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Abstract: In this study, we fit the two-parameter Weibull distribution to an HIV retention data and assess the fit using a 
smooth test of goodness-of-fit. The smooth test described here is a score test and is derived as an extension of the 
Neyman’s smooth test. Simulations are conducted to compare the power of the smooth test with the power of each of 
three empirical goodness-of-fit tests for the Weibull distribution. Results show that the smooth tests of order three and 
four are more powerful than the three empirical goodness-of-fit tests. For validation, we used retention data from an HIV 
care setting in Kenya. 
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1. BACKGROUND 

The Kenya AIDS Response Progress Report 2014 
[1] estimates the number of people living with HIV 
(PLHIV) to be 1.6 million, while those actively on anti-
retroviral therapy (ART) to be 800,000. Retaining 
patients on ART, however, remains a major challenge. 
Disruption in care through missed scheduled visits 
undermines both social as well as clinical outcomes, 
including risk of virological failure [2]. Discontinuation of 
ART can lead to drug resistance, HIV-related illnesses 
and death. It has been shown that individuals who miss 
visits in the first year of treatment have a higher 
mortality rate [2]. Studies also show that retention of 
patients who are on ART treatment remains stable after 
12 months of ART initiation, with loss to follow-up 
(LTFU) being the main cause of attrition [3]. In 
resource-limited settings, it is common to find patients 
dropping out of ART treatment. The dropouts are 
usually attributed to LTFU [4]. Due to significant drop-
outs, patients may not realize the benefits of ART. 
Previous studies have singled out associations 
between frequent LTFU and more severe opportunistic 
illnesses [5]. More innovation is therefore required for 
further ART scale-up and to improve retention in care. 

Patients who are actively receiving ART are 
particularly vulnerable to developing drug-resistant 
infections when virological failure occurs, which could 
potentially result in broad resistance to ART and 
transmission of drug-resistant viruses [2]. Determining  
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correct patterns of LTFU and exploring factors 
associated with them is therefore crucial in identifying 
the patients who are at-risk of LTFU. Further, analyses 
of time to LTFU is useful in informing development of 
evidence-based interventions that improve patient 
outcomes [2]. 

In this paper, we fit a two-parameter Weibull 
distribution to time to LTFU data (HIV retention data). 
The probability distribution in this context provides an 
ideal tool to perform specific risk and probability 
calculations, and apply the results to make well-
informed decisions. This is in cognizance of the fact 
that an inappropriate distribution may lead to incorrect 
calculations and eventually wrong decisions. Therefore, 
finding a distribution that fits the data best is important, 
particularly to avoid time and financial loss that may 
arise from an invalid model selection. More about 
importance and reasons for fitting probability 
distributions correctly to the data have been elaborated 
by Hahn and Shapiro [6]. 

Time-to-failure data arises in many fields (e.g 
medical, public health, reliability, etc.) and is often 
assumed to follow the Weibull distribution. The 
popularity of the Weibull distribution is mainly because 
of its flexibility and ability to describe survival data [7]. 
Here, we adopt a smooth test of goodness-of-fit to fit 
the two-parameter Weibull distribution. The smooth test 
considered here is a score test obtained by extending 
the Neyman’s goodness-of-fit approach [8], where the 
score test is obtained by nesting the null hypothesis in 
a larger class of probability distribution functions [9]. 
Our study also seeks to validate the result in [10], 
which showed that the smooth tests for the Weibull 
distribution are more powerful than several other tests, 
including the Crammer-Von Moses, Kolmogorov-
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Sminorv and Andersen-Darling tests. Furthermore, 
fitting the Weibull distribution to data simulated from the 
log-normal and gamma distributions can be reliably 
assessed by smooth tests [11]. 

We fit the two-parameter Weibull distribution to an 
HIV retention data from two public hospitals in Kenya 
and assess the fit using a smooth test. Our event of 
interest is time to first LTFU. Other exits from the 
program (i.e. death, transfer-outs) are removed. 
Patients who are also active on ART at the end of the 
observation period are removed. From a routine 
programmatic arrangement, patients started on ART 
are expected to regularly attend clinic for either 
continuous monitoring or drug refill. A patient is 
considered to be LTFU if s/he fails to show-up within 48 
hours after a scheduled appointment and s/he cannot 
be reached in any way. Testing for goodness of fit for 
LTFU is therefore important not only to determine 
which distribution best fits the failure-time data but also 
to enhance the accuracy in estimating the hazard 
function, which indicates the instantaneous risk of 
LTFU. In our formulation, we propose a score test for 
the null hypothesis that the failure-time data follows a 
two-parameter Weibull distribution. 

To the best of our knowledge, there is no published 
article on fitting a parametric distribution to time to 
LTFU data. This paper will therefore significantly 
contribute the statistical methodology for analysing 
LTFU data that could give information that is vital in 
improving HIV care retention and streamline national 
policy in HIV programming. 

In the section 2, we present the methods for our 
analysis, which includes the description of our data, 
modelling time to LTFU, the formulation of smooth 
goodness-of-fit for the Weibull distribution and 
simulations. We also discuss the performance of the 
smooth test. In section 3, we discuss the application 
and results of the test to a locally available HIV 
retention data. In section 4, we discuss the simulation 
and validation results. Finally, in section 5, we provide 
some concluding remarks. 

2. METHODS 

2.1. Smooth Test of Goodness-of-fit 

2.1.1. Theoretical Framework 

Suppose we wish to test the null hypothesis that 

 X1, X2 ,!, Xn  is a random sample from a specified 
continuous distribution with probability density function 

f (x;!) , where  ! = (!1,!2 ,!,!m )
T  is a vector of 

nuisance parameters. We can construct a smooth test 
by extending the Neyman’s goodness-of-fit approach of 
nesting the null hypothesis in a larger class of 
probability distribution functions [8, 9]. 

We embed the null probability density function in an 
order k  alternative as follows:  

! k (x," ,#) = C(" ,#) exp{
i=1

k

$"ihi (x,#)} f (x,#),        (1) 

where hi (x,!)  is orthonormal to f (x,!)  and 

 ! = (!1,!2 ,!,!k )
T  is a vector of real parameters and 

C(! ,")  is a normalizing constant that ensures 
! k (x," ,#)  integrates to one, i.e.  

!"

"

# $ k (x,% ,&)dx = !"

"

# C(% ,&) exp{
i=1

k

'%ihi (x,&)} f (x,&)dx =1.

             (2) 

Testing for the goodness-of-fit of f (x;!)  is 
equivalent to testing H 0 :! = 0  against HA :! " 0 . 
Assuming that the partial derivatives of the log-
likelihood function together with their expectations 
exist, the derivation of the score test statistics using the 
maximum likelihood function for the observed random 
sample  X1, X2 ,!, Xn  has extensively been discussed 
by [9, 10, 12, 13]. 

The log-likelihood function is defined as  

log L = n logC(!;")+
j=1

n

#
i=1

k

#!ihi (x j ,")+
j=1

n

#log( f (x j ),").    (3) 

Given the orthonormal condition for ! = 0 ,  

E0[hr (X;!)hs (X;!)] = n"rs .          (4) 

The partial derivatives for the log-likelihood function 
(3) generates the score function U!  and the asymptotic 
covariance matrix !  of U!  as follows [9, 14]:  

 U! = (hr (X1;")+ hr (X2;")+!+ hr (Xk ;"))         (5) 

and  

! = I"" # I"$ I$$
#1I$" ,           (6) 

where  

!
!"r #$

$

% & k (x," ,')dx =
1

C(" ,')
!C(" ,')
!"r

#$

$

% & k (x," ,')dx + #$

$

% hr& k (x," ,')dx
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= ! logC(" ,#)
!"r

+ Er [hr ] = 0.  

Therefore  

! logC(" ,#)
!"r

= $Er [hr ].           (7) 

I!! = (I!! )rs = "Ek [
#2 log L
#!r#!s

] = n$rs ,          (8) 

I!" = (I!! )ru = #Ek [
$2 log L
$!r$"u

] = ncov0 (hr ,
$ log f
$"u

),        (9) 

I!! = (I"" )uv = #Ek [
$2 log L
$!u$!v

] = ncov0 (
$ log f
$!u

, $ log f
$!v

),   (10) 

and  

I!" = (I"" )ur = #Ek [
$2 log L
$!u$"r

] = ncov0 (
$ log f
$!u

,hr ).      (11) 

The score statistic therefore takes the form 
S(!̂) =U"

T #̂$1U" . Here the score function U! =U! (")  

has rth  element  (hr (X1;!)+ hr (X2;!)+!+ hr (Xn;!)) / n  
and !  is the asymptotic covariance matrix of U! . 

But  

! = I"" # I"$ I$$
#1I$" = nM ,         (12) 

where  

M = Ik ! cov0 (h,
" log f
#

){var0 (
" log f
"#

)}!1cov0 (
" log f
#

,h), (13) 

which essentially reduces to M = Ik  and the score test 

takes the form S(!̂0 ) . !̂0  is the maximum likelihood 
estimator of !  under the null hypothesis and  

S(!̂0 ) =U"
T (!̂0 )M̂

#1U" (!̂0 ) =
1
n j=1

p

$V̂j
2 ,       (14) 

where V̂j =
1
n i=1

n
! hr (xi ; "̂0 ) . The score statistic for 

testing H 0 :! = 0  against HA :! " 0  is denoted by 

Sk (!̂) . The choice of k  depends on !̂  through the 
model-dependent modified Bayes information criterion 
(modBIC) given by  

modBICk = Ŝk ! k log n,  

in which, relative to BIC, twice the maximized log-
likelihood has been replaced by the score statistic. We 
define k  as the smallest order that maximizes 
modBICk  i.e.  

 

k = min{k ! {1, 2,!,d}and modBICk "

modBICr , r =1, 2,!,d}.
 

This is also referred to as the selection rule [9]. 

Theorem 2.1 Under null hypothesis, as the sample 
size n becomes large ( n!" ),  S(!̂) ! "k

2 .  

Proof 

Consider a sequence of independent and identical 
orthonormal samples 

 hr (X1; !̂),hr (X2; !̂),!,hr (Xn; !̂) . By the orthonormality 
condition, 

1. h0 = 0 ,  

2. E0[hi (X; !̂)] = 0 ,  

3. E0[hi (X; !̂)hj (X; !̂)] = "ij =
1, i = j;
0, i # j.
$
%
&

  

Define Vi1  as  

Vi1 =
hi (X1; !̂)" nE0[hi (X1; !̂)]

n#11
.        (15) 

The variable Vi1  represents a standard score. Using 

the orthonormal conditions (i.e. E0[hi (X; !̂)] = 0  and 
!11=1), the variable reduces to  

Vi1 =
1
n
hi (X1; !̂).         (16) 

Applying the Central Limit Theorem, for each 
identical and independently distributed  Vi1,Vi2 ,!  the 
sum of the standard score  !i =Vi1 +Vi2 +!  tends to the 
standard normal distribution with mean 0 and variance 
1 as the size becomes sufficiently large. That is  

!i =
n"#
lim

i=1

n

$ 1
n
hi (X; %̂)" N(0,1).        (17) 

Since the sum of squares of standard normal 
variates is ! 2  distributed,  

 
S(!̂) =

i=1

k

"#i2 ! $k
2 .         (18) 
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The test statistic of the smooth test (
i=1

k
! "i

2 ) only 

depends on order k  and not the sample size n . The 
smooth test of goodness-of-fit therefore stands out as 
the preferred test compared to other empirical GOF 
procedures that are usually affected by the sample 
size. Another feature of the S(!̂)  statistic is that its 
components can be used to indicate alternative 
probability distribution that would fit a given dataset 
[15]. 

2.1.2. Smooth Test for the Weibull Distribution 

The two-parameter Weibull distribution is defined as  

f (x;!,") = !
"
( x
"
)!#1 exp{#( x

"
)!},        (19) 

where !  is the scale parameter and !  is the shape 
parameter. 

The orthonormal polynomials for the Weibull 
distribution for the first four orders are derived from the 
Extreme Value distribution because the distribution 
approaches Weibull as the sample size n  becomes 
large. 

The first five orthonormal polynomials are given as 
below [9, 16]:  

h0 = 1,  

h1 =
6
!
Z,  

h2 =
Z 2 ! 12"(3)Z

#
!
# 2

6
11
90

# 4 24
# 2

"(3)
,  

h3 =
2,121
20, 000

Z 3 !
309
625

Z 2 ! 1, 097
5, 000

Z + 5, 583
10, 000

,  

and  

h4 =
1
40

Z 4 !
3, 021
12, 500

Z 3 +
269
1, 000

Z 2 + 7, 769
10, 000

Z ! 22, 588
100, 000

,  

where Z = x !µ
" !#

, !  is the Euler’s constant 

approximated to be 0.57722, and !(3)  involves the !  
function approximated to be 1.20206. The score 
statistic is given as  

S(!̂,"̂) =
r=2

k

#V̂r2 = Ŝk$2 ,         (20) 

where V̂r =
1
n j=1

n
! hj .  The first four values of the score 

statistics for the two-parameter Weibull distribution are:  

S1 = 0,  

S2 = 0,  

S3 =
b1 !1.139547

20 / n
,  

and  

S4 =
b2 ! 7.55 b1 + 3.21

219.72 / n
,  

where  

b1 =
1
n j=1

n

![(X " X) / S]3,         (21) 

and  

b2 =
1
n j=1

n

!{(X " X) / S}4 .         (22) 

We reject the null hypothesis for large values of the 
test statistics. 

2.2. Empirical Goodness-of-fit Tests 

Since we are dealing with complete data, we 
employ other standard empirical goodness-of-fit 
methods. The conventional empirical goodness-of-fit 
tests considered here are the Anderson-Darling ( A2 ), 
the Kolmogorov-Smirnov ( Dn ) and the Cramer-von-
Mises (!2 ) tests. 

These tests are based on the departure between 
the empirical distribution function, Fn, and theoretical 
distribution function, Fn, of the sampled data. The null 
hypothesis is rejected when the difference is too large, 
which would suggest that the sampled data does not 
come from the underlying distribution. For the case of a 
Weibull distribution, we consider the Extreme Value 
Distribution [17] and therefore apply the empirical 
cumulative distribution function of ln( Xi ) instead of Xi  
[12, 16]. A measure of the difference from the empirical 
cumulative distribution function of ln( Xi ) is computed 
against the estimated theoretical cumulative distribution 
function using the maximum likelihood method. That is, 

Fn (x) = F (x; ln !̂n ,
1
"̂
) . The goodness-of-fit test statistics 

are defined as follows. 
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Anderson-Darling (AD) statistic:  

A2 = !n + 1
n i=1

n

"[(2i !1)! 2n) ln(1!Ûi
* )! (2i !1) ln(Ûi

* )].  (23) 

One-sample Kolmogorov-Smirnov (KS) statistic:  

Dn = n sup |Fn (x)!  F
^
0 (x) |        (24) 

= n max[max{ i
n
!Ui

*},max{Ui
* !

i !1
n
}].       (25) 

Cramer-von Mises (CM) statistic:  

!2 =
i=1

n

"(Ûi
* #
2i #1
2n

)2 + 1
12n

,        (26) 

where  Ûi
* =  F

^
0 (ln Xi ) . 

2.3. Simulation Studies 

Simulations were conducted to compare the critical 
values and power of the empirical goodness-of-fit tests 
(Anderson-Darling ( A2 ), Kolmogorov-Smirnov test 
( Dn ) and Cramer-von-Mises (!2 )) and the smooth test. 
All computations were performed using the R package 
EWGoF . We generated samples from the two-
parameter Weibull distribution, with scale and shape 
parameters set at 30 and 6, respectively. The number 
of Monte Carlo runs in each case was set at 1000. 
Samples of size n ! {5, 20, 50,100, 500,1000}  were 
generated and estimates of rejection probabilities 
computed. We compared the performance of the GOF 
tests at the 1%, 5% and 10% significance levels. Power 
was obtained as the percentage of rejection of the null 
hypothesis. 

Table 1: The Power of Goodness-of-Fit Tests for the Simple Hypothesis H 0  (the Weibull Distribution with Parameters: 
Scale=30 and Shape=6) Versus the Hypothesis H1 :  a Class of the Weibull Distribution (for the Smooth Test) 
and Not Weibull (for EDF Tests) 

 The power of Smooth Test (order 3)  

!  n=5  n=20 n=50 n=100 n=200 n=500 n=1,000 

.01  0.015  0.006  0.007  0.006 0.006 0.007  0.008 

.05 0.053  0.041  0.046  0.035 0.039 0.040 0.047 

.1 0.103  0.103  0.090  0.089 0.085 0.091 0.088 

The power of Smooth Test (order 4)  

!  n=5  n=20 n=50 n=100 n=200 n=500 n=1,000 

.01 0.016  0.007  0.008  0.008 0.010 0.008  0.009 

.05 0.055  0.042  0.049  0.043 0.042 0.042  0.051 

.1 0.105  0.104  0.096  0.087 0.088 0.101  0.090 

The power of Kolmogorov-Smirnov Test  

!  n=5  n=20 n=50 n=100 n=200 n=500 n=1,000 

.01  0.014  0.010  0.012  0.012 0.012 0.012  0.012 

.05  0.049  0.055  0.049  0.056 0.060 0.065  0.069 

.1  0.107  0.106  0.097  0.098 0.098 0.113  0.108 

The power of Anderson-Darling Test  

!  n=5  n=20 n=50 n=100 n=200 n=500 n=1,000 

.01  0.013  0.010  0.010  0.011 0.011 0.013  0.013 

.05  0.047  0.052  0.048  0.055 0.055 0.060 0.066 

.1  0.113  0.122  0.095  0.104 0.115 0.118  0.120 

The power of Cramer-Von Mises Test  

!  n=5  n=20 n=50 n=100 n=200 n=500 n=1,000 

.01  0.014  0.013  0.011  0.011 0.012 0.013  0.013 

.05  0.050  0.055  0.050  0.053 0.047 0.060  0.067 

.1  0.112  0.117  0.096  0.099 0.107 0.116  0.123 



A Smooth Test of Goodness-of-Fit for the Weibull Distribution International Journal of Statistics in Medical Research, 2017, Vol. 6, No. 2      73 

Table 1 shows the power of the smooth tests of 
order 3 and order 4 for the Weibull distribution against 
the three common empirical distribution function tests 
(KS, CVM and AD). 

Results show that the performance of all the tests is 
strongly linked to the shape of the simulated 
distribution. The empirical tests are biased in situations 
where !̂  is fairly minimal (close to 1), whereas when !̂  
is sufficiently large (i.e. !̂ > 30 ), they fail to detect the 
right distribution (Weibull). For smaller samples, the 
smooth tests are generally more powerful than 
empirical GOF tests. The components of the smooth 
test tend to be unbiased when ! = 5 , ! = 35  for large 
samples (i.e. n ! 500 ). 

The calculation of the asymptotic distributions of the 
EDF statistics is as follows: 

!n = (Fn (z)" z) / n , where Fn (z)  is the EDF of the 
set of zi  and tends to normality !(z)  as n!" .  

3. APPLICATION TO LFTU DATA 

3.1. Data Description 

We conducted a retrospective data analysis for all 
patients who were initiated ART at two public hospitals 
in Nairobi, Kenya (Makadara Health Center and 
Lungalunga Health Center) between October 1, 2011 
and December 31, 2014. Considering that ART 
services were initiated in Kenya in 2003 across all 
public hospitals, we specifically extracted data from 
2011 because by then all the public systems, 
processes and structures for defaulter tracing were 
expected to have picked up effectively. Our event of 
interest was time to first LTFU. The clinical setting 
considered here is routine regular Comprehensive 
Care Center (CCC) in typical government hospitals. 
Data is collected routinely whenever patients come for 
clinical check-up or drug refill. Since time to first LTFU 
was the event of interest, other exits (i.e. transfer outs 
and deaths) were not considered in the analysis. 
Patients who were actively receiving ART services and 
did not experience the event were also removed. Only 
patients who were observed from the time of ART 
initiation between November 1, 2011 and December 
31, 2014, were included in the analysis. The time 
between ART initiation to first LTFU was given in 
months. Time to first LTFU was defined as missing 
routine clinical appointment within 48 hours from the 
scheduled appointment date and not identified as 
"active on ART", "dead", or "transferred-out". The time 
to first LTFU was calculated as the time interval 

between the dates of ART initiation and first drop out, 
as recorded by the ART database, IQCare. The cohort 
was stratified by gender (male and female), WHO 
Staging (WHO Stage 1, WHO Stage 2, WHO Stage 3 
and WHO Stage 4) considered at the time of ART 
initiation and age groups (<10 years, 10 -14years, 15-
24 years and 25+ years). Data was retrieved from a 
Health Information System(HIS) called IQCare  without 
patients identifiers. Only variables of interest were 
pulled out to an Excel spreadsheet. Data was stored in 
Excel and thereafter analysed in R . Approval was 
obtained from Pathfinder International. 

3.2. Motivation for Analysis of HIV Retention Data 

Patients receiving ART can experience LTFU, which 
may result in discontinuation of treatment, drug toxicity, 
treatment failure due to poor adherence and drug 
resistance. This can result in an increased risk of death 
of up to 40% of ART patients in sub-Saharan Africa 
[18]. Studies have shown that LTFU has negative 
impact on immunological benefit of ART and increases 
AIDS-related morbidity, mortality, and hospitalizations 
[18]. Individuals who miss visits in the first year of 
treatment have a higher mortality rate [2]. Stephen and 
co-authors [4] showed that retention of patients who 
are on ART treatment remains stable after 12 months 
of ART initiation, with loss to follow-up being the main 
cause of attrition [3]. Previous studies have also 
illustrated associations between frequent LTFU and 
more severe opportunistic illnesses [5]. Analysis of 
LTFU have also been used in HIV care to monitor and 
improve programme effectiveness, using patient 
retention as a measure of quality of care [19]. 

The main objective in the analysis of LTFU data 
was to check retention of patients in care. 
Programmatically, this is considered an important 
determinant of successful ART long-term outcomes. 
Patients who experience LFTU essentially get enrolled 
in other facilities with different regimen combinations, 
which is likely to compromise their immune system. 
Retaining patients for long allows provision of long term 
Highly Active Antiretroviral Therapy (HAART), tracking 
WHO staging, tracking immunosuppression profiles 
and evaluation of emergence of medication toxicities. 
In resource-limited settings, it is common to find 
patients dropping out of ART treatment. Due to 
significant drop-outs, patients may not realize the 
benefits of ART if they are LTFU. More innovation is 
therefore required for further ART scale-up and 
improve retention in care. 
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3.3. Modelling LTFU 

The focus is on time to first LTFU, and data in this 
perspective is primary and has not been published or 
utilised in any publication. This is a typical Kenyan 
case, however, different types of LTFU are expected to 
reflect the general evolution of HIV programming. LTFU 
is expected to be a stable event that does not evolve 
much with time, at least in adults. However, in young 
children, the risk of the event is not likely. 
Heterogeneity is to be expected as it is well-known that 
there are various degrees of LTFU. The fact that LTFU 
is considered as a stable event in any HIV 
programming suggests that at least in adults there is no 
event-dependence and no time-dependence. The start 
time is the time of enrolment on ART. Patients are 
expected to come for drug refill and routine check-up. 
During the observation period, a patient can remain 
active (i.e. does not miss regular appointments), die, 
transferred-out or LTFU. 

3.4. Cohort Description 

A total of 4,981 patients were initiated ART between 
November 1, 2011 and December 31, 2014 in two 
public hospitals. Out of those initiated on ART, 854 
patients experienced LFTU and were therefore 
included in the analysis. The table below shows the 
patients’ status.  

Table 2: Patients’ Status 

 Status   Frequency   Percentage 

Active on ART   2,392   48 

Transfer Out   1,405  28  

Dead   330   7  

First Lost-to-follow up  854   17  

Total  4,981   100  

The median age of those lost to follow-up (n = 854)  
was 34.2 years (IQR 30.4 ! 38.4 ), and 59% (n=509) of 
them were female. Forty five percent of patients had 
advanced/severe immunodeficiency at the start of 
treatment, and 20% had WHO clinical stage 3 or 4 
disease. The mean CD4 count was 449 (SD 9.3) at 
baseline. Characteristics at baseline during ART 
initiation is given below.  

3.4.1. Graphical Assessment 

 We obtained probability plots to assess the validity 
of statistical distributions [20] to time to first LTFU data 
[21]. Graphically, the Weibull distribution seems to be 
close to the P-P plot line compared to the Gamma and 
log-normal distribution. See Figures 1, 2, 3 and 4 
below.  

 
Figure 1: Test for Theoretical Distributions. The Weibull 
Distribution is closer to the distribution. 

Table 3: Patients Baseline Characteristics at ART Initiation 

  Patients Characteristics  <15 years (Children) (%)  15-24 years (Adolescents) (%) 25+ years (Adults) (%) 

Gender (N=854)  87(4%)  458(52%) 309(34%) 

Male (N=345)  45(5%)  185(28%)  115(68%)  

Female (N=509)  42(8%) 273(54%) 194(38%)  

WHO Staging (N=854 ) 60(7%)   258(30%)  536(63%) 

WHO Stage I(N=376)  18(5%) 112 (30%) 216(65%)  

WHO Stage II(N=308)  29(9%)  87(28%)  192(62%) 

WHO Stage III(N=136) 8 (6%)  41(30%) 87 (87%) 

WHO Stage IV(N=34)  5(15%)  18 (53%) 81 (81%) 
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Figure 2: Test for Theoretical Distributions. Here, the data 
appears to be more coherent with Weibull distribution. 

 

 
Figure 3: Test for Theoretical Distributions. The PP-plot 
indicates that the Weibull distribution is the ideal distribution. 

3.4.2. Model Fitting 

In order to assess the model fit for the Weibull 
distribution, we obtained the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion 
(BIC). We also fitted the log-normal and the Gamma 
distributions to the same data. The AIC and BIC for the 
Weibull distribution (AIC = 5,276.6, BIC = 5,286.1) are 
lower than that of the Gamma distribution (AIC = 
5,777.8, BIC = 5,787.3) and the log-normal (AIC = 

6,009.4, BIC = 6,018.9) distributions. Therefore the 
model that fits the data best is the Weibull distribution.  

3.5. Tests Performance 

The smooth test generated here is constructed 
using orthonormal functions as opposed to quadratic 
forms [12]. For the smooth test, the score statistics of 
order 3 and order 4 are given. The hypothesis 
regarding the distributional form is rejected by the three 
empirical distribution tests if their respective test 
statistic, Dn , !2  and An  are greater than the critical 
value obtained from their tabulated values. Also their p-
values are considerably lower than the significance 
level of 0.01. These tests ( Dn , !2  and An ) are more 
powerful whenever the sample size is not large. In our 
situation, however, with a sample size of size of 854, 
the tests are misleading. The smooth test, on the other 
hand, rejects the hypothesis when considering upto 
order four and the p-value is quite large compared with 
the Dn , !2  and An  tests.  

3.6. Application Results 

To demonstrate the importance of the smooth test 
of goodness-of-fit in a real life application, we 
examined an HIV retention data and fit a two parameter 
Weibull distribution to LFTU data. We assessed the fit 
using smooth tests of order 3 and 4 and then compared 
the results with the three empirical GOF tests. Other 
exits from the program (i.e. death, transfer-outs and 
active-on-ART) were removed. 

 
Figure 4: Test for Theoretical Distributions. The QQ-plot 
shows the Weibull distribution is much coherent with the 
data. 
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Essentially, we tested the null hypothesis that the 
Weibull distribution is the underlying distribution of time 
to first LTFU. The maximum likelihood estimates of the 
scale and shape parameters under the Weibull model 
were ! = 30.145  and ! = 6.786 , respectively, and the 
resulting values of the test statistics were 
S3 = 1.2529, p = 0.308)  and S4 = 1.66308, p = 0.409) . 
Hence the Weibull null hypothesis could not be rejected 
when using smooth tests, suggesting that the Weibull 
model is the best model for the duration between the 
start of ART and first LTFU. In comparison, the three 
empirical GOF tests rejected the null hypothesis. The 
one-sample Kolmogorov-Smirnov test 
( Dn = 0.055232, p = 0.01092 ), Cramer-von Mises test 
(!2 = 1.0238, p = 7.947e"12 ) and the Anderson-Darling 
test ( An =1.9603, p = 0.09659  indicated significance 
deviations from the null distribution. This suggests that 
the smooth test is the most reliable test compared with 
the rest whenever the sample size is sufficiently large. 

4. DISCUSSION 

We have considered an extension of the smooth 
tests to non-censored data. For the application to non-
censored data, we provided the orthonormal structure 
so that the smooth tests of order k =3 and k =4 are 
computed. We then evaluated the goodness-of-fit for 
the two-parameter Weibull distribution fitted on HIV 
retention data. The empirical GOF tests considered 
here were powerful whenever the sample size is small. 
This is consistent with [9, 14, 15, 22]. Our contribution 
in this article is unique in the sense that we are 

considering LTFU data generated from a typical clinical 
setting. 

Lemeshko [23] investigated the gamma distribution 
with its parameters chosen so that it is closest to the 
Weibull distribution. The power test was used to asses 
both simple and composite hypotheses against the 
simple alternative. Although he found the Kolmogorov-
Smirnov, Cramer-von-Mises and Anderson - Darling 
type nonparametric tests to be most powerful 
compared with the case when the estimates are found 
by minimizing the corresponding statistics, the 
comparison did not take into consideration the smooth 
tests. 

Sururu [24] also did power comparisons in a 
simulation study of goodness-of-fit tests but the smooth 
test was not included in his assessment. Few authors 
have incorporated smooth tests when assessing the 
power of goodness-of-fit test. In particular, Ledwina et 
al. [22] showed through simulations that the data-driven 
version of Neyman’s smooth tests performs very well 
over a wide range of alternatives and is competitive 
with other data-driven procedures. They also showed 
that the data driven smooth tests are consistent against 
essentially all alternatives [22]. Rayner and Best [15] 
also showed that Neyman smooth test for location-
scale families are flexible and can be chosen to 
improve detection of particular alternatives. These tests 
were shown to perform well against its competitors. 
This assessment is also consistent with our simulation 
results. 

Table 4: Comparison of the AIC and BIC for the Weibull, Gamma and Lognormal Distributions. All the Parameter 
Estimates were Obtained by the MLE Method 

Weibull  Gamma  Log-normal  
Param 

 shape=6.786; scale=30.145   shape=14.958; rate=0.532   meanlog*=3.303; sdlog**=0.299 

AIC   5,276.633   5,777.821   6,009.374  

BIC   5,286.133   5,787.321   6,018.874 

*mean of the natural logarithm of LTFU, **standard deviation of the natural logarithm of LTFU. 
 

Table 5: Tests Comparison (N = 864) 

 Test type  Test Statistics   p-value  

One-sample Kolmogorov-Smirnov test  Dn  = 0.055232   0.01092 

Cramer-von Mises test  !2 = 1.0238   7.947e-12  

Anderson-Darling test  An  = 1.9603   0.09659 

S3   S = 1.2529  0.308 

S4    S = 0.66308 0.409 
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The smooth test approach fails to reject the null 
hypothesis when considering up to order four. The p -
value is quite large compared with the EDF tests and is 
therefore more appropriate when compared to other 
alternatives for large sample sizes. The smooth GOF 
test also produced the best estimate of the distribution 
of the data (Weibull distribution), which will ultimately 
result in a better estimate of the hazard function for 
time to LTFU for predicting hazard rates. The Weibull 
distribution is the best choice from the density plots and 
graphs and is validated by smooth GOF test. It is 
important to carefully choose the best GOF tests in 
order to make the correct inference about the 
underlying distribution.We have shown that the smooth 
test is superior and can be used to analyze time to 
LTFU data in order to determine the underlying 
distribution. These results agree with those of [25], who 
showed by simulation that the test for normality based 
on smooth test has much greater power than the 
generalized ! 2  test and the Kolmogorov- Smirnov test. 
Kang [25] also demonstrated that the test performs 
generally as well as the Shapiro-Wilk, skewness, and 
kurtosis tests for a wide range of alternatives. 

Several studies have shown that LTFU poses 
challenges to the successful implementation of ART 
programs [18]. Studies have shown that patients who 
discontinued ART developed a rapid increase in viral 
load and depletion of CD4 cells, putting them at risk of 
opportunistic infections and early death. Therefore, 
understanding the underlying pattern and distribution of 
LTFU is necessary to making sound interventions that 
maintain adherence to ART treatment. In this study, the 
two parameter Weibull distribution fits the time to first 
LTFU well. Several authors [3, 5, 19, 26-28] have 
shown that the main reason in rising cases of LTFU to 
be poor patient’s defaulter tracing in resource-limited 
settings. This is likely to compromise positive outcomes 
of ART in a large scale HIV care center. Pattern of 
LFTU are therefore crucial in developing practical 
programmatic interventions. 

5. CONCLUSION 

Loss to follow-up (LTFU) is an important problem 
both for the care of individuals and the evaluation of 
anti-retroviral treatment (ART) programmes in low- and 
middle-income countries. But the evaluation of ART 
programmes has been difficult because many patients 
are lost to follow-up [29]. Thus, it is important to model 
LTFU so as to better understand the factors influencing 
LTFU. Most of these models are based on the two-
parameter Weibull distribution (e.g. [29, 30]) and are 

often selected without a prior test of goodness-of-fit of 
this distribution. Our study, however, evaluated the 
performance of the smooth test against that of the 
empirical goodness-of-fits tests for the Weibull 
distribution and validated the results using loss to 
follow-up data from HIV retention care. 

The smooth goodness-of-fit approach performed 
better than the empirical GOF tests when fitting a 
parametric distribution to time-to-event complete data. 
We described how to fit a two parameter Weibull 
distribution to an HIV retention data and assess the fit 
using goodness-of-fit procedures. Our results highlight 
the need to better understand LTFU of patients initiated 
on ART. Estimation of nuisance parameters can be 
performed without changing the test statistics and since 
the tests rely on maximum likelihood techniques, they 
asymptotically meet the conditions of the Neyman-
Pearson lemma against any simple alternative 
hypothesis. Future studies should address fitting 
hazard functions based on the Weibull distribution to 
censored data in order to determine risks to LTFU in 
HIV care. 
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