, including 1) it can accurately 

approximate functions from sparse and noisy data; 2) it 

can converge to the conditional mean surface with 

increasing the number of data samples; 3) it only has 

one design parameter (i.e., spread factor); and 4) it is 

easy to train. It is these unique advantages associated 

with GRNN that make this author to choose GRNN as 

a model for predicting OSA syndrome.  

In this study, a brief description of the method is as 

following: the single design parameter, i.e., spread 

factor of GRNN is obtained via empirical optimization. 

The input variables to the GRNN model are also 
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empirically determined based on their classification 

performance. The three variables finally selected for 

this model are BMI, neck circumference (NC), and 

nocturnal total sleep time (TST). It is worth pointing out 

that TST values used in our model are dichotomized 

into two levels, <=6 hours and > 6 hours, before input 

to the model. It is also interesting to note that including 

age inputs to our model does not improve our model 

performance. (A figure of ROC to be followed). 

To alleviate the model’s complexity, the original AHI 

values (the dependent variable of our model) were also 

dichotomized into two different groups, i.e., AHI>13 

and AHI<=13. That is, the GRNN model is designed to 

perform a 2-class classification.  

RESULTS  

The 117 cases are randomly split into two disjoint 

subsets: 75 cases for training, whereas 42 cases for 

testing (validation).  

To evaluate the goodness of the GRNN model, 

following performance metrics are used in this study: 1) 

Accuracy; 2) Sensitivity/specificity; 3) PPV/NPV; Kappa 

statistics; and 4) AUC, the area under curve of ROC.  

GRNN Performance  

Figure 1 shows the ROC curves of the GRNN 

model for both the training and testing sets, 

respectively. For the training set, the area under curve 

(AUC) of the ROC is 0.8405 with 95% confidence 

interval from 0.8304 to 0.8506. For the testing set, the 

AUC calculated for this ROC is 0.751 with 95% 

confidence intervals between 0.728, and 0.77.  

 

Figure 1: ROC curve for the training set. 

Given the fact that the desired requirements for 

sensitivity and specificity are unknown, we choose the 

decision threshold for GRNN model to be 0.4, which 

gives the sensitivity and specificity of 95.7% and 50%, 

respectively, for training set. The confusion matrices 

corresponding to the decision threshold of 0.4 are 

given in Table 2, from which other performance 

measures are derived. Those performance measures 

are summarized in Table 3.  

Table 2: Confusion Matrix of the Training and Testing 
Sets 

(a) 

Predicted 
 

AHI<=13 AHI>13 

AHI<=13 14 14 
Truth 

AHI>13 2 45 

(b) 

Predicted 
 

AHI<=13 AHI>13 

AHI<=13 9 8 
Truth 

AHI>13 3 22 

 

Table 3: Summary of Performance Metrics of GRNN 
Model 

Performance metrics Training set Testing set 

Accuracy 0.787 0.738 

Sensitivity 0.957 0.880 

Specificity 0.500 0.529 

Positive predictive value 0.763 0.733 

Negative predictive value 0.875 0.750 

Kappa 0.501 0.430 

(95% CI) [0.302, 0.700] [0.154, 0.705] 

AUC 0.8405 0.751 

(95% CI) [0.830, 0.851]  [0.728, 0.774] 

Legend: By looking at the Table 3, it can help to identify subjects with moderate 
to severe degree OSAHS (the second and third degrees) who need PSG 
badly, but were misclassified as AHI <=13 by the model, with a rate of 12%. 
Among the total five (two in the training set whereas three in the testing set) 
being misclassified as AHI <=13, there were merely one with AHI >25, whereas 
the other >40. The rest of three were all had AHI < 18 per hour.  

 

From Table 2 one can observe the followings. Using 

this model, for the 47 subjects whose AHI measured 

from the nocturnal sleep study with in-laboratory PSG 

is greater than 13, 45 were correctly classified, 

whereas 2 was misclassified as AHI being less than or 

equal 13. Out of 42 testing subjects, there are 25 
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subjects whose AHI is greater than 13. For those 25 

subjects, our model correctly classifies 22 of them 

while misclassifies 3, which gives the sensitivity of 

88.0%. Similarly, for the 17 subjects whose AHI is less 

than or equal to 13, our model correctly classifies 9 and 

misclassifies 8, which yields the specificity 52.9%.  

Characteristics of the two misclassified subjects are 

listed in Table 4, from which one can see that both 

subjects are women and their AHIs are 17.6 and 16.2, 

respectively. Characteristics of the three subjects 

whose AHI is greater than 13 but misclassified as AHI 

being less than 13 are also listed in Table 4. 

The un-weighed likelihood ratios for the training set 

are 1.914 and 0.086 for conventional positive and 

negative, respectively. The un-weighed likelihood ratios 

for the testing set are 1.868 and 0.227 for conventional 

positive and negative, respectively.  

Comparison with the Results of other Regression 
Models  

To demonstrate performance superiority of GRNN 

model proposed in this study, two other models, that is, 

linear regression and logistic regression are developed 

for the same data and the results are compared and 

shown in Tables 5a and 5b for the training and testing 

sets, respectively. From Table 5, one can clearly see 

that GRNN model performs significantly better than 

both linear and logistic regression models do.  

Comparison with Results of other Studies  

To better appreciate this model's performance, 

results from this model are further compared with those 

from other studies (See Table 6). While all three other 

studies show relatively lower sensitivity (ranging from 

74% to 85%), this study has higher sensitivity (88% 

and 95.7% for testing and training respectively). It is 

worth noting that the comparison among different 

studies is rather difficult. Hence, linear and logistic 

regressions are taken, but not other nonlinear model 

than logistic. Because logistic regression predicts the 

probability of particular outcomes [31]. 

Logistic regression is an alternative to Fisher's [32] 

1936 method, linear discriminant analysis [31]. If the 

assumptions of linear discriminant analysis hold, 

Table 4: Misclassified Cases 

Sex Age High weight BMI NC Latency TST Snore RDI/T 

For training set 

F 64.85 150 48.2 21.42 34 12 351 534 17.6 

F 72.96 150 54.3 24.13 35 8 247.5 0 16.2 

For testing set 

F 72.53 164 57.5 21.38 34.5 6.5 315 674 40.4 

F 69.88 159 53.1 21.00 35 22.5 295 752 14.2 

M 66.72 145.5 54 25.51 34 38.5 227.5 1399 25.5 

Table 5a: Comparison among Different Models – Training Set 

Performance metrics Linear regression Logistic regression GRNN 

Accuracy 0.667 0.667 0.787 

Sensitivity 0.809 0.809 0.957 

Specificity 0.429 0.429 0.500 

Positive predictive value 0.704 0.704 0.763 

Negative predictive value 0.571 0.571 0.875 

Kappa 0.250 0.250 0.501 

(95% CI) [0.026, 0.474] [0.026, 0.474] [0.302, 0.700] 

AUC 0.628 0.636 0.841 

(95% CI) [0.613, 0.642] [0.622, 0.651] [0.830, 0.851] 
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application of Bayes' rule to reverse the conditioning 

results in the logistic model, so if linear discriminant 

assumptions are true, logistic regression assumptions 

must hold. The converse is not true, so the logistic 

model has fewer assumptions than discriminant 

analysis and makes no assumption on the distribution 

of the independent variables. 

Comments on Sensitivity and Specificity  

It is well understood that designing a diagnostic 

system to achieve both high sensitivity and specificity is 

almost impossible in real-world applications. Thus 

striking a best trade-off between the two is the most 

practical solution. Obviously choosing such trade-off 

between sensitivity and specificity is problem-

dependent. That is, there are no such thing as good 

numbers for sensitivity and specificity. For instance, for 

diagnosing clinically significant ankle fractures, the 

Ottawa Ankle Rule had a specificity of only 50% but a 

sensitivity of 100%. Henceforth, not all patients will 

meet the decision rule criteria, but in their cases of 

those who do, the necessity for an ankle radiograph 

can be disregarded. The Ottawa Ankle Rule has a 

diagnostic gray zone of about 70%, but in the field 

testing, it is estimated that the rule has reduced the 

necessity for ankle radiography by 30% (Siell et al.) 

[20].  

For another clinical example, due to the severe 

morbidity associated with Obesity Hypoventilation 

Syndrome (OHS), some researchers selected a highly 

sensitive threshold of serum bicarbonate level. A 

threshold of 27 mEq/l had a sensitivity of 92% and a 

specificity of 50%. Merely 3% of patients with a serum 

bicarbonate level< 27 mEq/l had hypercapnia 

compared to 50% with a serum bicarbonate 27 mEq/l. 

In their conclusion, OHS is common in severe OSA. A 

normal serum bicarbonate level excludes hypercapnia 

and an elevated serum bicarbonate level should 

prompt clinicians to measure arterial blood gases [21, 

22]. 

There are several other instances in the literature of 

sleep medicine. For example, an Italian version of the 

Epworth sleepiness scale (ESS) is an easy-to-use form 

useful for preliminary screening of daytime sleepiness 

level in specialist settings. Noticeably, the (ESS) cut-off 

scores associated with the best sensitivity and 

specificity were set to be 12 and 17. For the 5-min 

Table 5b: Comparison among Different Models – Testing Set 

Performance metrics Linear regression Logistic regression GRNN 

Accuracy 0.667 0.690 0.738 

Sensitivity 0.800 0.800 0.880 

Specificity 0.471 0.529 0.529 

Positive predictive value 0.690 0.714 0.733 

Negative predictive value 0.615 0.643 0.750 

Kappa 0.028 0.339 0.430 

(95% CI) [-0.011,0.574] [0.05, 0.628] [0.154, 0.705] 

AUC 0.617 0.614 0.751 

(95% CI) [0.590,0.643] [0.588, 0.641] [0.728, 0.774] 

Table 6: The Comparison among Various Studies 

 
FEIN 

et al. 

Kapuniai 

et al. 

Crocker 

et al. 

This study 

(Training group) n=75 

This study 

(Testing group) n=42 

Method # # Logistic regression GRNN GRNN 

Sensitivity 74% 78"% 85% 95.7% 88.0% 

Specificity 93% 67% 61% 50.0% 52.9% 

AHI predicted >=10 >10 >15 >13 >13 

Probability cutoff-point NA NA >= 0.15 >=0.40 >=0.40 

#
According to the original respective authors, their methods were based on derivation from ascribing a point value to a number of clinical characteristics that have 

been indicative for OSAS. 
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multiple sleep latency test (MSLT) cut-off, sensitivities 

were 87% and 47% for cut-off scores of 12 and 17 

respectively, and specificities of 39% and 74%. For the 

8-min MSLT cut-off, sensitivities were 84% and 49%, 

and specificities of 50% and 88% [22]. 

In this paper, our model achieves the sensitivity of 

95.7% and specificity of 50.0 % for the training set, 

while 88.0%, and 52.9%, respectively, for the testing 

set. Specificity of equal or greater than 50% while 

sensitivity is higher than 85% indicates that our model 

developed in this paper is reasonable. Our sensitivity 

and specificity results are based on the decision 

threshold of 0.40, which can be tuned if costs 

associated with false positive and false negative errors 

are known.  

DISCUSSION  

It is true that the widely recognized definition of 

sleep apnea has the round numbers of AHI cutoff = 5, 

10, and 15. Conversely, in this study, data did indicate 

that using AHI of 13 as cutoff is better than using 15. A 

brief review of the following mechanisms may help to 

understand the issues that we shall advance latter on.  

The reason why we selected AHI cutoff of 13 events 

per hours is as follows:  

While the accepted AHI cutoffs for defining OSA 

severity is somewhat arbitrary, as suggested by the 

author and others, an AHI cutoff of 13 instead of 15 

events per hour seems ‘unusual’. Nevertheless, this 

was used merely based on our previous clinical 

experience.  

Furthermore, our selection of the criterion is 

clinically and not statistically. What is the actual clinical 

meaning of the two events represented by a cutoff of 

13 (more precisely, 13.21) and not 15 is as follows.  

Clinically, we do observe a better sleep efficiency 

(%) for those patients whose AHI were< 13.21 but not 

for those whose AHI > 13.21 (p=0.05). On the contrary, 

when we use AHI cutoff of 15, there is no difference 

between AHI <15 and > 15 these two groups. It can 

thus be stated that the employing of AHI cutoff of 13 is 

based on clinical finding of sleep efficiency (%) The 

employing of AHI cutoff 13 is not based on this GRNN 

modeling alone in this study.  

OSA was defined by a polysomnographical AHI 

cutoff that has been considered by investigators to be 

clinically important. The cutoff of 13 for AHI does fall 

into the current definition of sleep apnea. Although the 

value was derived from the ROC, its clinical 

significance was particularly for symptomatic elderly 

patients. In this model, with AHI = 13 is obvious for the 

reason as follows. The cutoff value of 13 for AHI falls 

into the upper range of mild sleep apnea. In addition, 

there are the clinical significances of any particular cut 

off points between AHI 10 and 20 9. In fact, AHI=15 

has never been the absolute and sole point of cutoff.  

It all dependents on the nature of disease, and other 

clinical factors involved along with the setup of the 

device used in the measurement. For example, if the 

cutoff value of estimated AHI set at 17, instead of 15, 

there was optimal for the differentiation between 

patients with or without sleep related breathing disorder 

using the Lifescreen Apnea software from Holter ECG 

as an accurate, specific and sensitive method for the 

detection and classification of obstructive and mixed 

SRBD [19]. According to their estimated AHI, 50 (68%) 

patients were correctly diagnosed. The ROC analysis 

showed high accuracy of SRBD detection using Est. 

AHI: AUC – 0.91 with sensitivity – 91.2%, specificity – 

87.5%, PPV – 88.6%, and NPV – 88.9%.  

Cost Effectiveness Assessment of this Model 

As shown in the section of RESULTS, with the 

decision threshold of 0.40, our GRNN model achieves 

the sensitivity of 95.7% and specificity of 50.0 % for the 

training set, as well as 88.0%, and 52.9% respectively. 

If a PSG sleep study were performed only in subjects 

for whom the model predicted an AHI > 13, the number 

of PSG required for the 42 subjects in our testing set 

would have been decreased from 25 to 22, a 12% 

(3/22) reduction in the number of PSG taken. To 

assess true cost effectiveness of our model, a cost-

benefit analysis on the numbers of false positive and 

false negative case is needed, which can take into 

account the impact of quality of life on the subject 

(patient) and the family, and the financial impact on the 

community. In this model, the specificity attained of 

>=50% when sensitivity is high (>=88.0%), it is 

definitely indicative that the methodology used in this 

model is geared up for prime time.  

It is important to remind readers that the study 

conducted in this paper here is not a CPAP treatment 

study, even though it is indeed a statistically 

nonparametric group undergoing medically diagnostic 

PSG. Nevertheless, this author intends to develop the 

study into a CPAP treatment study in the near future, 

with an aim in cost–effective purpose and as well 
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looking forward in seeking potential saving 

economically.  

With this model, it can determine that if a clinical 

subject with complaints of poor sleep, if also with an 

AHI around the level of 13 and requires a CPAP 

treatment, whoever clinical subject may lead to an 

earlier therapeutic action without the need of going 

through a diagnostic PSG test.  

LIMITATIONS OF STUDY  

Some clinical variables, such as TST, used in this 

model for estimating AHI may require some more other 

device in order to measure the sleep time as accurate 

as possible. 

Sleep latency, which has been removed from being 

as an initial input with a comparison, data of the total 

sleep time is somewhat easier to obtain  and then 

measure than those of sleep latency. For example, 

devices such monitors using web-camera together with 

a home personal computer (PC) can serve the 

purpose. They are not expensive. For TST, the 

measurement with a web camera with a PC is quite 

cost-effective. 

As compared to the portable home monitoring for 

OSA, the disadvantages follow. Generally, the set-up to 

be used at the examinees’ homes using portable 

recording with an ambulatory system recording 

nasal/oral airflow (thermistor) measurement without 

electroencephalogram (EEG) or nasal airway pressure 

or pleural pressure measurements. By contrast, it is 

most important to note that in this context, the 

recording system that are described here for the 

ambulatory monitoring system indeed lacks the ability 

to detect any upper airway resistance.  

On the other hand, the moderate specificity 

depicted in our model may suggest that when we use 

this model, the chance of co-applying other expensive 

extra tests is not indicated. 

Although the expense of these additional screening, 

web-camera and P C, may not be disregarded, the 

expense of setting up a web-camera with the P C is 

really minimal, since often home P C is preexisting.  

Using TST as a variable in this model is meaningful 

for the reason as follows. First of all, TST has been one 

of the ‘good’ (friendly) variables selected by the 

algorism used in this model. Nevertheless, one might 

still argue that it might be ‘meaningless to use a PSG 

variable such a TST to predict OSA’. At first glance, 

such a statement sounds ‘plausible’. However, it is 

neither logical nor acceptable. Unlike other sleep 

medicine variables, TST is one of the few that can be 

measured easily and precisely if only with a web-

camera and a home P C at home instead of being at 

the Sleep Medicine Laboratory. Second, whoever 

believes that PSG and actigraphy, other than PSG, are 

the only two precise ways in obtaining a record of an 

individual’s TST; such an assumption may be 

misleading. Third, TST, unlike sleep latency, can be 

used as an easily obtainable clinical datum. 

CONCLUSION 

This paper has its declaratory character. Hence, in 

conclusion, the variables of generalization of GRNN 

model over the general population in sleep medicine is 

possible.  

It all depends on the various combinations of 

influences among variables of age, gender, weight, and 

BMI. They may attribute an entire spectrum of 

significant explanatory power for the AHI, above and 

beyond what has been explained by the clinical 

samples in the current study. 

ABBREVIATIONS 

AHI = apnea/hypopnea index 

AUC = area under curve 

BMI = body mass index 

ROC = receiver operator characteristics 

ANN = artificial neural network 

GRNN = generalized regression neural network 

NC = neck circumference 

NN = neural network 

OSA = obstructive sleep apnea 
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