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Abstract: In this article, we analyze renal failure data from patients with mesangioproliferative glomerulonephritis 
(MPGN) which was modeled by [1] non-parametrically using the Kaplan-Meier curve. In their work, they showed that the 
clinical variables, large increase serum creatinine (LISC) and systolic blood pressure >160 mmHg (SBP>160), and 
morphological variables, benign nephrosclerosis present (BNP) and interstitial score group 5-6 (IS5-6) were part of the 
variables which indicated progression to end-stage renal failure (ESRF). Though survival curves associated with these 
variables may be difficult to model by existing parametric distributions in literature. Therefore, we introduce a 
four-parameter Odd Weibull extension, the exponentiated Odd Weibull (EOW) distribution which is very versatile in 
modeling lifetime data that its hazard function exhibits ten different hazard shapes as well as various density shapes. 
Basic properties of the EOW distribution are presented. In the presence of random censoring, a small simulation study is 
conducted to assess the coverage probabilities of the estimated parameters of the EOW distribution using the maximum 
likelihood method. Our results show that the EOW distribution is very convenient and reliable to analyze the MPGN data 
since it provides an excellent fit for the variables LISC, SBP>160, BNP, and IS5-6. Furthermore, advantages of using the 
EOW distribution over the Kaplan-Meier curve are discussed. Comparisons of the EOW distribution with other 
Weibull-related distributions are also presented.  
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1. INTRODUCTION 

The Weibull distribution is one of the most popular 
parametric distributions used in modeling survival data 
due to its relatively simple hazard, survival, and 
probability density functions [2]. However, it has some 
limitations on its hazard function which only 
accommodates increasing, decreasing, and constant 
hazard shapes. As a result, extensions of the Weibull 
distribution have been developed in order to improve 
flexibility in the hazard function [3, 4]. 

Specifically, in this paper we first consider a new 
Weibull extension which has the generalized gamma 
(GG) [5], exponentiated Weibull (EW) [6], and Odd 
Weibull (OW) [7] distributions as sub models. The GG, 
EW, and OW distributions have five common hazard 
shapes: constant, increasing, decreasing, bathtub, and 
arc-shape. In addition, all three distributions are 
Weibull extensions with an extra shape parameter. The 
GG and EW distributions are well-known distributions 
in literature. On the other hand, the OW distribution, 
which was recently developed by [7] considering the 
distributions of the odds of the Weibull and inverse 
Weibull distributions, has not yet been studied 
extensively. Some highlights of the OW distribution in 
contrast to either GG or EW distribution are as follows. 
The OW hazard function exhibits 8 different shapes: 
constant, decreasing, increasing, arc-shape, bathtub, 
S-shape, inverse-S shape [8], and unimodal. Observe 
that here we define the arc-shape of a unimodal hazard 
curve such that there is no inflection point before the  
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mode. Hence arc-shape hazard curves do not have a 
left tail but unimodal hazard curves do. The OW 
distribution provides both unimodal and bimodal 
densities. In addition, in the presence of censoring and 
truncation, the OW parameters can be estimated in two 
different ways due to the inverse property of the OW 
random variable [9]. Observe that the !!!  integer 
moment for both GG and EW distributions exist [10, 11]. 
However, when ! and ! of the OW distribution are 
positive, the !!! moments exist, though when both ! 
and ! are negative such that !" < !, the !!! integer 
moment does not exist [12], meaning that the OW 
distribution can have heavy right-tail in this case. For 
example, the extreme value property of the OW 
distribution is discussed in [8]. Even though the OW 
has many desirable properties, there is still a need for a 
single distribution having more advanced hazard 
shapes for modeling lifetime data. Thus, we develop 
and study a new four-parameter generalized 
distribution, the exponentiated Odd Weibull (EOW) 
distribution which is an extension of the EW and OW 
distributions. In particular, the hazard function of the 
EOW distribution produces ten different hazard shapes 
including more advanced shapes, the M- and W- 
shapes. In addition, a more generalized version of the 
EOW distribution is presented for interested readers.  

The rest of the article is focused on analyzing renal 
failure data given in [1] in order to illustrate the flexibility 
and applicability of the EOW distribution. The renal 
failure data in this study is from patients with 
mesangioproliferative glomerulonephritis (MPGN). This 
MPGN data consist of a record of different clinical and 
histopathological variables recorded from the time of 
biopsy on progression to end-stage renal failure 
(ESRF) and death. Patients with MPGN got their 
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diagnosis in Norway from April 1988 to December 1990 
after a renal biopsy. Vikse et al. [1] used the traditional 
non-parametric, Kaplan-Meier curve to model the data. 
Motivated by the shapes of their Kaplan-Meier curves, 
we parametrically fit the MPGN data successfully using 
the EOW distribution. For comparison purposes, we 
include the four-parameter exponentiated generalized 
gamma distribution (EGG) [13] which is an extension of 
the GG distribution with an extra parameter in order to 
have the EW as a sub model. However, the EGG 
distribution does not have any additional density or 
hazard shapes other than that of either GG or EW 
distribution.  

In addition, the EOW is compared to an alternative 
exponentiated Odd Weibull (AEOW) distribution 
introduced in this paper and the Beta-Weibull (BW) 
distribution [14]. 

2. NEW STATISTICAL DISTRIBUTIONS 

2.1. Generalization of the Three Weibull Extensions 

In this section, we present the following 
six-parameter generalized distribution function which is 
an extension of the GG, EW, and OW distributions. 

! !;   !,!, !, !, !, ! = ! log 1 + ! !! − 1 ! , !
!
  (1) 

where ! = (!/!)!, ! > 0, ! > 0, ! > 0, ! > 0, ! > 0, 
!" > 0 , !(!, !)  is the incomplete gamma function 
defined by ! !, ! = (1/!(!)) !!!!!!!!"!

! ; ! > 0 , 
and ! !  is the complete gamma function defined by 
! ! = !!!!!!!!"!

! . 

Sub models of (1) which have been studied in 
literature include the exponentiated generalized 
gamma distribution [13] (when δ = β  = 1), 
Marshall-Olkin extended Weibull distribution [15] (when 
k = β = γ = 1), GG distribution (when δ = β = γ = 1), EW 
distribution (when δ = β = k = 1), OW distribution (when 
γ = δ = k = 1), and their sub models. When δ = k = 1, 
we obtain the EOW distribution. Another 
four-parameter distribution, the gamma Odd Weibull 
(GOW) distribution with γ = δ = 1 can also be obtained 
from (1). However, our analysis which is not included in 
the present paper, showed that the GOW and EOW 
distributions have similar properties, and hence a 
similar performance. Therefore the rest of this paper is 
focused on studying the EOW distribution and its 
applications in modeling renal failure data. 

2.2. EOW Distribution 

2.2.1. Density and Hazard Shapes 

The cdf, pdf, hazard function, and quantile function 
of the EOW distribution are respectively given by the 
following. 

!!"# !; !,!, !, ! = 1 −
1

1 + !! − 1 !

!

  (2) 

!!"# !; !,!, !, ! =
!"#$!!

!
(!! − 1)!"!!

1 + !! − 1 ! !!!   (3) 

ℎ !; !,!, !, ! =
!!"# !; !,!, !, !

1 − !!"# !; !,!, !, !
   

! !; !,!, !, ! = ! ln
!!/!

1 − !!/!

!/!

+ 1
!/!

  (4) 

where ! = (!/!)! , ! > 0 , 0 ≤ ! ≤ 1 , ! > 0 , ! > 0 , 
and !" > 0. Observe that the OW is a special case of 
the EOW distribution when ! = 1. The EW is a special 
case of the EOW distribution when ! = 1 . Other 
special cases from the OW distribution can be found in 
[7]. Note that when ! = −1, the parameters of the 
EOW cannot be identified.  

The cdf of another distribution having the EW and 
OW distributions as sub models is given by 

! !;   !!,!!, !!, !! = 1 − !

!! !

!! !!!!!!
!! !!

!!   (5)  

where !! = (!/!!)!! , ! > 0 , !! > 0 , !! > 0 , and 
!!!! > 0. We refer to this distribution as the alternative 
exponentiated Odd Weibull (AEOW) distribution and 
consider it for comparison purposes in Section 3. 

Typical density and hazard shapes for the given 
parameters of the EOW distribution are shown in 
Figures 1 and 2, respectively. Parameters for the EOW 
density graphs are, respectively, from left to right on 
first row: ( ! = .5,! = .5, ! = 1, ! = 10 ), ( ! = 1.7,! =
3.5, ! = .1, ! = 15 ), ( ! = 9,! = .01, ! = 1, ! = .5 ), 
(! = 3.33,! = .5, ! = 1, ! = .3), and (! = 2.2,! = .2, ! =
2, ! = 3.3 ). From left to right on second row: (! =
2.2,! = .3, ! = 2, ! = 3.3 ), ( ! = −1.8,! = −3, ! =
1.2, ! = 8), (! = −2,! = −.7, ! = .6, ! = 5), (! = 6,! =
.5, ! = 2, ! = 18 ), and ( ! = 8,! = .25, ! = 1, ! = .6 ). 
Hazard shapes of the EOW distribution include, from 
left to right on first row: constant (! = 1,! = 1, ! =
1, ! = 10 ), decreasing ( ! = .5,! = .5, ! = 1, ! = 10 ), 
increasing ( ! = 5,! = .5, ! = 2, ! = 22 ), arc-shape 
(! = .2,! = 5, ! = 1, ! = 10), bathtub (! = 6,! = .1, ! =
.05, ! = 20); from left to right on second row: S-shape 
( ! = .8,! = 5, ! = .1, ! = 15 ), inverse-S shape 
(! = 2,! = .3, ! = 2, ! = 5.9), M-shape (! = −1.5,! =
−3, ! = .05, ! = 8 ), W-shape ( ! = 1.2,! = 3.5, ! =
.1, ! = 15), and unimodal (! = −5,! = −.6, ! = 2.5, ! =
3.5). Clearly, the EOW has more advanced hazard 
shapes than the EW and OW distributions. Hence 
adding a shape parameter on the OW distribution to 
obtain EOW not only improved the flexibility of the 
hazard function, but it also created two new shapes: M- 
and W- shapes. More properties of the EOW 
distribution are discussed in the subsections that 
follow. 
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2.2.2. Moments 

The !!!  positive raw moments of the EOW 
distribution are given by the following. 

! !! = !"# !!!!!!!
!! − 1 !"!!

1 + !! − 1 ! !!!

!

!

!", (6) 

where ! = (!/!)! , ! > 0, ! > 0, ! > 0, and !" > 0. 
The formula in (6) does not have a closed form solution 
and have to be evaluated numerically. However, the 
following theorem provides the condition for the 
existence of the !!! positive raw moments of the EOW 
distribution. 

Theorem 2.1: For ! ∈ ℝ!, the !!! raw moments of 
the EOW distribution exist finitely for all positive ! and 
! . When !  and !  are negative, the !!!  raw 
moments exist finitely when ! < !". 

Proof. Proof can be obtained from the authors upon 
request.   

Furthermore, bounds for the !!!  positive raw 
moments are given by the following theorem. 

Theorem 2.2: For ! ∈ ℝ!, the !!! raw moments of 
the EOW distribution have the following finite bounds 
when ! > 0 and ! > 0. 

! (!/!  )! ≤
!∙! !!! !!! ! !

!!!

!
!
!

, if ! ≥ 1 ∧ !" ≥ 1; 

! (!/!  )! ≤
!∙! !

!!!

!
!
!

, if ! ≤ 1 ∧ !" ≥ 1; 

! (!/!  )! ≥
!∙! !

!!!

!
!
!

, if ! ≥ 1 ∧ !" ≤ 1; 

! (!/!  )! ≥
!∙! !

!!!

!!!!!
!
!
, if ! ≤ 1 ∧ !" ≤ 1; 

! (!/!  )! ≤
!"∙! !

!!!

(!!!!!")
!
!!!
, if ! ≤ 1 ∧ !

!
≤ ! ≤ 1 + !

!
; 

 
Figure 1: Typical density shapes of the EOW distribution. 

 

 
Figure 2: Typical hazard shapes of the EOW distribution. 
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! (!/!  )! ≤
!"∙! !

!!!

(!!!!!")
!
!!!
, if ! ≥ 1 ∧ !

!!!
≤ ! ≤ 1 + !

!
; 

where ! > 0, ! > 0, ! > 0, !" > 0, and ! !  is the 
complete gamma function defined by ! ! =

!!!!!!!!"!
! ; ! > 0. 

Proof. Proof can be obtained from the authors upon 
request.   

2.2.3. Parameter Estimation 

This subsection presents results on ml estimation of 
the EOW distribution parameters !, !, !, and !. The 
derivation is as follows. 

Let !!! = !!/! ! , !!! = ln !!!
!/! , !!! = !!!! , 

!!! = !!! − 1 , !!! = !!!
! , !!! = !!!

!! , !!! = !!! + 1 , 
!!! = ln !!! , !!! = 1 + !!! , and !!"! = !!!

! − 1 . Set 

!! =
0, if  censoring;
1, if  death.  

The EOW loglikelihood function is given by 

! ! = !! ln !"# + ln
!!!
!!

+ !!! + !" − 1 !!!

!

!!!

− ! + 1 ln !!!  

+ (1 − !!) ln 1 −
!!!
!!!

!!

!!!

  (7) 

where ! = (!,!, !, !)! . Finding the derivatives with 
respect to !,!, !, and  ! of the loglikelihood function in 
(7) gives the following. 

!"!
!"

= !!
1
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+ !!! 1 + !!! + !" − 1

!!!!!!
1 − !!!!!

− !(!
!

!!!
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!!!!!!!!!!!!
!!!!!!
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!!!!!!!!!!!!!!!
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!
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!

!!!
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!
!
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!!!!!!
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− !(!
!
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!!!!!!!!!
!!!!!!

 

+
!"#
!
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!!!!!!!!!!!!
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!
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!"!
!"

= !!
1
!
+ !!!! − ln !!! + 1 − !!

ln !!!
!!"!

!

!!!

!

!!!

  (11) 

We obtain the ml estimators for !,!, !, and  !  by 
solving the system of equations !"!

!"
, !"!
!"
, !"!
!"
, !"!
!"
  
!
= !. 

An analytic solution to this system does not exist. 
However, the following theorem provides the existence 
of the ml estimators. 

Theorem 2.3: The ml estimators for EOW 
parameters !,!, !, and  ! exist. 

Proof. Proof can be obtained from the authors upon 
request.   

2.2.4. Coverage Probabilities of the EOW 
Distribution 

In our data analysis, parameters of the EOW 
distribution are estimated under the maximum 
likelihood method, which is a large sample procedure 
for estimating the model parameters. However, survival 
data more often comes in smaller sample sizes with 
random censoring. Therefore, it is necessary to assess 
the coverage probabilities of maximum likelihood (ml) 
estimators for smaller samples under the random 
censoring. Hence, a simulation study is conducted to 
compute the approximate coverage probabilities for 
estimated parameters of the EOW distribution with 0%, 
10% , 20%  censoring (cens.), and keeping the 
intended confidence levels at 90%  and 95% . The 
results, which are summarized in Table  !, are based on 
1000  simulated random samples from the EOW 
distribution.  

The random samples are generated by plugging the 
known values of parameters !,!, !, and  !  (say   ! =
2,! = 0.2, ! = 2, ! = 1) to the EOW quantile function 
given in (4). In addition, ! (say  ! = 100) number of 
ordered uniform random sample from the uniform 
distribution, !~ U(0,1) is required to substitute as ! in 
the quantile function. In that way, one random sample 
with size ! from the EOW distribution with parameters 
!,!, !, and  ! can be generated. In this simulation study, 
one thousand such samples are generated to get a 
single cell value in Table   ! . The approximate 
100(  1 − !)%  confidence intervals for parameters 
!,!, !, and  !  are calculated by using ! − !!

!
!"!, ! +

!!
!
!"!   , ! − !!

!
!"! ,! + !!

!
!"!    , ! − !!

!
!"! , ! +

!!
!
!"!   , and ! − !!

!
!"! , ! + !!

!
!"!   , respectively, 

where ! , ! , ! , and !  are the ml estimators for 
!,!, !, and  !,  respectively; !"! , !"! , !"! , and !"! 
are, respectively, the asymptotic standard errors of !, 
! , ! , and !  which are taken from the observed 
information matrix. 

From Table  !, one can clearly see for uncensored 
data ( 0%  cens.), the approximate coverage 
probabilities for the parameters get closer to the 
intended coverage probabilities as the sample size 
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increases. When censoring percentage increases and 
the sample sizes becomes larger, the approximate 
coverage probabilities for the parameters become 
smaller than intended coverage probabilities. However, 
these low probabilities are acceptable since this is an 
expected result in the presence of censoring. Observe 
that in Table  !, the shape parameter values !,!, and  ! 
are chosen to represent different hazard and density 
shapes. Therefore, we only consider the scale 
parameter !=1 for all the cases considered here. 

3. RENAL FAILURE DATA EXAMPLE 

In this section, the parametric distribution, EOW is 
applied to model MPGN data which was modeled 
non-parametrically using the Kaplan-Meier curve by [1]. 
For comparison purposes, the EGG is considered 
since it is the four-parameter distribution having both 
GG and EW as sub models. In addition, the EOW is 
compared to the AEOW in (5) and BW distribution. The 
MPGN data consists of 273 patients. All patients were 
followed for a median duration of 34.8 months (0.8 - 68 
months). One person died at the beginning of the study, 
thus our analysis is based on 272 patients. 

Vikse et al. [1] showed that large increase serum 
creatinine (LISC) and systolic blood pressure >160 
mmHg (SBP>160) were part of the clinical variables 
which indicated progression to end-stage renal failure 
(ESRF). Morphological variables indicating progression 
to ESRF included benign nephrosclerosis Present 
(BNP) and interstitial score group 5-6 (IS5-6). 
Moreover, survival curves associated with LISC, 
SBP>160, BNP, and IS5-6 may be difficult to model by 
existing parametric distributions in literature. 

Specifically, these survival curves exhibit an upper S- 
shape with random censoring. Therefore we analyze 
the variables; LISC, SBP>160, BNP, and IS5-6 using 
the more advanced parametric model presented in this 
paper. Observe that data from other categories of the 
variables; benign nephrosclerosis absent (BNA), serum 
creatinine normal (NSC) and moderate increase 
(MISC), interstitial score 0-1 (IS0-1) and 2-4 (IS2-4), 
systolic blood pressure <140 mmHg (SBP<140) and 
140-160 mmHg (SBP140-160) can be fitted using more 
simpler and well-known distributions such as lognormal, 
gamma, and Weibull. Thus, they were only included in 
this analysis for the sake of completeness of the study. 
Our study is only focused on analyzing the variable 
categories; LISC, SBP>160, BNP, and IS5-6. The 
maximum likelihood estimation method was used to 
estimate parameters. Our analysis is based on the 
Akaike information criteria (AIC), Bayesian information 
criteria (BIC), Kolmogorov Smirnov (KS) test statistic for 
randomly right censored data defined in [16], and 
Cramér-von Mises (CM) type distances defined by the 
sum of the squared KS distances for each complete data. 

RESULTS AND DISCUSSIONS 

Table 2 shows results of the analysis for the 
variables; serum creatinine, systolic blood pressure, 
benign nephrosclerosis, and interstitial score. Results 
for the variable categories LISC, SBP>160, BNP, and 
IS5-6 have been highlighted. Note that standard errors 
of the estimates are given in parenthesis, and the best 
values from each test have been highlighted. It is clear 
from the results that the EOW is a better distribution for 
fitting the variables BNP, LISC, and SBP>160 based 
on all the four tests since it has the lowest value for 
each test statistic. In particular, results from the CM 

Table 1: The Approximate Coverage Probabilities of EOW Distribution Based on 1000 Simulations 

Parameters   90% intended 95% intended 

! = !   0% cens. 10% cens. 20% cens. 0% cens. 10% cens. 20% cens. 

!,!,! ! → 100 400 100 400 100 400 100 400 100 400 100 400 

2.0, 0.2, 2.0  ! .92 .91 .45 .31 .19 .05 .96 .95 .52 .38 .23 .07 

  ! .92 .91 .50 .44 .39 .16 .96 .96 .57 .50 .52 .21 

  ! .90 .90 .54 .57 .17 .08 .94 .95 .59 .62 .20 .10 

  ! .90 .90 .52 .48 .25 .17 .95 .95 .57 .55 .29 .20 

4.0, 0.2, 2.0  ! .93 .90 .51 .33 .25 .13 .96 .95 .57 .41 .32 .15 

  ! .93 .90 .50 .43 .31 .14 .96 .95 .56 .48 .40 .17 

  ! .89 .91 .56 .57 .13 .05 .93 .96 .60 .62 .14 .06 

  ! .89 .89 .57 .49 .23 .16 .94 .95 .62 .54 .27 .18 

2.5, 0.5, 0.5  ! .89 .91 .78 .78 .23 .01 .93 .96 .79 .85 .24 .02 

  ! .88 .90 .70 .89 .14 .00 .91 .94 .72 .95 .17 .00 

  ! .92 .92 .58 .63 .07 .00 .95 .96 .61 .72 .09 .00 

  ! .91 .91 .60 .71 .03 .00 .94 .95 .64 .79 .06 .00 
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Table 2: Estimated Values of Fitted Distributions for MPGN Data 

Distribution  Likelihood estimates 

  Benign nephrosclerosis Serum creatinine 

  Present Absent Normal Mod. increase Large increase 

EGG       

 ! 0.1309(0.0911) 0.1155(0.0740) 0.4868(1.1105) 0.6709(1.4880) 0.3801(0.1876 

 ! 2.9942(8.0721) 3.0484(6.1908) 1.1435(7.8064) 0.0461(0.1273) 0.1307(0.1236) 

 ! 1.9308(3.3715) 2.1812(2.5605) 5.7254(14.416) 19.992(16.557) 9.9563(0.6999) 

 ! 0.7263(4.8141) 1.1829(6.6357) 10.106(5.5539) 45.000(287.78) 2.5347(3.5036) 

 NLL 60.7 72.6 17.5 38.9 57.1 

 AIC 129.4 153.2 42.9 85.8 122.1 

 BIC 138.8 166.3 55.7 93.8 128.5 

 KS 0.2135 0.0232 0.0174 0.1630 0.1745 

 CM 0.0476 0.0010 0.0004 0.0300 0.0385 

EOW       

 ! 6.1361(0.1691) 0.8577(0.7118 ) -7.0812 (2.7745) 1.5335(0.9451) 6.2009(0.1710) 

 ! 0.0309(0.0113) 0.1209(0.0974) -0.0805 (0.0545) 0.0726(0.0619 ) 0.0549(0.0191) 

 ! 3.2666(0.5211) 5.8614 (1.5807 ) 34.118 (35.800) 4.8498(1.2500) 1.6609(0.4061) 

 ! 30.960(3.2885) 8.4629(14.330) 1.2265(0.8981) 9.4839(8.9007) 33.469(4.1756) 

 NLL 57.7 71.7 17.3 37.3 55.3 

 AIC 123.4 151.4 42.6 82.6 118.6 

 BIC 132.8 164.4 55.4 90.6 125.0 

 KS 0.1368 0.0149 0.0169 0.1087 0.1011 

 CM 0.0209 0.0006 0.0004 0.0147 0.0222 

AEOW       

 !! 0.0896(0.2852) 0.0356(0.2717) 0.1191(0.0043) 0.0426(0.2066) 4.5205(0.6304) 

 !! 1.8640(4.7760) 7.1325(62.416) 0.1986(0.0346) 6.8760(38.537) 0.3684(0.3980) 

 !! 4.6899(23.464) 2.4516(7.7504) 52.032(0.1932) 2.5028(5.7230) 0.3121(0.3364) 

 !! 0.7198(32.486) 0.4813(19.401) 32.722(13.989) 0.2160(5.6569) 90.483(75.528) 

 NLL 60.7 72.4 18.7 39.0 56.8 

 AIC 129.4 152.8 45.3 85.9 121.6 

 BIC 138.7 165.9 58.1 94.0 128.0 

 KS 0.2128 0.0219 0.0257 0.1680 0.1286 

 CM 0.0475 0.0008 0.0007 0.0320 0.0223 

BW       

 ! 0.0658(0.0201) 1.2572(0.6812) 1.4189(0.0002) 2.8226(0.8922) 0.0981(0.0265) 

 ! 2.3651(22.431) 5.5216(7.7363) 3.892 (0.3576) 14.220(5.9869) 9.7466(63.521) 

 ! 18.503(6.7395) 0.2497(0.2090) 1.5225(0.9546) 0.1162(0.0632) 11.702(4.2577) 

 ! 4.9374(4.0999) 0.0037(0.0043) 0.0005(0.0004) 0.0053(0.0024) 4.8356(2.3485) 

 NLL 60.8 71.6 17.7 37.4 57.1 

 AIC 129.5 151.2 43.4 82.7 122.1 

 BIC 130.0 164.3 56.2 90.7 128.5 

 KS 0.2151 0.0145 0.0206 0.1046 0.1900 

 CM 0.0483 0.0006 0.0005 0.0143 0.0423 
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(Table 2). Continued. 

Distribution  Likelihood estimates 

  Interstitial score Systolic BP 

  0 − 1 2 − 4 ! − ! < 140  mmHg 140 − 160  mmHg > !"#  !!"# 

EGG        

 ! 0.2573(0.1529) 0.1788(0.3355) 1.2399(2.8242) 0.3126(0.5865) 0.2311(0.1552) 0.2603(0.1508) 

 ! 19.806(43.523) 0.7526(3.7933) 0.0182(0.0414) 0.6627(2.3258) 0.6656(0.9638) 0.1257(0.1238) 

 ! 1.3469(0.2354) 3.8774(6.9774) 21.903(2.8583) 6.2684(7.7882) 5.1428(4.4912) 11.394(1.399) 
 

 ! 2.1791(3.6923) 3.0398(6.0499) 54.990(223.03) 5.0632(49.193) 4.6068(16.722) 1.5117(4.7642) 

 NLL 17.4 40.6 56.5 46.6 35.2 43.9 

 AIC 42.7 89.1 121.0 101.2 78.4 95.8 

 BIC 55.7 96.6 127.2 113.2 87.6 102.4 

 KS 0.0167 0.1800 0.1833 0.0272 0.0485 0.3644 

 CM 0.0004 0.0348 0.0428 0.0010 0.0029 0.1438 

EOW        

 ! 8.2871(0.1918) 2.6359(3.3918) 2.4084(2.9182) 0.8030(1.0534) 0.0667(0.1620) 6.3350(0.1540) 

 ! 0.1047(0.0786) 0.0703(0.0850) 0.1106(0.1027) 0.1746(0.2143) 1.9796 (4.6743) 0.0303(0.0113) 

 ! 3.9240(1.5236) 3.1498(0.8389) 2.2718(0.9309) 7.6257(4.8790) 13.684(30.053) 2.3895(0.5046) 

 ! 92.601(0.6098) 25.403(17.442) 21.647(19.351) 7.1970(25.392) 3.8172(36.397) 29.556(3.2993) 

 NLL 17.4 40.0 55.3 46.3 35.1 39.8 

 AIC 42.8 87.9 118.6 100.5 78.2 87.6 

 BIC 55.8 95.4 124.9 112.5 87.4 94.3 

 KS 0.0171 0.1504 0.1350 0.0211 0.0519 0.2103 

 CM 0.0004 0.0255 0.0292 0.0008 0.0032 0.0556 

AEOW        

 !! 0.1526(0.5291) 0.1453(0.2284) 0.0975(0.2629) 0.0571(0.3707) 0.1690(0.06498) 0.1317(0.4665) 

 !! 4.2135(24.647) 0.2282(0.5500) 2.3822(7.5314) 9.2659(66.503) 0.1911(0.0455) 0.8000(1.1349) 

 !! 7.7955(39.912) 21.216(131.14) 3.2247(6.7826) 2.2807(5.2226) 34.010(4.8712) 5.6444(32.687) 

 !! 0.7329(7.7608) 9.8174(142.71) 0.7853(11.848) 3.5632(76.160) 17.714(1.6897) 2.9887(112.03) 

 NLL 17.5 40.6 56.9 46.5 35.2 43.8 

 AIC 43.0 89.2 121.8 101.0 78.3 95.6 

 BIC 55.9 96.7 128.0 113.0 87.4 102.2 

 KS 0.0170 0.1861 0.2087 0.0260 0.0515 0.3690 

 CM 0.0004 0.0372 0.0529 0.0010 0.0032 0.1461 

BW        

 ! 0.0897(0.0726) 0.3940(1.0821) 5.3667(0.2052) 0.6765(0.0001) 0.5302(0.0919) 0.2557(0.1501) 

 ! 0.0047(0.0356) 0.0090(0.0226) 32.202(5.8396) 0.2362(0.0275) 0.0723(0.0647) 0.0001(0.0004) 

 ! 189.17(5.7357) 1.8161(63.697) 0.0758(0.0265) 1.4960(0.7989) 5.7361(7.6981) 32.174(5.6359) 

 ! 12.468(2.0485) 0.0066(0.0658) 0.0273(0.0172) 0.0015(0.0007) 0.0030(0.0014) 0.0130(0.0169) 

 NLL 17.4 40.4 55.5 47.0 35.1 42.9 

 AIC 42.7 88.8 119.0 102.0 78.1 93.8 

 BIC 55.7 96.3 125.2 114.0 87.2 100.5 

 KS 0.0166 0.1792 0.1265 0.0324 0.0518 0.3691 

 CM 0.0004 0.0346 0.0277 0.0014 0.0033 0.1486 
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Table 3: Survival Rates in Percentages for MPGN Data Based on EOW Distribution 

% Survival beyond given # of months 

Variable 10 mo. 20 mo. 30 mo. 40 mo. 50 mo. 60 mo. 65 mo. 70 mo. 80 mo. 90 mo.  

BNP 92.81 90.93 89.48 86.88 76.47 39.62 15.70 3.19 0.01 0.00 

LISC 78.29 72.80 68.97 63.99 49.90 18.24 5.48 0.80 0.00 0.00 

IS5-6 83.63 78.63 73.52 66.41 56.03 42.48 35.10 27.84 15.34 7.04 

SBP>160 85.30 82.55 80.43 75.91 57.40 14.59 2.71 0.19 0.00 0.00 

 

 
Figure 3: Fitted survival curves of EGG (blue), BW (purple), AEOW (yellow), and EOW (red) distributions along with 
Kaplan-Meier curves for the MPGN data. 

test show that the EOW gives the best overall fit for 
these variables. EOW also provides the best fit for 
IS5-6 based on the AIC and BIC values, while the BW 
distribution performs better based on the KS and CM 
values. Observe that some of the parameter estimates 
for the other variables have higher standard errors for 
the distributions given in Table 2, for example, 
estimates of the parameter ! for IS5-6. The reason 
here is that we are overfitting these variables using four 
parameters.  

Figure 3 shows the fitted survival curves of the 
distributions; EGG, BW, AEOW, and EOW, along with 
Kaplan-Meier curves illustrating the effects of benign 
nephrosclerosis, serum creatinine, interstitial score, 
and systolic blood pressure on cumulative (Cum) renal 
survival for patients with MPGN. Note that the number 
of patients in the categories for each variable are given 
in parenthesis. Results from the fitted survival curves 
for the variables show that the EOW distribution 

outperforms the fit of the distributions considered in all 
the variables, in particular; LISC, SBP>160, BNP, and 
IS5-6, which agrees with the results from Table 2. BW 
also provides a good fit for IS5-6, which agrees with the 
KS and CM values from Table 2 for this category. Thus 
we conclude that the EOW survival function provides a 
good parametric estimate for the Kaplan-Meier curve 
used by [1] to model the MPGN data.  

Therefore, we can predict renal survival for the 
subgroups of patients studied using the EOW survival 
function. In particular, for patients with BNP, the 
cumulative probability of progression to ESRF in three 
years is 0.12 based on the EOW survival function, as 
compared to 0.13 obtained by [1] using the 
Kaplan-Meier curve. For patients with LISC, the 
cumulative probability of progression to ESRF in three 
years is 0.34 based on the EOW survival function, as 
compared to 0.32 obtained by [1] using the 
Kaplan-Meier curve. For patients with IS5-6, the 
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cumulative probability of progression to ESRF in three 
years is 0.30 based on the EOW survival function, as 
compared to 0.28 obtained by [1] using the 
Kaplan-Meier curve. In addition, for patients with 
SBP>160, the cumulative probability of progression to 
ESRF in three years is 0.22 based on the EOW survival 
function, as compared to 0.21 obtained by [1] using the 
Kaplan-Meier curve. As mentioned in [17], the 
non-continuous nature of the Kaplan-Meier curve 
emphasizes that they are not smooth functions, but 
rather step-wise estimates; thus, calculating a point 
survival can be difficult. However, a point survival can 
easily be calculated directly using the EOW survival 
function, which is an advantage of using the EOW 
survival function over the Kaplan-Meier curve. Table 3 
shows survival rates in percentages for MPGN data 
based on the EOW distribution. Each cell entry gives 
the percentage of patients who survive beyond the 
given number of months (mo.) for the variable 
categories LISC, SBP>160, BNP, and IS5-6. Our 
results show that patients with IS5-6 have a higher 
survival rate with 7.04% of patients surviving beyond 
90 months after biopsy. Patients with BNP, LISC, and 
SBP>160 have no chance of surviving beyond 80 
months after biopsy. Clearly, one can see effects of the 
upper-S shaped survival function of these variables 
which results in a sudden drop in percentage survival 
for patients with BNP, LISC, and SBP>160 after 50 
months. For patients with IS5-6, the highest drop in 
percentage survival also occurs after 50 months, 
though it is lower compared to other variables. These 
results show that the EOW distribution is easy to 
interpret compared to the Kaplan-Meier curve since it is 
parametric. 

Furthermore, as part of our analysis, we examined 
the fit of other well-known Weibull-related distributions 
for these data sets. Our results showed that the 
distributions give a poor fit for LISC, SBP>160, BNP, 
IS5-6, and some of the other categories of the 
variables. For example, the standard 2-parameter 
Weibull fit gives a poor fit with large standard errors for 
its parameter estimates. Thus we did not include this 
work in Table 2. 

4. CONCLUSIONS 

The MPGN data [1] was analyzed using the EOW 
distribution introduced in this study. Results showed 
that the EOW distribution provides an excellent fit for 
the variables LISC, SBP>160, BNP, and IS5-6, which 
may be difficult to model by existing parametric 
distributions in literature. In particular, based on the 
distributions that we compared in this paper, the EOW 
survival function provides the best parametric estimate 
for the Kaplan-Meier curve used by [1] to model this 
data. Thus we were able to predict renal survival for the 

subgroups of patients studied using the EOW survival 
function. Our analysis showed that patients with IS5-6 
have a higher chance of surviving beyond 90 months 
after biopsy. On the other hand, patients with BNP, 
LISC, and SBP>160 have no chance of surviving 
beyond 80 months after biopsy. These results show 
that the EOW distribution is easy to use and interpret 
compared to the Kaplan-Meier curve since it is 
parametric. Therefore, the EOW distribution is very 
useful for modeling renal failure data under parametric 
modeling framework.  

ACKNOWLEDGEMENTS 

The authors wish to specially thank Professor Vikse 
for providing the MPGN data used in [1]. 

CONFLICT OF INTEREST 

The authors have declared no conflict of interest. 

REFERENCES 

[1] Vikse BE, Bostad L, Aasarod K, Lysebo DE, and Iversen BM. 
Prognostic factors in mesangioproliferative 
glomerulonephritis. Nephrol Dial Transplant 2002; 17: 
1603-1613. 
https://doi.org/10.1093/ndt/17.9.1603 

[2] Klein JP and Moeschberger ML. Survival analysis techniques 
for censored and truncated data. New York: Springer-Verlag; 
2003. 

[3] Rinne H. The Weibull distribution. Boca Raton; Chapman 
and Hall, CRC; 2009. 

[4] Murthy DNP, Xie M, and Jiang R. Weibull Models. Hoboken; 
Wiley Interscience: 2004. 

[5] Stacy EW. A generalization of the gamma distribution. Ann 
Math Statist 1962; 33: 1187-1192. 
https://doi.org/10.1214/aoms/1177704481 

[6] Mudholkar GS, Srivastava DK, and Freimer M. The 
exponentiated Weibull family: a reanalysis of the 
bus-motor-failure data. Technometrics 1995; 37: 436-445. 
https://doi.org/10.1080/00401706.1995.10484376 

[7] Cooray K. Generalization of the Weibull distribution: the odd 
Weibull family. Stat Modelling 2006; 6: 265-277. 
https://doi.org/10.1191/1471082X06st116oa 

[8] Jiang H, Xie M, and Tang LC. On the Odd Weibull 
Distribution. Proc Inst Mech Eng O J Risk Reliab 2008; 222: 
583-594. 
https://doi.org/10.1243/1748006XJRR168 

[9] Cooray K. Analyzing grouped, censored, and truncated data 
using the Odd Weibull family. Commun Stat Theory Methods 
2012; 41: 2661-2680.  
https://doi.org/10.1080/03610926.2011.556294 

[10] Johnson NL, Kotz S and Balakrishnan N. Continuous 
univariate distributions. New York: Wiley; 1994. 

[11] Choudhury A. A simple derivation of moments of the 
exponentiated Weibull distribution. Metrika 2005; 62: 17-22.  
https://doi.org/10.1007/s001840400351 

[12] Cooray K. A study of moments and likelihood estimators of 
the odd Weibull distribution. Stat Methodol 2015; 26: 72-83. 
https://doi.org/10.1016/j.stamet.2015.03.003 

[13] Cox C and Matheson M. A comparison of the generalized 
gamma and exponentiated Weibull distributions. Stat Med 
2014; 33: 3772-3780. 
https://doi.org/10.1002/sim.6159 

[14] Lee C, Famoye F, and Olumolade O. Beta-Weibull 
distribution: some properties and applications to censored 



Parametric Analysis of Renal Failure Data using the Exponentiated Odd International Journal of Statistics in Medical Research, 2018, Vol. 7, No. 3  105 

data. J Mod Appl Stat Methods 2007; 6: 173-186. 
https://doi.org/10.22237/jmasm/1177992960 

[15] Marshall AW and Olkin I. A new method of adding a 
parameter to a family of distributions with applications to the 
exponential and Weibull families. Biometrika 1997; 84: 
641-652. 
https://doi.org/10.1093/biomet/84.3.641 

 

[16] Guilbaud O. Exact Kolmogorov-type tests for left-truncated 
and (or) right-censored data. J Am Stat Assoc 1988; 83: 
213-221. 
https://doi.org/10.1080/01621459.1988.10478589 

[17] Rich JT, et al. A practical guide to understanding 
Kaplan-Meier curves. Otolaryngol Head Neck Surg 2010; 
143: 331-336. 
https://doi.org/10.1016/j.otohns.2010.05.007 

 
Received on 15-04-2018 Accepted on 02-05-2018 Published on 25-06-2018 
 
https://doi.org/10.6000/1929-6029.2018.07.03.5 
 

 


