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Abstract: In a two-stage dose-response meta-analysis a common functional relationship is applied to each study and an 
overall curve is obtained by combining study-specific dose-response coefficients. Possible limitations are: 1) a common 
dose-response model may have a poor fit in some of the studies; 2) combining dose-response coefficients discard 
information about study-specific exposure range. A pointwise approach for meta-analysis may overcome those 
limitations by combining predicted relative risks for a fine grid of exposure values based on potentially different dose-
response models.  

We described how to flexibly model the dose-response association in a single study using fractional polynomials and 
spline, and how to present the combined results from study-specific analyses. 

The strategy is illustrated using aggregated data derived from the Surveillance, Epidemiology, and End Results program, 
with results compared to the corresponding analysis based on individual data.  

Another example on milk consumption and all-cause mortality is used to show the advantages of the pointwise approach 
regarding flexibility in the dose-response analyses, limitations of extrapolations, and informativeness in presenting 
pooled results. 

Application of the proposed strategy may improve dose-response meta-analysis of observational studies in case of 
particularly heterogeneous exposure distributions. 
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INTRODUCTION 

Dose-response meta-analysis is an increasingly 
popular statistical technique for combining and 
contrasting the association between a quantitative 
exposure on a health outcome. The number of 
quantitative reviews including an evaluation of the 
dose-response relation increased from 6 in 2002 to 158 
in 2017. The traditional approach consists of a two-
stage procedure in which the dose-response 
coefficients are estimated within each study (first stage) 
and then combined across studies using meta-analysis 
(second stage) [1, 2]. Alternatively, a one stage 
approach can be based on a single mixed-effect model 
for meta-analysis, which has been shown to be 
equivalent to the two-stage approach [3, 4]. 

Both approaches are flexible tools for modeling the 
dose-response relation under investigation. However, a 
feature of these models is that the same functional 
form (e.g. linear, quadratic) is assumed to equally apply 
to all the studies [5]. This may have important 
consequences if the estimated dose-response relation 
has a good fit for only a subset of the studies or if the 
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dose-response model cannot be uniformly specified 
across studies. The former case may occur, for 
instance, in a fractional polynomial model where the 
same power terms are chosen for all the studies [6]. 
The latter, instead, could happen in a spline model 
where equally locating the knots across the studies 
may be difficult because the exposure may vary 
considerably across studies [7].  

The pooled dose-response curve is typically 
presented in terms of predicted effects, here referred to 
as relative risks, for a range of exposure values. All the 
studies participate to the pooled predictions regardless 
of their observed exposure distribution. This may be 
have an impact in meta-analyses where part of the 
studies considered only a limited exposure range. The 
pooled relative risk for high exposure values will also 
be based on those extrapolations. 

In 2011 Sauerbrei and Royston [8] proposed a 
flexible strategy to combine dose-response data for 
individual patient data (IPD) meta-analysis. The 
strategy consists of predicting the study-specific 
relative risks for selected exposure levels in each study 
using different dose-response models. The predicted 
relative risks are then combined pointwise by a 
weighted average to obtain a summary estimate of the 
dose-response relation. The described approach has 
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the potential to overcome the aforementioned 
limitations: different dose-response models can be 
fitted within each study while predicted relative risks 
can be limited in each study to the observed exposure 
range and then combined. 

Aim of this is paper is to evaluate whether and to 
what extent the pointwise approach can be used for 
meta-analysis of aggregated patient data (APD). In 
Section 2 we describe what are the steps of the 
pointwise analysis for dose-response meta-analysis. 
The methodology applied to either individual or 
aggregated patient data in the Surveillance, 
Epidemiology, and End Results (SEER) program is 
presented in Section 3. We also consider potential 
advantages as compared to the two-stage approach by 
analyzing aggregated data on the association between 
milk consumption and all-cause mortality. We conclude 
with the discussion and final remarks in Section 4. 

METHODS 

Aggregated dose-response data typically consist of 
a series of relative risks for a set of exposure 
comparisons. One category, generally the unexposed 
one, serves as referent [2]. We first present how to 
independently estimate the curves and predict relative 
risks in each study based on aggregated data using 
both fractional polynomial and spline models. The 
predicted relative risks are then combined pointwisely 
across studies by meta-analysis. 

Estimation of Study-Specific Curves 

Separately for each i-th study, i = 1, …, I, the dose-
response model can be expressed as 

 
E yi xi!" #$ = %ij fij (xi ) =j=1

p
& %i1 fi1(xi )+!+%ip fipi (xi )        (1) 

where yi  and xi  are, respectively, the vectors of non-
referent log relative risks and dose levels in the i-th 
study. The dose-response models are typically 
expressed as a linear combination of p transformations 
of the dose. Given the limited number of non-referent 
dose levels, p < 3 transformations are often adopted. 
The reported relative risks are not independent since 
they share a common reference group. Greenland and 
Longnecker described how to account for the 
correlations and efficiently estimate a trend from such 
aggregated data by using weighted least square 
estimation [9].  

Several alternatives can be chosen to model the 
dose-response relation under investigation. Fractional 

polynomials and splines models are two common 
choices, since many curves can be estimated by using 
a limited number of dose transformations (p = 2). 

A fractional polynomial model is defined as 

E yi xi!" #$ =%i1xi
pi1 +%i2xi

pi2          (2) 

for each pi1  and pi2 , combination of predefined values 
{-2,-1, -0.5, 0, 0.5, 1, 2, 3}. The fractional polynomial 
with the lowest value of the Akaike's Information 
Criterion is generally chosen as the best in the 
predefined set of models [10]. 

Splines consist of piecewise polynomials jointly 
connected over sequentially intervals defined by knots. 
Restricted cubic splines, in particular, restrict the ends 
of the curve to be linear [11]. By using three knots 
(ki1, ki2 , ki3 ) , two dose transformations are required in 
Equation 1 
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where the “+” notation ( u+ = u  if u+ > 0  and u+ = 0  
otherwise) has been used. 

In both Equation 2 and 3 we used the subscript i for 
the power terms p and for the knots k to emphasize 
that they can vary across the study. For instance, the 
best fitting fractional polynomials may have a different 
combination of power terms in two studies, as well as 
different knots in a spline model. This is not possible in 
the two-stage approach since the ! i  needs to refer to 
(exactly the) same dose transformations in order to be 
combined by meta-analysis. 

Prediction of Study-Specific Log Relative Risks 

Once the study-specific curves have been chosen, 
the predicted log relative risks, ŷi , and the 
corresponding variances, v̂i , can be calculated for a 
fine grid of exposure values  !x  using a suitable value 

 !x0  as referent, 

 

ŷi = E ŷi !x!" #$ = %̂ijj=1

p
& fij ( !x)' fij ( !x0 )!" #$

v̂i =Var ŷi !x!" #$ = fij ( !x)' fij ( !x0 )( )2 Var(%̂ ij )
        (4) 

with study-specific predictions that can be limited to the 
observed exposure range with the clear advantage of 
limiting the impact of extrapolation. 
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Averaging Dose-Response Predictions 

A pointwise strategy derives a pooled curve by 
combining the study-specific predicted log relative risks 
instead of combining dose-response coefficients. 
Differently from the !̂ i  that are specific to the chosen 
dose transformations, ŷi  refer to  !x  dose levels that are 
common for all the studies, and thus can be properly 
combined using standard methodology for meta-
analysis. 

Assuming a random-effects model, the pooled 
predicted log relative risks ŷ  can be estimated as a 
pointwise weighted average 

ŷ = ŷiwi
T

wi
T

i=1

I
!i=1

I
!           (5) 

where the weights are defined as wi = !̂i + "
2  with ! 2  

being the between-studies heterogeneity [12]. 

The pooled dose-response curve can be graphically 
presented as a smooth function of the pooled relative 
risks for selected exposure values. Similarly, a variety 
of useful results from the meta-analytic models, such 
as ! 2  estimates, values of wi  and measures of 
heterogeneity, can also be presented pointwisely either 
in a graphical or tabular format. 

RESULTS 

We present two applications of the pointwise 
approach summarizing the relationships between 1) 
age and breast cancer survival, and 2) milk 
consumption and all-cause mortality. 

Age and Breast Cancer Survival 

The SEER program provides individual data about 
cancer statistics from several population-based 
registries in the United States (http://seer.cancer.gov), 
here treated as independent studies. We are 
interested in pooling the evidence regarding age as 
prognostic factor for breast cancer survival, using nine 
of the SEER registries (5719 cases and 75,249 
participants). 

Separately for each study we first derived 
aggregated data by categorizing age in five categories 
with 47, 57, 65, 73 years as cut-points (i.e. the 20th, 
40th, 60th, and 80th percentiles of the overall age 
distribution). We thus modeled age by including 4 
dummy variables using (57, 65] as reference category 
and adjusting for major confounding variables in 9 
separate Cox models, one for each registry. More 
information about the data, variables considered, and 
selection criteria can be found in the article by Tai et al. 
[13]. A snapshot of the data obtained for the first two 
registries is presented in Table 1.  

We then used fractional polynomials as in Equation 
2 to estimate the study-specific curves from the 
obtained aggregated data. The Akaike's Information 
Criterion was used to choose, separately in each study, 
the best fitting model. The corresponding analysis were 
also performed on individual patient data. The optimal 
set of power transformations based on APD and IPD 
are reported in Web Table 1. In the following step we 
computed the predicted (log) hazard ratios for a fine 
grid of age values from 30 to 90 years, using 60 as 

Table 1: Aggregated dose-response data for two registries of the Surveillance, Epidemiology, and End Results 
Program obtained by modeling age as categorical variable. The log hazard ratios (logHR) and corresponding 
standard error are calculated using the age category [57,65) as referent 

Registry Age Category Median Age Cases N logHR se 

[57,65] 61 156 2341 ref - 

[20,48] 42 261 2613 0.101 0.102 

[48,57] 52 171 2621 -0.005 0.111 

[65,73] 68 178 2587 0.073 0.110 

San Francisco-Oakland 

[73,101] 77 176 2528 0.161 0.110 

[57,65] 61 139 1967 ref - 

[20,48] 42 179 2028 -0.039 0.114 

[48,57] 52 125 2016 -0.114 0.123 

[65,73] 68 150 2179 -0.021 0.118 

Connecticut 

[73,101] 77 173 2269 0.165 0.114 
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reference value (Equation 4). The predictions were 
then combined through random-effects meta-analysis. 

A graphical comparison of the pooled hazard ratios 
from the two strategies is presented in Figure 1. The 
study-specific curves based on APD predicted more 
heterogeneous hazard ratios at the extremes of the 
age distribution. The pooled dose-response curves, 
however, provided comparable findings, suggesting a 
U-shaped relation with a minimum at 50 years of age. 
The hazard ratios of breast cancer were 1.03 (95% CI 
0.98, 1.09) at 40 years and 1.25 (95% CI 1.17, 1.32) at 
80 years in the IPD analysis. The corresponding 
estimates were 1.05 (95% CI 0.96, 1.14) and 1.21 
(95% CI 1.11, 1.32) in the APD analysis.  

Milk and all-Cause Mortality 

Let's consider a meta-analysis of APD between milk 
consumption (ml/day) and mortality based on 14 
prospective studies including 70,743 deaths occurred 
among 367,505 participants [14].  

The exposure range was considerably 
heterogeneous across studies. Table 2 shows how the 
assigned exposure scores for milk consumption 
differed in terms of number of values considered, range 
definition, and choice of referent.  

In case of heterogeneous exposure distribution, 
choosing common knots is difficult. For instance, the 3 
selected knots at the 10th, 50th, and 90th percentiles of 
the overall distribution (0, 149, and 500 ml/day) were in 
the exposure range of only 2 studies. As a 
consequence, problems in the estimation may occur 
(singularity in the design matrix) and/or fictitious non-
linear curves may be observed in some of the study-
specific analyses. 

In the pointwise strategy, instead, knots location can 
be defined within the singles studies, for example 
selecting the minimum, median, and maximum of the 
assigned dose levels (Table 2). This avoids problems 
in the estimation algorithm and has the potential of 
improving the fit in the individual analyses.  

 
Figure 1: Graphical comparison between pointwise meta-analysis on the relation between age and relative hazard of breast 
cancer survival based on individual (left panel) and aggregated (right panel) patient data. The dashed lines represent study-
specific best fractional polynomials of order two. The thick black lines represent the pooled dose-response associations. The 
predicted hazard ratios are presented on the log scale with 60 years serving as referent. 

Table 2: Descriptive statistics of the assigned exposure scores for the 14 studies included in the dose-response 
meta-analysis on milk consumption (ml/day) and all-cause mortality 

 Study 

Statistic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Referent 140 94 0 0 109 0 0 147 12 0 100 100 0 0 

No. Categories 2 2 3 3 2 4 4 2 3 3 3 3 4 4 

Min 140 94 0 0 109 0 0 147 12 0 100 100 0 0 

Median 280 473 282 150 250 52 90 294 154 192 400 400 31 31 

Max 420 1041 715 300 500 238 342 441 366 369 700 700 150 150 
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Estimation of pooled hazard ratios may also be 
cumbersome when pooling dose-response coefficients. 
Let us consider for example two of the studies included 
in the analysis, presented graphically in the left panel of 
Figure 2. When the two exposure distributions were 
overlapping, saying milk consumption below 350 
ml/day, the two approaches provided similar inference 
(right panel of Figure 2). Above 350 ml/day the two-
stage approach suggests an upward trend mainly 
driven by extrapolating the results of Dik 2014, 
whereas the pointwise approach indicates a downward 
trend based on the only study available (Ness, 2001). 

We now analyze the dose-response associations 
arising from all the 14 included studies. In each study, 
we modeled milk consumption by using restricted cubic 
splines, where the knots were defined separately in 
each study. The advantage of the pointwise approach 
is to visualize and distinguish predicted hazard ratios 
based on observed data and model-based 
extrapolations (Figure 3). Figure 4 plots the pooled 
hazard ratios and their corresponding confidence 
intervals comparing the two strategies. It is interesting 
to note the narrower confidence intervals for the two-
stage approach's estimates in the upper tail of the 
exposure distribution (above 500 ml/day) where only 4 
out of 14 (30%) studies were available. The pooled 
hazard ratio of all-cause mortality associated with 700 
relative to 150 ml/day was 1.30 (95% CI 0.83, 2.06) for 
the pointwise, and 1.17 (95% CI 0.98 1.41) for the two-
stage approach.  

The pointwise approach allows the presentation of 
statistics from the meta-analytical models as a function 
of the exposure (Figure 5). Estimates of the between-
study heterogeneity, ! 2 , were close to zero for milk 

consumption less than 300 ml/day and progressively 
increased for higher values (panel (a)). The weights 

 
Figure 2: Comparison between pointwise (solid line) and two-stage approach (dashed line) based on two studies on the 
association between milk consumption and all-cause mortality (right panel). The observed data are represented in the spaghetti 
plot (left panel). 

 
Figure 3: Study-specific curves on the association between 
milk consumption (ml/day) and all-cause mortality. Dashed 
lines correspond to extrapolation. The predicted hazard ratios 
are presented on the log scale with 150 ml/day serving as 
referent. 

 

 
Figure 4: Comparison between pointwise and two-stage 
predicted hazard ratios of all-cause mortality for selected 
values of milk consumption. The step function at the bottom 
represents the number of studies participating to prediction in 
the pointwise meta-analysis. The predicted hazard ratios are 
presented on the log scale with 150 ml/day serving as 
referent. 
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used in the random-effects meta-analysis suggested a 
certain degree of homogeneity, with the exception for 
milk consumption of 100 ml/day, where two studies 
counted for the 70% of the total weight in the pooled 
hazard ratio (panel (b)). 

Measures of heterogeneity can also be presented 
graphically. The p-value for the Q statistic is often used 
to test presence of statistical heterogeneity. The Q test 
detected significant heterogeneity for milk consumption 
greater than 100 ml/day (panel (c)). The I 2  confirmed 
a substantial degrees of heterogeneity for levels of milk 
consumption higher than 100 ml/day.  

DISCUSSION 

In this paper we presented a pointwise approach 
described for dose-response meta-analysis of 
aggregated data. The strategy consists in combining 
predicted relative risks arising from different study-
specific dose-response models. We described how to 
flexibly model the dose-response associations using 
either fractional polynomials or restricted cubic splines. 
The pointwise approach allows a better fit of the data 
within each study and prevent overconfidence in the 
pooled estimates by taking into account the varying 
number of data points along the range of the exposure 
distribution.  

Our empirical evaluation of the SEER program 
based on aggregated data provided very similar results 

to those based on individual data, which are often 
considered as the gold standard of systematic review 
[15]. Collecting and analyzing summarized data has 
several benefits in terms of reducing time, cost, and 
number of people involved in pooling the available 
evidence on a certain exposure-disease association 
[16]. An alternative explanation for the good agreement 
may be the fact that individual registries data were 
uniformly collected, organized, and documented [17]. 
Published studies, however, can be expected to be 
more heterogeneous in terms of study populations, 
available potential confounders, exposure, and 
outcome definitions [18]. Analysis of aggregated data is 
inevitably sensitive to how individual data have been 
summarized. An evaluation of the extent of the 
heterogeneity of the study-specific curves should be 
performed before presenting a pooled dose-response 
association [19]. In the practical examples we 
addressed this problem by both visually inspecting the 
individual curves and reporting measures of 
heterogeneity commonly used in quantitative reviews.  

Although the aim of a dose-response meta-analysis 
is to estimate a curve that equally applies across the 
studies, forcing a common functional relationship may 
lower the fit of some individual analyses [5]. One of the 
advantage of the pointwise approach consists in the 
flexibility in the modeling individual curves. In a two-
stage meta-analysis of non-linear relationships, for 
example, all the studies providing less than two non-

 
Figure 5: Pointwise results for the meta-analysis between milk and all-cause mortality: (a) estimates of between-study 
heterogeneity ! 2 ,  (b) random-effects weights for the included studies, (c) p-value for the Q statistic, and (d) I 2 .  
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referent exposure levels are excluded from the 
analysis. In the proposed approach, instead, this can 
be avoided by fitting a linear trend in those studies with 
just one non-referent exposure level. 

Another important advantage of the pointwise 
strategy is in terms of pooling relative risks, taking into 
account the exposure range upon which they were 
estimated. In case of heterogeneous exposure 
distributions, as in the presented example on milk 
consumption and all-cause mortality, this feature may 
have important consequences when deriving the 
pooled curve. In particular, both point and interval 
predictions are affected, with the latter being generally 
narrower and prone to overconfident conclusions. 

Finally, numerical and graphical presentation of the 
pooled results in the pointwise strategy is richer as 
compared to a two-stage approach. Results from the 
meta-analytic models can be examined pointwisely for 
a fine grid of selected exposure values. 

CONCLUSION 

In conclusion, application of the proposed strategy 
may improve dose-response meta-analysis of 
epidemiological studies, particularly in case of 
heterogeneous exposure distributions. The described 
methodology is fairly general so that intermediate steps 
can be adapted to handle specific issues at hand. R 
code to reproduce results from worked examples is 
available on GitHub. 
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