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Abstract: We describe a selection process for a multivariable risk prediction model of death within 30 days of hospital 
discharge in the SILVER-AMI study. This large, multi-site observational study included observational data from 2000 
persons 75 years and older hospitalized for acute myocardial infarction (AMI) from 94 community and academic 
hospitals across the United States and featured a large number of candidate variables from demographic, cardiac, and 
geriatric domains, whose missing values were multiply imputed prior to model selection. Our objective was to 
demonstrate that Bayesian Model Averaging (BMA) represents a viable model selection approach in this context. BMA 
was compared to three other backward-selection approaches: Akaike information criterion, Bayesian information 
criterion, and traditional p-value. Traditional backward-selection was used to choose 20 candidate variables from the 
initial, larger pool of five imputations. Models were subsequently chosen from those candidates using the four 
approaches on each of 10 imputations. With average posterior effect probability ≥ 50% as the selection criterion, BMA 
chose the most parsimonious model with four variables, with average C statistic of 78%, good calibration, optimism of 
1.3%, and heuristic shrinkage of 0.93. These findings illustrate the utility and flexibility of using BMA for selecting a 
multivariable risk prediction model from many candidates over multiply imputed datasets.  
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1. INTRODUCTION 

Although several prior studies have described the 
considerations relevant in developing prognostic 
models [1-3], with that of Harrell among the most 
frequently cited [4], two issues have yet to be 
adequately addressed. The first is how to select a 
model for a new outcome or population when a large 
number of candidate variables are worth considering. 
The second is how to integrate multiple imputation into 
the selection process itself. In this paper we illustrate 
how Bayesian Model Averaging (BMA), introduced by 
Raftery [5] and described by Hoeting et al., [6] offers 
utility and flexibility in addressing these two issues.  

Most clinical researchers are familiar with traditional 
backward-selection based on p-values (BW) and many 
have heard of the Akaike information criterion (AIC) [7] 
and the Bayesian information criterion (BIC) [8]. 
Although introduced 20 years ago, few clinical 
researchers have heard of BMA. The foremost 
conceptual difference is the intrinsic assumption in  
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BMA that no single model is entirely accurate because 
of the uncertainty fundamental to statistical modeling.  

Because the AIC, BIC and BW approaches each 
choose a single optimal model and subsequently use it 
to predict future values, we collectively refer to them as 
the discrete approaches. In contrast, BMA evaluates all 
possible combinations of the candidate variables to 
identify the best fitting model and a subset of others 
whose performance is close to the best model. BMA 
explicitly acknowledges the uncertainty in model 
selection by calculating a separate association from 
each of the best fitting models.  

The second defining characteristic of BMA is its 
calculation of the posterior effect probability (PEP) for 
each of the variables among the best fitting models. In 
contrast with the rather abstract meaning of a 
traditional p-value [9, 10], the PEP is the probability 
that the given predictor’s association with the outcome 
is not equal to zero. Although larger absolute values 
reflect stronger evidence that a predictor is important, 
the relative values of PEP among any group of 
candidate variable can also be used to choose the 
most potent predictors in a given modeling situation, 
even when they do not approach values near the 
intuitive threshold of 50% or greater.  
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In this report we demonstrate the utility of BMA in 
selecting a risk prediction model for death within 30 
days of discharge among older persons hospitalized for 
acute myocardial infarction in the Comprehen SIVe 
Evaluation of Risk Factors in Older Patients with Acute 
Myocardial Infarction study (SILVER-AMI, NIH/NHLBI 
R01HL115295) [11]. We illustrate that BMA chooses a 
model similar to the discrete approaches, while 
providing a more objective criterion (posterior effect 
probability) for deciding when to retain variables 
differentially selected across imputed datasets.  

2. METHODS 

2.1. Design of SILVER-AMI  

All explanatory variables and outcomes used in this 
report come from the SILVER-AMI study, a prospective 
longitudinal study of adults 75 years and older 
hospitalized for AMI. The design of SILVER-AMI and its 
variables have been previously described [11]. The 
outcome in this analysis is a binary indicator of death 
within 30 days of hospital discharge. Because our 
objective is to demonstrate a model selection process 
in detail, this study is restricted to selection of the final 
model and its internal validation rather than external 
validation in a separate cohort.  

2.2. Selection of Candidate Variables and Multiple 
Imputation of Missing Values 

More than 100 explanatory variables plausibly 
associated with AMI in older persons were initially 
selected from demographic, cardiac, and geriatric 
domains, based on prior risk prediction models and 
clinical judgement. After examining their distributions, 
the following rules excluded variables of dubious 
predictive value: missing > 20% and prevalence either 
< %5 or > 95%. In-hospital interventions with strong 
indication bias not addressable in the risk model were 
also excluded, leaving a pool of 83 candidates for the 
prognostic model. Missing data was assumed missing-
at-random and imputed 10 times. We will show that the 
choice of 10 imputations provides a convenient context 
for comparing selection among all the approaches. 
Figure 1 illustrates the stages of the selection process.  

2.3. Reducing the Pool of Potential Predictors From 
80+ to 20 Candidate Variables 

In order to compare selection among the discrete 
model approaches and BMA, we needed to first reduce 
our initial pool of 83 variables to a group of 20. This is 
because of the high computational burden of 
processing a large number of candidate variables (> 

 
Figure 1: Stages of Selection for the Final Multivariable Risk Prediction Model. 

Abbreviations: BMA = Bayesian Model Averaging, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion. 



Bayesian Model Averaging for Selection of a Risk Prediction Model International Journal of Statistics in Medical Research, 2019, Vol. 8      3 

20) in three of the approaches. Due to its use of a p-
value criterion allowing sequential elimination of 
candidate variables, only BW readily accommodates a 
large number of candidate variables. Our SAS macros 
for selection with AIC and BIC did not employ a p-value 
criterion for successive elimination of variables. 
Consequently for more than 20 variables, the 
simultaneous consideration of multiple models involved 
high memory usage. In like fashion, the R package 
BMA [12], with its memory intensive task of evaluating 
all possible variable combinations, is limited to no more 
than 30 variables. To balance computational stability 
against adequate exercising of each selection 
approach, we compared the four approaches over 
these same 20 candidates. This was implemented with 
the suggestion of White et al. (2011) [13] by employing 
backward selection on a pool of five imputed datasets 
(rather than 10) to choose the 20 variables with the 
strongest multivariable associations. Because of the 
large size of this pooled dataset, the p-value for 
retention in the model was lowered to identify the group 
of 20 that collectively did the best in describing the 
variability of the outcome. Those 20 subsequently 
served as the candidates for the final multivariable 
chosen by BMA and the reference approaches 

2.4. Comparing BMA with The Discrete Approaches  

To perform a rigorous comparison of the backward-
selection approaches, we employed the full 
complement of ten imputations. We applied backward-
selection using multivariable logistic regression on 
each imputation with AIC [7], BIC [8], BW (p-value ≤ 
0.05) and BMA [5]. While BW is widely recognized, AIC 
and BIC are information criteria that add the maximum 
likelihood of the model to a penalty that rises with 
number of variables. The AIC adds a modest penalty 
for each variable while BIC adds a larger penalty, 
causing it to choose more parsimonious models, and 
both are designed such that lower values represent 
better model fit. Common to the AIC, BIC and BW 
approaches is that each selects a single, optimal model 
assumed to be the true model of the outcome.  

In counterpoint, BMA examines all the possible 
combinations of candidate variables and after selecting 
the best one, retains a subset of others within a range 
known as Occam’s window, described in detail in 
Madigan and Raftery (1994) [14]. For variables in any 
of the best fitting models, BMA subsequently calculates 
a posterior effect probability (PEP), i.e., the probability 
the variable is associated with the outcome, which is 
compared against a minimal threshold. To illustrate a 

threshold of 50%, any candidate with PEP ≥ 50% is 
included in the final model. The choice of threshold 
allows flexibility for the myriad scenarios arising from 
varying sample sizes, candidate variables and multiply 
imputed datasets.  

One issue that has not previously been addressed 
in prior statistical methods papers is how to select a 
risk prediction model over multiple imputations. 
Because missing values result in different subsets of 
the data at any given stage, they can bias model 
selection. For this reason, selection needs to take 
place over multiply imputed datasets. The question 
then becomes how to decide on a final set of variables 
when different “best” models are chosen from different 
imputations. 

The application of model selection to 10 imputations 
provides a convenient way to resolve this issue. For 
BMA, the PEP values can simply be averaged across 
the ten imputations and compared against a threshold 
value such as 50%. For the discrete approaches, we 
suggest the following. When any variable has been 
chosen in at least five of the imputations, we interpret it 
as having a rough probability ≥ 50% of inclusion in the 
final model. The 50% threshold balances elimination of 
variables unlikely to predict the outcome against being 
overly selective. We will compare the final models 
chosen by each approach using this threshold of 50% 
probability of association (BMA) or inclusion (discrete 
approaches). We will demonstrate that this threshold 
facilitates a comparison of approach-based variable 
selection across the imputed datasets.  

2.5. Comparing Final Models from the Four 
Different Approaches 

The models chosen by the four approaches were 
compared for discrimination, calibration, optimism, and 
shrinkage. Discrimination is the ability of a model to 
correctly predict, on average, whether a given person 
will experience the outcome of interest, measured as 
the average C statistic across the imputations [15]. 
Calibration is a model’s ability to consistently calculate 
the probability of the outcome across its entire range, 
with acceptable performance commonly interpreted as 
a p-value > 0.05 for the Hosmer-Lemeshow statistic in 
each imputation [16]. Optimism estimates the degree to 
which a model’s predictive performance will be reduced 
when applied to an external dataset. We evaluate the 
optimism of the model’s C statistic following Harrell [4], 
by fitting the final model to 100 bootstrapped samples 
of the development data and subsequently predicting 
performance in the original data.  
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Finally, shrinkage describes the extent to which the 
associations between predictors and outcome 
estimated during model development may be inflated 
relative to their performance in external data. We 
employ the heuristic estimator of van Heuwelingen and 
le Cessie to estimate the amount of shrinkage where 
higher values (i.e., closer to 1) reflect better 
performance [17]. Note that the estimates of optimism 
and shrinkage constitute internal validation, which, 
while drawing only from development data, provide 
insight regarding model performance in external 
datasets.  

3. RESULTS 

3.1. Method-specific Selection of Candidate 
Variables across Multiply Imputed Datasets 

Shown in Table 1 are the number of times each 
variable was chosen in the discrete approaches over 
the 10 imputations. The last column presents the 
average PEP value calculated by BMA. Taking BW and 

its overall count of chosen variables as a reference (76 
out of possible 200), AIC chose twice as many (159) 
whereas BIC chose nearly half as many (40). With one 
notable exception, BMA mimics the selection pattern of 
BIC. For example, the Short Form 12 measure of 
general health was consistently chosen by BIC, which 
concurs with the high PEP value (83%) calculated by 
BMA. BIC and BMA also agree in their selection of age, 
dyspnea, social support relaxation, and the telephone 
interview of cognitive status (TICS) score of mental 
function. The notable difference is seen in the variable 
denoting length of stay in hospital. Never chosen by 
BIC, the latter rates an average PEP of 83% from BMA.  

3.2. Final Model Selected Across Multiply Imputed 
Datasets by Each Approach 

The primary objective of this report is to 
demonstrate that BMA is a viable method for model 
selection. While BMA can provide its own sophisticated 
form of estimation, the final multivariable associations 
for comparing the approach-specific models were 

Table 1: Frequencies of Candidate Variable Selection by Approach 

Percent of Times Chosen over 10 Imputations for 
Optimal Model by each Discrete Method 

Average Posterior Effect 
Probability (Percent) 

Twenty Candidate Variables chosen by 
Backward Selection across Pool of Five 

Imputations 
AIC BIC BW BMA 

Acute kidney disease 100 0 100 4.7 

Age in years at admission 100 100 100 99.2 

End of month need help with finances 0 0 0 0.0 

ESAS - Depressed 100 0 0 0.0 

ESAS - Drowsy 100 0 0 0.0 

ESAS - Dyspnea 100 50 90 47.2 

First systolic blood pressure 100 0 30 4.2 

Grip strength frailty 0 0 0 0.0 

In-hospital bleeding event 70 0 0 0.0 

In-hospital heart failure 100 0 0 0.0 

In-hospital hyperglycemia 0 0 0 0.0 

Length of stay 70 0 0 82.7 

Month prior walking 100 0 0 13.0 

PHQ evidence of depression 100 0 80 8.1 

Prior history of CABG 50 0 0 0.0 

Short form 12 general health 100 100 100 82.7 

Social support: no one to relax with 100 50 90 38.0 

TICS total score 100 100 100 81.6 

Unintended WL 100 0 70 33.0 

Visually impaired 100 0 0 0.0 

Total number of variables chosen over 10 
imputations (out of Possible 200) 

159 40 76 N/A 

Abbreviations: AIC = Akaike information criterion; BIC = Bayesian information criterion; BW = backward selection with p-value of 0.05; BMA = Bayesian model 
averaging; ESAS = Edmonton Symptom Assessment Scale; PHQ = patient health questionnaire; CABG = Coronary artery bypass-graft; TICS = modified telephone 
interview for cognitive status; WL= weight loss; N/A = not applicable. 
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estimated using logistic regression. Each approach’s 
final model was fit to each of the 10 imputations and 
coefficients calculated using Rubin’s rules in the SAS 
procedure MIanalyze [18]. 

Table 2 compares the final models chosen by 
approach across the 10 imputations by model 
performance. The AIC approach selected 17 variables 
while BW chose eight. These two approaches produce 
the highest accuracy, as measured by their respective 
C statistics of 88% and 84%. They also exhibit the 
worst performance in optimism and shrinkage, 
suggesting they will not hold up well in external 

datasets. In choosing five variables, BIC was slightly 
more liberal than BMA’s choice of four. In both 
approaches age, short form 12 general health, and 
TICS were chosen, i.e., continuous measures of 
longevity, general physical health, and mental function, 
each carrying immediate face validity for mortality 
among older persons. BIC also chose dyspnea which 
was narrowly rejected by BMA (average PEP of 47%). 
Whereas BIC chose lack of social support for relaxing, 
BMA chose length of hospitalization, a surrogate for 
severity of the index AMI. The models chosen by BIC 
and BMA have respective C statistics of 79% and 78%, 
and the best values for optimism (1.7% and 1.3%) and 

Table 2: Comparing Final Models Chosen by Four Different Backward-Selection Approaches from 20 Candidate 
Variables across 10 Multiple Imputations 

 Final Models Chosen by Backward-Selection  
Approaches on 20 Candidate Variables over 10 Imputations  

(N= 2000 per imputation) 

Performance Metrics of 
Selected Model  

AIC  
(17 variables) 

BIC 
 (5 variables) 

BW  
(8 variables) 

BMA 
(4 variables) 

Variables Selected Across 
10 Imputations a 

 

Acute kidney disease 
Age in years 

ESAS - depressed 
ESAS - drowsy 

ESAS - dyspnea 
First diastolic BP 

In- hospital bleeding 
In- hospital HF 
Length of stay  

Month prior walking 
PHQ - depression 
Prior history CABG 

SF12genHealth 
Social Support NR 

TICS score 
Unintended WL 

Visually impaired 

Age in years 
ESAS - dyspnea 
SF12genHealth 

Social support NR  
TICS score 

 

Acute kidney disease 
Age in years 

ESAS - dyspnea 
PHQ - depression 
SF12genHealth 

Social Support NR 
TICS score 

Unintended WL 
 

Age in years 
Length of stay  

SF12genHealth 
TICS score 

 

Calibration  
(minimum p-value of H-L 

statistic)  0.08 0.19 0.46 0.10 

Discrimination  
(C statistic  

higher is better) 88% 79% 84% 78% 

Heuristic Shrinkageb 

(higher is better) 0.85 0.92 0.90 0.93 

Optimism 
(lower is better)  3.5% 1.7% 2.0% 1.3% 

achosen from ≥ 5 imputations (AIC, BIC, and BW) or with average posterior probability ≥ 50% (BMA). 
bfrom Van Heuwelingen JC and le Cessie S (LR– number of terms) / (LR). 
abbreviations: AIC = Akaike information criterion; BIC = Bayesian information criterion; BMA = Bayesian model averaging; BP = blood pressure; BW = backward 
selection with p-value of 0.05; ESAS = Edmonton Symptom Assessment Scale; HF = heart failure; HL = Hosmer-Lemeshow goodness of fit ; LR = likelihood ratio 
chi-square; NR = no relaxation; PHQ = patient health questionnaire; SF12genHealth = general health on Short Form 12; TICS = modified telephone interview for 
cognitive status; WL= weight loss. 
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shrinkage (0.92 and 0.93). Based on these criteria, for 
this case BMA has performed as well as the discrete 
approaches.  

4. DISCUSSION 

We have demonstrated the selection process for a 
prognostic model of mortality within 30 days of 
discharge among older persons hospitalized for AMI. 
While largely following the practices of Harrell [4], we 
provide details on selecting a model from a large initial 
pool of candidate variables over multiply imputed 
datasets. We propose that the decision of which 
variables to retain over imputed datasets, after proper 
consideration for power constraints, be based on a 
threshold for either an average PEP value (BMA) or 
probability of inclusion (AIC, BIC, BW) that strikes a 
balance between excessive parsimony and retention of 
weak predictors. Two of the approaches, (AIC and BW) 
yielded models with an unjustifiably large number of 
variables. At the cost of reduced discrimination, the 
other two approaches (BIC and BMA) yielded leaner 
models with better internal validation, with BMA 
narrowly edging out BIC.  

The strengths of this study include the source data, 
which draws exclusively from community dwelling 
adults age 75 or greater from 94 hospitals across the 
U.S. This data includes variables from diverse 
domains, including demographic, clinical, psychosocial 
and functional [19]. A second strength is that short-term 
mortality is a highly objective outcome which permits a 
high level of discrimination. The primary limitation for 
model selection with BMA is that, due to the 
computational burden of fitting all possible sub-models, 
its eponymous R package is limited to processing ≤ 30 
candidate variables. This is a clear disadvantage 
relative to traditional BW selection, which can 
seamlessly handle a much larger number of candidate 
variables. A limitation of the outcome of 30-day 
mortality is its low rate of incidence (2.8%). Having 
started with a large number of potential predictors, we 
are far from complying with the optimal of ≥20 events-
per-variable for selection of prognostic models [20]. A 
second limitation is that our internal validation used the 
final models from each approach rather than replicating 
the selection of the final model from the entire pool of 
candidates, suggesting optimism may be higher than 
that estimated here [21]. Despite these limitations, the 
primary objective was to demonstrate that BMA is a 
viable selection approach across multiply imputed 
datasets. Assuming the stated limitations affect the 
discrete model selection approaches in equivalent 

measure, BMA performed as well as the discrete 
approaches, and its calculation of PEP facilitates 
variable selection across multiple imputations.  

5. CONCLUSION 

In conclusion, we have demonstrated that relative to 
the discrete model approaches, BMA chose a leaner 
model that demonstrates strong face validity and 
performed well in internal validation. This study 
demonstrates that BMA is a viable technique for 
building a prognostic model from a large group of 
potential predictors that include missing data, and that 
relative values of the average of the posterior effect 
probabilities across multiple imputations can be used to 
facilitate final selection of variables.  
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