
 International Journal of Statistics in Medical Research, 2021, 10, 63-71 63 

 
 E-ISSN: 1929-6029/21  © 2021 Lifescience Global 

Existing Approaches and Development Perspectives for Inferences 

K.J. Kachiashvili1,2,3,* 

1Georgian Technical University, 77, st. Kostava, Tbilisi, 0175, Georgia 
2I. Vekua Institute of Applied Mathematics of the Tbilisi State University, 2, st. University, Tbilisi, 0179, 
Georgia 
3N. Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, 4, st. Gr. 
Peradze, Tbilisi, 0159, Georgia 

Abstract: Statistical hypotheses testing is one of the basic direction of mathematical statistics the methods of which are 
widely used in theoretical research and practical applications. These methods are widely used in medical researches 
too. Scientists of different fields, among them of medical too, that are not experts in statistics, are often faced with the 
dilemma of which method to use for solving the problem they are interested. The article is devoted to helping the 
specialists in solving this problem and in finding the optimal resolution. For this purpose, here are very simple and clearly 
explained the essences of the existed approaches and are shown their positive and negative sides and are given the 
recommendations about their use depending on existed information and the aim that must be reached as a result of an 
investigation.  
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1. INTRODUCTION 

 A statistical hypothesis is a formalized record of 
properties of the investigated phenomenon and 
relevant assumptions. The statistical hypotheses are 
set when random factors affect the investigated 
phenomena, i.e. when the observation results of the 
investigated phenomena are random. The properties of 
the investigated phenomenon are completely defined 
by its probability distribution law. Therefore, the 
statistical hypothesis is an assumption concerning this 
or that property of the probability distribution law of a 
random variable. Mathematical statistics is the set of 
methods for studying the events caused by random 
variability and estimates the measures (the 
probabilities) of the possibility of occurrence of these 
events. For this reason, it uses distribution laws as a 
rule. Practically all methods of mathematical statistics 
one way or another, in different doses, use hypotheses 
testing techniques. Therefore, it is very difficult to 
overestimate the meaning of the methods of statistical 
hypotheses testing in the theory and practice of 
mathematical statistics.  

 A lot of investigations are dedicated to the 
statistical hypotheses testing theory and practice (see, 
for example, [1-10]) and their number increase steadily. 
But, despite this fact, there are only three following 
basic ideas (philosophies) of hypotheses testing at 
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parallel experiments: the Fisher, the Neyman-Pearson 
and the Jeffreys ones ([11-14]). They use different 
ideas for testing hypotheses but all of them are 
identical in one aspect: they all necessarily accept one 
of the stated hypotheses at deciding of existence or 
absence of enough information for deciding with given 
reliability. The considered methods have well known 
positive and negative sides. All other existed methods 
are the particular cases of these approaches taking into 
account the peculiarities of the concrete problems and 
adapting to these specificities for increasing the 
reliability of the decision (see, for example, [15-24]).  

Let us introduce a brief formal description of these 
methods.  

2. THE METHODS OF HYPOTHESES TESTING 

2.1. The Fisher’s  p -Test 

Let us suppose that the observation result 
X ~ f (x |! ) , where f (x |! )  is the probability distribution 
density of X  at hypothesis H  and it is necessary to 
test the hypothesis H0 :! =!0 . Let us choose the test 
statistics T = t(X)  such that large values T  reflects 
evidence against H0 . After computing the p ! value  
p = P(t(X) ! t(x) | H0 ) , where t(x)  is a value of the 

statistics t(X) , computed by sample x , the hypothesis 
H0  will be rejected if p  is small [24].  

Some methods of generalization of this approach 
for multiple hypotheses can be found in [25].  
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2.2. The Newman-Pearson’s Frequentist Test 

For the Neyman-Pearson (N-P) criterion for testing 
a null hypothesis H0 :! =!0 , it is necessary to form 
some alternative hypothesis, for instance, HA :! =!A , 
!A >!0 . The null hypothesis rejection region has the 
form T ! c  and otherwise, it is accepted. Here c  is the 
critical value defined from the condition 
! = P(T " c | H0 ) . Quantity !  is the Type I error 
probability, while the Type II error probability is 
calculated as ! = P(T < c | HA )  [24]. 

Generalization of this method for many (more than 
two) hypotheses is given by generalized Neyman-
Pearson lemma [26] but its application in practice is 
quite problematic. 

2.3. The Jeffreys Bayesian Approach 

The general statement of the Bayes Method 
(Jeffrey’s Method) for an arbitrary number of 
hypotheses is the following.  

Let the sample xT = (x1, ..., xn )  be generated from 
p(x;! ) , and the problem of interest is to test 

Hi :!i " #i , i =1, 2, ...,S , where !i " Rm , i =1, 2, ...,S , 

are disjoint subsets with  !!i = R
m . The number of 

tested hypotheses is S . Let the prior on !  being 

denoted by !(" | Hi )p(Hi )i=1

S
# , where for each 

i =1, 2, ...,S , p(Hi )  is the a priori probability of 
hypothesis Hi  and !(" | Hi )  is a prior density with 
support !i ; p(x | Hi )  denotes the marginal density of 

x  given Hi , i.e., p(x | Hi ) = p(x |! )"(! | Hi )d!
#i
$  and 

 
D = d{ }  is the set of solutions, where 

  
d = d1,..., dS{ } , it 

is so that  

  

di =
1, if hypothesis Hi is accepted ,

0, otherwise;

!

"
#

$
#

 

!(x) = !1(x),!2 (x), ...,!S (x){ }  is the decision function that 
associates each observation vector x  with a certain 
decision 

  x
!(x)" #"" d $ D ; 

! j  is the region of acceptance of hypothesis H j , 

i.e. ! j = x :" j (x) =1{ } . It is obvious that   !(x)  is 

completely determined by the ! j  regions, i.e. 

  !(x) ={"1,"2 ,...,"S } .  

Let us introduce the loss function L(Hi ,!(x))  which 
determines the value of loss in the case when the 
sample has the probability distribution corresponding to 
the hypothesis Hi , but, because of random errors, a 
decision !(x)  is made. 

Making the decision that the hypothesis Hi  is true, 
in reality, true could be one of the hypotheses 
H1, ...,Hi!1,Hi+1, ...,HS , i.e. accepting one of the 
hypothesis, we risk rejecting one of (S !1)  the really 
true hypotheses. This risk is called the risk 
corresponding to the hypothesis Hi and is equal to [1, 
27]  

  
!(Hi ,") = L(Hi ,"(x)) p(x | Hi )dx

Rn# . 

A complete risk for any decision rule !(x) , i.e. the 
risk of making an incorrect decision, is characterized by 
the function: 

 
r! = "(Hi ,!)p(Hi )i=1

S
# =

p(Hi ) L(Hi ,!(x))p(x | Hi )dxRn$i=1

S
#

,         (1) 

which is called the risk function.  

Decision rule !*(x)  or, what is the same, 

!i
*, i =1, ...,S - the regions of acceptance of hypotheses 

Hi , i =1, ...,S , is called a Bayes rule if there takes 
place: 

r
!*
= min

! (x ){ }
r!             (2) 

Its solutions for general and stepwise loss functions 
are given below.  

2.3.1. General Loss Function 

In the general case, the loss function L(Hi ,!(x))  
consists of two components:  

  

L(Hi ,!(x)) = L1(Hi ,! j (x) =1)
j=1

S
" +

L2 (Hi ,! j (x) = 0)
j=1

S
" ,

        (3) 

i.e. loss function L(Hi ,!(x))  is the total loss of 
incorrectly accepted and incorrectly rejected 
hypotheses.  

Taking into account (3), the solution of the problem 
(2) can be written down in the following form [1, 27]: 
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! j =
x : L1(Hi ," j (x) =1)p(Hi )p(x | Hi )i=1

S
#

< L2 (Hi ," j (x) = 0)p(Hi )p(x | Hi )i=1

S
#

$

%
&

'&

(

)
&

*&
, 

j =1, ...,S .            (4)  

Let’s suppose that the losses are the same within 
the acceptance and rejection regions and introduce 
denotations L1(Hi ,H j )  and L2 (Hi ,H j )  for incorrect 
acceptance of Hi  when H j  is the true and incorrect 
rejection of Hi  in favor of H j . Then it is possible to 
rewrite the risk function (1) as follows [27, 28]:  

r! = L(Hi ,H j )p(Hi ) p(x | Hi )dx" j
#i=1,i$ j

S
%j=1

S
% ,       (5) 

and condition (4) takes the form 

! j = x : L1(Hi ,H j )p(Hi | x)i=1

S
" < L2 (Hi ,Hk )p(Hi | x)i=1

S
"{ ;   

!k : k " 1, ..., j #1, j +1, ...,S( )}, j =1, ...,S .         (6) 

Example 2. Let us consider the case when the 
number of hypotheses equals two. Then risk function 
(5) is 

r! = L(H1,H 2 )p(H1 ) p(x | H1 )dx"2
#

+L(H 2 ,H1 )p(H 2 ) p(x | H 2 )dx"1
#

,         (7) 

and hypotheses acceptance regions (4) take the form 

!1 = x : L1(H1,H1 )p(H1 )p(x | H1 )+ L1(H2 ,H1 )p(H2 )p(x | H2 ) <{  

< L2 (H1,H 2 )p(H1 )p(x | H1 )+ L2 (H2 ,H 2 )p(H2 )p(x | H2 )} , 

!2 = x : L1(H1,H 2 )p(H1 )p(x | H1 )+ L1(H2 ,H 2 )p(H2 )p(x | H2 ) <{  

< L2 (H1,H1 )p(H1 )p(x | H1 )+ L2 (H2 ,H1 )p(H2 )p(x | H2 )} .(8) 

2.3.2. Stepwise Loss Function  

Let us suppose that the losses for incorrectly 
accepted hypotheses are identical, while those for 
correctly-made decisions are equal to zero, i.e. 

L(Hi ,H j ) =
C at i ! j,

0 at i = j.

"

#
$

%$
          (9) 

In this case, risk function (5) takes the form [27-30]: 

  
r! = C " (1# p(Hi ) p(x | Hi )dx

$i
%i=1

S
& ) .       (10) 

The minimum in (10) is achieved by solving the 
problem:  

max
!i{ }

p(Hi ) p(x | Hi )dx
!i
"i=1

S
# .       (11) 

It is evident, that we can consider C =1  without 
limiting the generality.  

It is not difficult to be persuaded that the solution of 
problem (11) has the following form: 

!i = {x : p(Hi )p(x | Hi ) > p(H j )p(x | H j );
"j : j # (1, ..., i $1, i +1, ...,S)}

.      (12) 

Let us denote: 

!ij = {x : p(Hi )p(x | Hi ) > p(H j )p(x | H j )} =  

= x : p(x | Hi )
p(x | H j )

>
p(H j )
p(Hi )

!
"
#

$#

%
&
#

'#
.        (13) 

Then 

   
!i = !ijj=1, j"i

S! .  

Example 3. For stepwise loss functions (9), 
hypotheses acceptance regions (12) at testing two 
hypotheses are the following 

!1 = {x : p(H1 )p(x | H1 ) > p(H 2 )p(x | H 2 )} , 

!2 = {x : p(H 2 )p(x | H 2 ) > p(H1 )p(x | H1 )} .     (14) 

An attempt to reconcile the different points of view 
of noted philosophies was made in [2], and as a result, 
there was offered a new, compromise T *  method of 
testing. The method uses the Fisher’s p -value criterion 
for making a decision, the Neyman-Pearson’s 
statement (using basic and alternative hypotheses) and 
Jeffrey’s formulae for computing the Type I and Type II 
conditional error probabilities for every observation 
result x  on the basis of which the decision is made.  

2.4. The Berger’s Conditional Test 

The conditional test T *  consists of the following 

T * =

if B(x) ! r, reject H 0 and report conditional error

probability (CEP) "(B(x)) = B(x) / (1+ B(x)),

if r < B(x) < a make no decision,

if B(x) # a, accept H 0 and report

CEP $(x) =1 / (1+ B(x)),

%

&

'
'
'
'

(

'
'
'
'
'

 

where B(x) = p(x | H 0 ) / p(x | HA )  is the likelihood ratio 
and a  and r  are defined as follows 
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r =1  and a = F0
!1(1! FA (1))  if F0 (1) !1" FA (1) , 

r = FA
!1(1! F0 (1))  and a =1  if F0 (1) >1! FA (1) ,      (15) 

where F0  and FA  are the cumulative distribution 
functions (c.d.f.) of B(X)  under p(x | H 0 )  and 
p(x | HA ) , respectively.  

As was mentioned in [31, p. 196], “T *  is an actual 
frequentist test; the reported CEPs, !(B(x))  and 
!(B(x)) , are conditional frequentist Type I and Type II 
error probabilities, conditional on the statistic we use to 
measure the strength of evidence in the data. 
Furthermore, !(B(x))  and !(B(x))  will be seen to have 
the Bayesian interpretation of being (objective) 
posterior probabilities of H 0  and HA , respectively. 
Thus, T *  is simultaneously a conditional frequentist 
and a Bayesian test.” Generalization of the T *  test for 
any number of hypotheses seems quite problematic. 
For the general case, it is possible only by simulation 
because the definition of the exact distribution of B(x)  
likelihood ratio for arbitrary hypothetical distributions is 
very difficult if not impossible.  

2.5. Constrained Bayesian Methods (CBM) 

A new approach (philosophy) to the statistical 
hypotheses testing, called Constrained Bayesian 
Methods (CBM), was comparatively recently developed 
[24, 25, 27, 32-41]. This method differs from the 
traditional Bayesian approach with a risk function split 
into two parts, reflecting risks for incorrect rejection and 
incorrect acceptance of hypotheses and stating the risk 
minimization problem as a constrained optimization 
problem when one of the risk components is restricted 
and the other one is minimized. It generates data-
dependent measures of evidence with regard to the 
level of restriction. Despite absolutely different 
motivations of the introduction of T *  and CBM, they 
lead to the hypotheses acceptance regions with 
identical properties in principle. Namely, in despite of 
the classical cases when the observation space is 
divided into two complementary sub-spaces for 
acceptance and rejection of tested hypotheses, here 
the observation space contains the regions for making 
the decision and the regions for no-making the decision 
(see, for example, [2, 25, 37, 38, 40]). Though, for 
CBM, the situation is more differentiated than for T * . 
For CBM the regions, for no-making the decision, are 
divided into the regions of the impossibility of making 
the decision and the regions of the impossibility of 
making a unique decision. In the first case, the 
impossibility of making the decision is equivalent to the 
impossibility of making the decision with a given 
probability of the error for a given observation result, 
and it becomes possible when the probability of the 

error decreases. In the second case, it is impossible to 
make a unique decision when the probability of the 
error is required to be small, and it is unattainable for 
the given observation result. By increasing the error 
probability, it becomes possible to make a decision.  

There are possibilities to formulate nine different 
statements of CBM depending on what type of 
restrictions is desired proceeding from the aim of the 
practical problem that must be solved [25, 32, 38]. 
They are: 1) Restrictions on the averaged probability of 
acceptance of true hypotheses (Task 1); 2) Restrictions 
on the conditional probabilities of acceptance of true 
hypotheses (Task 2); 3) Restrictions on the conditional 
probabilities of acceptance of each true hypothesis 
(Task 21); 4) Restrictions on posterior probabilities of 
acceptance of true hypotheses (Task 3); 5) Restrictions 
on the averaged probability of rejection of true 
hypotheses (Task 4); 6) Restrictions on the conditional 
probabilities of rejection of each true hypothesis (Task 
5); 7) Restrictions on a posteriori probabilities of 
rejection of each true hypothesis (Task 6); 8) 
Restrictions on probabilities of rejection of true 
hypothesis (Task 61); 9) Restrictions on the posterior 
probability of rejected true hypotheses (Task 7). 

Let’s introduce Task 1, as an example, for 
demonstration of the specificity of CBM. In this case, 
we have to minimize the averaged loss of incorrectly 
accepted hypotheses 

r! =min
" j{ }

p(Hi ) L1(Hi ,! j (x) =1)p(x | Hi )dx" j
#j=1

S
$i=1

S
${ } ,(16) 

subject to the averaged loss of incorrectly rejected 
hypotheses 

p(Hi ) L2 (Hi ,! j (x) = 0)p(x | Hi )dxRn"# j
$j=1

S
%i=1

S
% =  

= p(Hi ) L2 (Hi ,! j (x) = 0)p(x | Hi )dxRn"j=1

S
#i=1

S
# $  

! p(Hi ) L2 (Hi ," j (x) = 0)p(x | Hi )dx# j
$j=1

S
%i=1

S
% & r1 .  (17) 

where r1  is some real number determining the level of 
the averaged loss of incorrectly rejected hypotheses.  

By solving problem (16), (17), we have  

! j =
x : L1(Hi ," j (x) =1)p(Hi )p(x | Hi )i=1

S
#

< $ L2 (Hi ," j (x) = 0)p(Hi )p(x | Hi )i=1

S
#

%

&
'

('

)

*
'

+'
, 

j =1, ...,S,           (18) 

where Lagrange multiplier !  ( ! > 0 ) is defined so that 
in (2.16) the equality takes place. 
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Example 4. Let us consider stepwise losses 

L1(Hi ,! j (x) =1) =
0 at i = j,

1 at i " j,

#
$
%

&%
, 

L2 (Hi ,! j (x) = 0) =
0 at i " j,

1 at i = j.

#
$
%

&%
        (19) 

Then problem (16), (17) transforms  

r! =min
" j{ }

p(Hi ) p(x | Hi )dx" j
#j=1, j$i

S
%i=1

S
%{ } ,      (20) 

subject to  

1! p(Hi ) p(x | Hi )dx"i
#i=1

S
$ % r1 ,        (21) 

and hypotheses acceptance regions (18) take the form 
[40].  

! j = x : p(Hi )p(x | Hi )i=1,i" j

S
# < $p(Hj )p(x | Hj ){ } , 

j =1, ...,S .          (22) 

When number of hypotheses S = 2  statement of the 
problem and its solution are 

r! = min
"1,"2{ }

p(H1 ) p(x | H1 )"2
# + p(H2 ) p(x | H2 )"1

#{ } ,     (23) 

p(H1 ) p(x | H1 )dx!1
" + p(H2 ) p(x | H2 )dx!2

" #1$ r1 ,    (24) 

!1 = x : p(H2 )p(x | H2 ) < "p(H1 )p(x | H1 ){ } , 

!2 = x : p(H1 )p(x | H1 ) < "p(H2 )p(x | H2 ){ } ,     (25) 

In our opinion these properties of T *  and CBM are 
very interesting and useful. They bring the statistical 
hypotheses testing rule much close to the everyday 
decision-making rule when, at shortage of necessary 
information, acceptance of one of made suppositions is 
not compulsory. 

The specific features of hypotheses testing regions 
of the Berger’s T *  test and CBM, namely, the 
existence of the no-decision region in the T *  test and 
the existence of regions of the impossibility of making a 
unique or any decision in CBM give the opportunities to 
develop the sequential tests on their basis [3, 25, 34, 
42]. The sequential test was introduced by Wald in the 
mid-forties of the last century [43, 44].  

Let’s briefly describe the basic sequential methods 
of hypotheses testing. 

3. SEQUENTIAL TESTS  

3.1. The Wald’s Method 

The essence of Wald’s sequential test consists in 
the following (Wald, 1947a,b): compute the likelihood 

ratio B(x) = p(x1, x2 , ..., xn | H 0 ) / p(x1, x2 , ..., xn | HA )  for n  
sequentially obtained observation results, and, if  

B < B(x) < A , 

do not make the decision and continue the observation 
of the random variable. If  

B(x) ! A , 

accept the hypothesis H 0  on the basis of n  
observation results. If  

B(x) ! B , 

accept the hypothesis HA  on the basis of n  
observation results.  

The thresholds A  and B  are chosen so that  

A = 1! "
#

 and B = !
1"#

. 

Here !  and !  are the desirable values of the error 
probabilities of Types I and II, respectively.  

It is proved [43] that in this case, the real values of 
the error probabilities of Types I and II are close 
enough to the desired values, but still are distinguished 
from them. 

Since Wald’s pioneer works, a lot of different 
investigations were dedicated to the sequential 
analysis problems [25, 45, 46] and efforts to the 
development of this approach constantly increase as it 
has many important advantages in comparison with the 
parallel methods [47].  

3.2. The Bayes’ Method  

Concerning the Bayesian sequential methods, the 
following is written in [1]: “While Bayesian analysis in 
fixed sample size problems is straightforward 
(robustness consideration aside), Bayesian sequential 
analysis is very difficult” (p. 442). The idea of 
sequential Bayesian procedure consists in computation 
the Bayes risk function for every stage of obtained 
observation result and its comparison with expected 
posterior Bayes risk that will be obtained if more 
observations are taken. If the posterior Bayes risk is 
greater than the Bayes risk function, to stop 
experimentation and to make a decision, otherwise to 
continue experimentation.  

The readers, interested in details of the sequential 
Bayesian method, can refer to the following sources [1, 
48, 49].  
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3.3. The Berger’s Method 

The sequential test developed on the basis of T *  
test is as follows [3]:  

if the likelihood ratio B(x) ! r , reject H 0  and report the 
conditional error probability !(B(x)) = B(x) / (1+ B(x)) ;  

if r < B(x) < a , make no decision and the observations 
continue;  

if B(x) ! a , accept H 0  and report the conditional error 
probability !(B(x)) =1 / (1+ B(x)) . 

Here r  and a  are determined by ratios (15).  

3.4. The Method of Sequential Analysis of Bayesian 
Type 

Let us suppose that there is an opportunity to obtain 
repeated observations. To introduce the method of 
sequential analysis for an arbitrary number of 
hypotheses on the basis of constrained Bayesian task, 
let us use the denotations introduced by [43]. Let Rm

n  
be the sampling space of all possible samples of m  
independent n -dimensional observation vectors 

   x = (x1,..., xn ) . Let us split Rm
n  into S +1  disjoint 

subregions Rm,1
n , Rm,2

n ,..., Rm,S
n , Rm,S+1

n  such that 

 
Rm
n = Rm,i

n
i=1

S+1
! . Let    p(x1,...,xm | Hi )  be the total 

probability distribution density of m  independent  n -
dimensional observation vectors; m  is the sample size. 
Then    p(x1,...,xm | Hi ) = p(x1 | Hi ) ! ! ! p(xm | Hi ).  

Let us determine the following decision rule [25, 33, 
42]. If the matrix of observation results    x = (x1,...,xm )  

belongs to the subregion 
  
Rm,i

n ,   i =1,..., S , then the 

hypothesis  Hi  is accepted and, it    x = (x1,...,xm )  

belongs to the subregion Rm,S+1
n , the decision is not 

made and the observations continue until one of the 
tested hypotheses is accepted.  

Regions Rm,i
n , i =1, ...,S +1 , are determined in the 

following way: 
  
Rm,i

n , i =1,..., S , is such a part of 

acceptance region  !i
m  of a hypothesis  Hi  that does 

not belong to any other region 

  
! j

m , j =1,..., i "1, i+1,..., S ; Rm,S+1
n  is a part of sampling 

space Rm
n  that belongs simultaneously to more than 

one region   !i
m , i =1,..., S , or it does not belong to any 

of these regions. Here the index  m  (  m =1,2,... ) points 
to the fact that the regions are determined on the basis 
of  m  sequential observation results.  

Hypotheses acceptance regions 
  
Rm,i

n ,    i =1,..., S +1 , 
could be determined as follows.  

Let us denote the population of subregions of 
intersections of acceptance regions !i

m  of hypotheses 
Hi  (i =1, ...,S)  in CBM of hypotheses testing with the 
regions of acceptance of other hypotheses H j , 

j =1, ...,S , j ! i , by Ii
m . By 

   
Em

n = Rm
n ! "i

m
i=1

S
! , we 

denote the population of regions of space Rm
n  that do 

not belong to any of the hypotheses acceptance 
regions. Then the hypotheses acceptance regions in 
the method of sequential analysis of Bayesian type are 
determined in the following way: 

  
Rm,i

n = !i
m / Ii

m , i =1,..., S ;
   
Rm,S+1

n = Ii
m

i=1

S
!
!

"
#

$

%
& Em

n! . (26) 

Here regions !i
m ,  Ii

m ,    Em
n ,  i =1, ...,S , are defined 

based on hypotheses acceptance regions in CBM (see 
for example, (18)).  

Application of CBM to different types of hypotheses 
(two and many simple, composite, directional and 
multiple hypotheses) with parallel and sequential 
experiments showed the advantage and uniqueness of 
the method in comparison with existing ones [24, 25, 
33-36, 41]. The advantage of the method is the 
optimality of made decisions with guaranteed reliability 
and minimality of necessary observations for given 
reliability. CBM uses not only loss functions and a priori 
probabilities for making decisions as the classical 
Bayesian rule does, but also a significant level as the 
frequentist method does. The combination of these 
opportunities improves the quality of made decisions in 
CBM in comparison with other methods. This fact is 
many times confirmed by the application of CBM to the 
solution of different practical problems [25, 39, 50-58, 
59]. 

Finally, it must be noted that the detailed 
investigation of different statements of CBM and the 
choice of optimal loss functions in the constrained 
statements of the Bayesian testing problem opens wide 
opportunities in statistical hypotheses testing with new, 
beforehand unknown and interesting properties. On the 
other hand, the statement of the Bayesian estimation 
problem as a constrained optimization problem gives 
new opportunities in finding optimal estimates with 
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new, unknown beforehand properties, and it seems 
that these properties will advantageously differ from 
those of the approaches known today [60]. In our 
opinion, the proposed CBM are the ways for future, 
perspective investigations which will give researchers 
the opportunities for obtaining new promising results in 
the theory and practice of statistical inferences and it 
completely corresponds to the thoughts of the well-
known statistician B. Efron [61]: “Broadly speaking, 
nineteenth-century statistics was Bayesian, while the 
twentieth century was frequentist, at least from the 
point of view of most scientific practitioners. Here in the 
twenty-first century scientists are bringing statisticians 
much bigger problems to solve, often comprising 
millions of data points and thousands of parameters. 
Which statistical philosophy will dominate practice? My 
guess, backed up with some recent examples, is that a 
combination of Bayesian and frequentist ideas will be 
needed to deal with our increasingly intense scientific 
environment. This will be a challenging period for 
statisticians, both applied and theoretical, but it also 
opens the opportunity for a new golden age, rivaling 
that of Fisher, Neyman, and the other giants of the 
early 1900s.”  

4. CONCLUSION 

The main approaches to testing statistical 
hypotheses at parallel experiments (Fischer, Neiman-
Pearson, Jeffreys) discussed in the paper were 
developed in the 1930s. Since this period, there is still 
a heated controversy among specialists about the 
advantages and disadvantages of these methods 
compared to each other. Unfortunately, often this 
reasoning is categorical and depending on the author 
one of them is given unconditional preference. Our 
attitude towards this problem is the following. These 
criteria differ in complexity and amount of information 
used. Increasing the amount of information, when it is 
true, certainly leads to an increase in the reliability of 
the decision made, but at the same time complicates 
the decision-making procedure. The Fisher criterion 
uses minimal information. Therefore, it is very easy to 
realization, but its reliability is also less. The 
information required by the Neiman-Pearson criterion 
increases that allow making a decision more reliable, in 
addition, to estimate the probabilities of possible Type I 
and Type II errors and ensure the restriction of type I 
error rate on the desired level. The realization of this 
method is more difficult than the Fisher method. Bayes 
approach of Jeffrey requires maximum information, the 
correctness of which allows it to make more reliable 
decisions, but it also exceeds predecessors in terms of 
realization complexity. The constrained Bayesian 
method developed by us uses exactly the same 

information as the classical Bayesian approach but 
stating the problem as a constrained optimization task, 
significantly increases its capabilities. It allows us to 
make decisions concerning hypotheses of any type, 
number, and dimension to restrict virtually all of the 
existing criteria for decision reliability to the required 
level. In terms of the complexity of the realization, it 
surpasses its predecessors, for example, the Bayesian 
classical method in that it requires the determination of 
Lagrange multipliers. Fortunately, this can be done in 
advance, before making a decision directly, which is 
very important in solving many practical problems as it 
does not increase the time and complexity of making 
decision directly. In addition, the latter approach is 
supported by the fact that it allows us to go directly 
from a parallel experiment to a sequential experiment, 
when we need to make a decision with given reliability, 
which is impossible on the basis of the existed 
observations, i.e. existed information and it is possible 
to increase existed information, i.e. to go to the 
sequential experiment.  

Given this, we believe that all existing approaches 
have a right to exist. They should be considered and 
used based on the specifics of the problem to be 
solved and the availability and cost of the information 
required. 
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