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Abstract: An index of repeatability is constructed to evaluate the relative magnitude of measurement error. This index is 
constructed as a ratio of two variance components. Estimation of the index is derived under the one-way random effects 
model. We compare the well-known maximum likelihood estimator to the Bayesian estimation procedure using 
non-informative prior. Large sample variance of the of the maximum likelihood estimator are obtained using the inverse 
of Fisher’s information matrix and the delta method. Inference procedure using the. We also construct a test statistic on 
the equality of two repeatability indices using the Monte Carlo integration and sampling Importance re-sampling method. 
We illustrate the methodologies on the estimation of the index of repeatability of Gamma-glutamyl-transferase, an 
enzyme found in many organs all over the human body, with the highest concentrations found in the liver. This enzyme’s 
level is raised in the blood in most diseases that cause damage to the liver or bile ducts and is considered an essential 
serum marker for alcohol-related liver disease. 
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1. INTRODUCTION 

The need for assessment of repeatability of disease 
predictors and biomarkers is ubiquitous in biomedical 
research. Such predictors should be well-defined and 
measured without errors. In practice, measurement 
error is a problem. Disease prediction is adversely 
affected if the predictors and other biological markers 
are not accurately measured, a problem known as 
“regression dilution bias”. For example, in fields of 
clinical diagnoses, pathologists who may unreliably 
score tissue specimens for histology, radiologists, who 
for example score the Magnetic Resonance Image 
(MRI) scan, and the biochemistry laboratory 
technicians who wrongly evaluate hemoglobin 
constituents-analysis are committing analytical errors 
that affect the accuracy of disease diagnoses.  

Apart from rater variability, some measurements are 
prone to biological variation. A well-known example is 
blood pressures.  

Recently, Al-Eid and Shoukri [1], developed an 
index of repeatability estimated from the components 
of variations of the Analysis of Variance (ANOVA) 
model. This index focuses on scaled within subject 
variation relative to the between-subject of variation. It 
is desirable that this ratio be as small as possible to 
declare measurement repeatability. It should be 
realized  that assessing the accuracy of the measured  
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outcome by a single measurement will not help 
evaluate the magnitude of the measurement error, and 
at least two measurements are needed. 

The pressing need to produce error free 
measurements are more needed than ever due to the 
emergence of advanced technologies in genomics, 
medical imaging, drug development, and their uses in 
disease diagnoses and predictions and identifying 
normal subjects in population-based studies. For 
example, construction of the normal range or reference 
range in clinical medicine relied on a large sample of 
healthy individuals where by a single measurement is 
taken from each subject [2-4]. Research has shown 
that the distribution of these measurements is affected 
by two main sources of variations; the between 
subjects and the within-subject components of 
variations [5]. We illustrate, by real-life datasets, the 
usage of the Maximum Likelihood Estimation (MLE) 
and Bayesian techniques in the estimation of 
repeatability of biomarkers that are essential for 
disease diagnosis and prediction.  

The paper has two-fold objectives. Firstly, we 
compare the two used inferential procedures when the 
target population parameter is the index of repeatability 
as defined by Al-Eid and Shoukri [1]. This, to our best 
knowledge, have not been studied in repeatability 
literature. Secondly, apply the methodologies to a 
selected biochemistry data available from hospital 
registry. We intend to extend our techniques to the 
many disease biomarkers that are available in our data 
repository. 
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This paper is structured as follows. In Section 2, we 
introduce the formal definition of the underlying model 
and specify the parameters of interest. We then derive 
the maximum likelihood estimators of the components 
of variation and that of the corresponding parameter of 
interest, namely Index of Repeatability (IR) assuming 
the normality of measurements. We use the Fisher 
information matrix to derive the variances of the 
estimated components of variation and then use the 
delta method [6] to derive the variance and the bias of 
the maximum likelihood estimator of IR. In Section 3 
we address the issue of prior specifications of the 
model parameters, and derive the posterior estimator 
of IR. In Section 4 we describe the source of our data, 
and present the sampling strategy. In Section 5 we 
present the data analytic procedures and in section 6 
we present general discussion. 

2. MAXIMUM LIKELIHOOD ESTIMATION (MLE) 

A uniquely defined parameter “Index of 
Repeatability” is the ratio of the within-subject 
biological variation to the between subject variation. To 
formalize the presentation, we assume that a single 
measurement !!"  from subject ! = 1,2,… !  with !!! 
replication has the mathematical representation:  

!!" = ! + !! + !!"        (1) 

! = 1,2,… ! 

! = 1,2,… ! 

Here !!  represents the sources of 
between-subjects biological variation, and !!" 
represents sources of within-subject variations. The 
parameter   !  is the population mean. Note that the 
assumption of additivity of components is made to 
simplify the presentation. But a multiplicative model 
may be made additive under the logarithmic 
transformation. It is further assumed that:  

!!~! 0,!!! , !"#  !!"~! 0,!!!  ,  

and that !! ⊥ !!" for all !  !"#  !.  

We define the “Index of Repeatability as” (IR) is as 

! = !!!
!!!
. Therefore, and because the within subject 

variance components !!! is in the numerator a small 
value of ! means high repeatability. 

Under the above model set-up, we can show that:  

var   !!" = !!! + !!!  

= !!! 1 + !!! !!! = !!! 1 + !   

The joint sufficient statistics (!.. ,  !!", !!") of the 
model parameters are given by: 

!.. =
!
!"

!!"!!  = grand mean, 

!!" = !!" − !!.
!

!!  = within subjects sum of 
squares 

!!. =
!
!

!!"!
!!!  = subjects’ mean 

!!" = ! !! − !.. !!
!!!  = between subjects sums of 

squares 

In terms of the familiar “Analysis of Variance” 
(ANOVA) set up we have, as shown in Table 1:  

Under the assumptions in (1) the likelihood of the 
sample ! !|!,!!!,!!!  is proportional to: 

!!! !! !!! /! exp − !!"
!!!!

!!! + !!!! !! !  

exp − !
! !!!!!!!!

(!!" + !" !.. − ! !       (2) 

Taking the natural logarithm of ! !|!,!!!,!!!  and 
differentiating with respect to the model parameters, 
equating the partial derivatives to zero and solving the 
resulting equations we get the MLE of the model 
parameters: 

!.. = µμ 

!!! = 
!!!
! !"#!!"#

!
 

!!! = !"# 

Therefore, the MLE of ! = !!!
!!!

 is thus given by: 

! = !"(!"#)
!!! !"#!!(!"#)

        (3) 

The variances of the estimated variance 
components may be obtained by inverting the Fisher’s 
information matrix. The matrix is the negative of the 
second partial derivatives of the log-likelihood with 
respect to the parameters. Summarizing, we get: 

Table 1: The General One-Way ANOVA Table with the Required Sums of Squares 

S.O.V DF S.O.S M.S EMS 

Between subjects ! − 1 SSB MSB !!! + !!!! 

Within subjects ! − ! SSW MSW !!! 

Total ! − 1    

S.O.V = “Source of variation”, DF = “Degrees of freedom” S.O.S = “Sums of squares”, M.S.=”Mean squares”, and EMS = “Expected mean squares”. The mean 
squares are obtained on dividing the sums of squares by the corresponding degrees of freedom. 
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!"#(!!!) =2!!!/!(! − 1) 

!"# !!! = 2!!! / !!  [ ( !!! + !!!! !!! + !!!! /  !!!! )+ 1/
!(! − 1)] 

!"#(!!!,!!!) = −2!!!/!"(! − 1) 

Using the Delta method [6] we derive the asymptotic 
variance of the MLE of ! 

var ! = Var !!!
!!
!!!!

!

+ Var !!!
!!
!!!!

!

+ 

2!"#(!!!,!!!)
!!
!!!!

!!
!!!!

       (4) 

Substituting in equation (4) and simplifying we get 
the asymptotic variance of the MLE of the parameter !: 

var ! = (2!! / !)(1 + !/!) 2 + 2!! / !! ! − 1 ! 
+2!!/!(! − 1) + 4!!/!" ! − 1        (5) 

Using the delta method, we derive an approximation 
to the bias of the MLE of !. The expression for the bias 
from [6] is given by: 

Bias ! = !
!!
Var !!!

!!!
!!!!

+ 2Cov !!!,!!!
!!!

!!!!!!!!
+

Var !!!
!!!
!  !!!

         (6) 

Substituting the relevant quantities in equation (6), 
we get:   

Bias !  = 2!!/!! ! − 1 ! + (2!!/!!!)(1 + !/!)2  (7) 

In the next section we use the Bayesian 
methodology to derive the posterior distribution of the 
proposed index of repeatability. 

3. BAYESIAN ANALYSIS 

Much work on Bayesian methods as a scientific tool 
for statistical inference appeared in several books the 
most important of which are [7-10]. The first theoretical 
presentation of Bayesian methods in the analysis of 
one-way random effects models was introduced by Hill 
[11]. The work highlighted the complexity of the 
problem of estimation of variance components under 
the one-way ANOVA. One of the main ingredients for 
conducting valid Bayesian statistical inference is to 
correctly specify the prior distribution. Therefore, care 
should be taken in assigning priors in order to construct 
valid posterior confidence intervals. Spiegelhalter [12] 
employed several priors the most important of which is 
Jeffery’s prior, as reviewed in [13]. The prior 
specifications for the variance components and the 
grand mean require a joint prior which we denote by 
! !!!,!!!, !    11 . 

Specifically, we shall consider priors assuming that 
! is independent of   !!!!"#  !!!  such that: 

  ! !!!,!!!, ! ∝ ! !   ! !!!,!!!    

In most situations the non-informative prior 
! ! = 1  is used. Therefore, the joint posterior 
distribution is then given by marginal posterior of 
!!!!"#  !!!  given as 

! !!!,!!! !  ∝ ! !!!,!!!, µμ
!
!! ! !|!!!,!!!, !   !  ! 

∝   ! !!!,!!! !!!
!! !!!

! exp
−!!"
2!!!  

 

×   !!! + !"!! !! !   exp !!!"
! !!!!!"!!   

        (8) 

Following [11], we use Jefferey’s the prior 
specifications:  

! !!!,!!! ∝
1

!!! !!! + !"!!
 

Substituting ! !!!,!!!  in (8), the joint posterior 
distribution of !!! and !!! is thus given by: 

  ! !!!,!!! !   !   !!!
!! !!!

! !!  !"#[
!!!"
!!!
!   ]  !  exp  [!!!"/!!!!

!

!! !!
!

!!!!

] 

X !!!
!(!!!! ) 1 + !!!

!"!!

!(!!!) !
        (9) 

In the joint posterior distribution given in (9). Let us 
consider the transformations 

! = !!!

!!!
, and η = !!! 

The Jacobian of the transformation is thus given by: 

! =
! !!!,!!!

! !, !
= ! !

0 1 = ! 

Substituting in equation (9) and integrating η out we 
get the posterior distribution of !, as shown in equation 
(10) 

! ! ! !  !!!
!!!
! !! ! + ! !! ! !!" !!! !!""#

! !!!

!! !!!
(10) 

Lemma: For small values of !  !"#ℎ  !ℎ!"   1 + !
!
≈

1, the  posterior  distribution  of  !  is such that: 

  F= 
!!"
!!"

!!
!!
!

!!!
       (11) 

where, F denotes a random variable that has 
F-distribution with degrees of freedom !! = k-1, and 
!! = !(! − 1). 

Solving equation (11) for ! we get:  

! =
! !!"

!!"
!!
!!
!

!! !!"
!!"

!!
!!
!

      (12) 

We shall derive the posterior means and variance of 
!  using direct simulations. This equivalent to 
Monte-Carlo Integration (MCI) as shown in Gelfand 
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and Smith [14]. We construct 2.5% and 97.5% 
quantiles on the difference between the IR for males 
and females using the Monte Carlo simulations and the 
Sampling Importance Re-sampling method (SIR). 

4. DATA SETS 

The biochemistry data of the King Faisal Specialist 
Hospital and Research Center (KFSHRC) includes 
results of 28 common tests that were retrieved from 
January 2014 to June 2016. These include, sodium, 
potassium, phosphorus, and among others, 
gamma-glutamyl transferase. The task force charged 
with the determination of the normal range for these 
data designed an action plan whose first step is to 
establish an acceptable validation criterion. The data 
were filtered to include the information of test name, 
value, gender, age, and sample type, and then 
exported to Excel data sheet for statistical analysis. 
Before a validation parameter was selected, the data 
manager was directed to include subjects with 
complete data (no missing test values) that had three 
consecutive readings before the proposed validation 
procedure is carried out. The target parameter selected 
for this study was Gamma-glutamyl-transferase (GGT). 

The GGT is an enzyme that is found in many organs 
all over the body, with the highest concentrations found 
in the liver. GGT level is raised in the blood in most 
diseases that cause damage to the liver or bile ducts 
and is conceded as essential serum marker for 
alcohol-related liver disease [15].  

The GGT’s level not only predicts liver disease but 
also is associated with increasing the risk to numerous 

conditions and diseases including coronary heart 
disease, type-II diabetes (T2D) [16], and stroke [17,18].  

The literature from different gender and ethnic 
groups across several populations reliably demonstrate 
robust predictive influence for the GGT. The first 
American epidemiologic study to test the GGT level 
was between 1978 and 1982, with 3,853 participants 
[16].  

In general, all reported studies suggest that serum 
GGT is a strong predictor of numerous diseases such 
as diabetes, hypertension, liver damage and certain 
types of cancer [18]. The GGT as predictor of 
components of metabolic syndrome and heart diseases 
was reported in [19]. 

We divided the GGT data into two groups; male (15 
subjects) and female (33 subjects). In order to assess 
the repeatability of the targeted enzyme (GGT), only 
subjects who were assessed in three occasions 
(phases) were included in our investigation. Due to 
these strict inclusion criteria, in addition to time and 
cost constrains, the male group was small in size and 
the two groups were not balanced.  

5. METHODS AND DATA ANALYSIS 

The main objective of the data analytics is to 
estimate the MLE of the IR and the Bayesian methods 
and draw comparisons. The analyses were performed 
separately for each group. It is also of interest to test 
the hypothesis of equality of IR in both groups using 
Wald’s confidence interval when the MLE is used We 
then use the posterior distribution of the difference 

 
Figure 1: Line graph depicting subject profile plot for female GGT data. 

The x-axis: Time _code represent the occasions at which test values were obtained. 
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between male and female indices to construct the 
highest posterior interval on the difference between the 
posterior means of the two indices of repeatability. In 
the Bayesian analysis we shall estimate the quantiles 
of the difference using both Monte-Carlo integration 
and Sampling Importance Re-sampling techniques. 

5.1. Data Visualization 

Figures 1 and 2 show the line graphs of the three 
reading for each individual subject in the two groups. 
As can be seen there is no mush variations among the 
three readings (small within subject variations) as 
compared to the between subject variations (large 
between subject variation). In Figures 3 and 4 we 
present the boxplots for female and male data to 

explore the possibility of outliers. There are no outliers 
in the male data, while the female data has six outlying 
observations. We decided not to exclude theses 
outliers from the analyses. 

5.2. Data Analytics 

In Table 2, we present the needed summary 
statistics for the maximum likelihood and Bayesian 
analyses. Using equation (6) we note that the bias of 
the MLE is extremely small, and for all practical 
purposes is considered zero. In Table 3 we present the 
MLE of the IR parameter, its standard error, which is 
the square root of the variance given by equation (5). 
The upper and lower limits of an 95% confidence 
interval are given as well.  

 
Figure 2: Line graph depicting subject profile plot for male GGT data. 

Similarly, the x-axis: Time _code represent the occasions at which test values were obtained. 

 
Figure 3: Box plot of GGT female. 
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In Table 4 we present the posterior mean and 
standard deviations obtained from direct simulations for 
both groups. The R code is quite simple and is 
presented for male data in Appendix A  

The posterior means and standard errors were 
derived using Monte-Carlo Integration following the 
methodology in [20] 

It is of interest do derive inference on the difference 
between two repeatability indices. We can use Wald’s 
interval to construct 95% confidence interval of the 
difference parameter: 

Diff. = !! -!! 

This interval is given by: 

(  !! -!! ) ± 1.96 !"#$((!"#   !! + !"#   !! ) (13) 

The variances in equation (13) are given by 
equation (5). 

We can use the Monte Carlo Integration method to 
construct the Q-2.5 and Q-97.5 limits on the difference 
using the Sampling Importance Resampling (SIR) as 
explained in [20]. The results are given in Table 4b. 
Note that the SIR is useful when the analytic 
expression of the posterior distribution is not available. 
Relaxing the assumption that 1 + !

!
≈ 1  does not 

necessarily hold, the SIR is a method of choice. 

6. COMMENTS AND DISCUSSION 

In this article, we discussed two well-known 
techniques of inference, maximum likelihood and 

 
Figure 4: Box plot of GGT male. 

 

Table 2: Relevant Summary Statistics for both Groups 

Group k =number of subjects n=number of replications SSW SSB 

Male 
Female 

15 
33 

3 
3 

41624 
292119 

1842750 
57275035 

 

Table 3: Maximum Likelihood Analysis 

Group !!!
 !!! !ml SE 

95% confidence limits on ! 

L U 

Male 
Female 

40487.5 
576959.4 

1387.5 
4426.05 

0.0343 
0.0077 

0.016 
0.0023 

0.003 
0.003 

0.066 
0.012 

Table 4a: Posterior Analysis Based on the Marginal Distribution 

Group Posterior meanof θ  Posterior Standard error   Quantiles 

 q.025 q.975 

Male 
Female 

0.0359 
0.0077 

0.0186 
0.0025 

0.0119 
0.0038 

0.0850 
0.0134 
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Bayesian methods to estimate repeatability as defined 
in [1]. We demonstrated for the GGT data that the 
maximum likelihood produces a very small bias even in 
small samples. However, the precision will be definitely 
increased when larger samples were made available.  

 
Figure 5: Histogram of the difference using Monte Carlo 
Integration. 

 

 
Figure 6: Histogram of the difference using SIR together with 
histogram of weights. 

For Bayesian inference, we used Jeffreys’ prior 
because it is well documented in the literature [11,13] 

and is much easier to derive when compared to other 
priors. For complex models, like ANOVA with repeated 
measures, analytical derivation of a reference prior 
could be very difficult, and indeed problematic [11].  

Another issue that warrants further investigation is 
related to the SIR method. As can be seen from Figure 
6, most of the weights in the histogram of the weights 
are concentrated around zero. This means that in this 
approach the same small set of values are repeatedly 
selected. This leads to histogram similar to the one in 
the bottom of Figure 6. One explanation of this problem 
may be attributed to the poor choice of the suggested 
distribution where most values are from the actual 
posterior density are positioned. We note also, in 
comparing between groups, we avoided the traditional 
hypothesis procedure, and focused on confidence 
interval construction, following the recommendations 
given in [21]. 

Finally, this study focused on cases when the 
underlying distribution of the selected biomarker is 
normal. In practice the distributions of many 
biomarkers are far from being normal or even 
symmetric. In addition, the distributions can be 
heavy-tailed. Extending the Bayesian approaches to 
analyze repeatability of biomarkers whose distributions 
are non-symmetric in the presence of multiple 
observations for each subject is an open area for 
research.  
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APPENDIXES 

Appendix A: 

R Code for Simulating the Posterior Distribution of 
IR Using Male Data 

k1=15 

n1=3 

Table 4b: Inference on the Difference between Two Independent Indices of Repeatability using the q-2.5% and q-97.5% 
Limits 

Method q.025 q.975 

Wald’s Interval -0.0041 0.0573 

Monte Carlo Integration 0.0036 0 .0755 

SIR 0.0036 0.1000 



8  International Journal of Statistics in Medical Research, 2020, Vol. 9 Al-Eid and Shoukri 

w1=41624 

b1=1842750 

d11=k1-1 

d21=k1*(n1-1) 

f1=rf(10000,d11,d21) 

th1=((d11/d21)*(w1/b1)*f1) 

th1=th1/(1-th1) 

Monte.Carlo.mean=mean(th1) 

Monte.Carlo.mean 

Monte.Carlo.sd=sd(th1) 

Monte.Carlo.sd 

quantile(th1,prob=c(0.025,0.975)) 

hist(th1) 

Appendix B 

R CODE for Sampling Importance Resampling 
(SIR) 

sampling.diff=function(n1,n2,d11,d12,d21,d22,w1,b1,w
2,b2,size=10000) 

{ 

t1 =rf(size,d11,d12) 

t1=n1*(((w1/b1)*(d11/d12)*t1)/(1-(w1/b1)*(d11/d12)*t1)
) 

diff=runif(size,min=0,max=t1) 

log_weight=((d11/2)-1)*log(t1)-((d11+d12)/2)*log(1+((n
1*t1)*(w1/b1))/(n1+t1)) 

+((d21/2)-1)*log(t1-diff)-((d21+d22)/2)*log(1+((n2*(t1-di
ff))*(w2/b2))/(n2+(t1-diff))) 

weight=exp(log_weight) 

diff.post=sample(diff, size, replace=T, prob=weight) 

layout(matrix(c(1,2), byrow=T, nrow=2)) 

mean(diff.post) 

sd(diff.post) 

hist(diff.post) 

hist(weight) 

return(quantile(diff.post,prob=c(.025,.975))) 

} 

sampling.diff(3,3,14,30,32,66,41624,1842750,292119,
57275035 ,size=10000) 
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