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Abstract: Recurrent events like repeated hospitalization, cancer tumour recurrences, and many others occur frequently. 
The follow-up on recurrent events may be stopped by a terminal event like death. It is obvious that if the frequencies of 
recurrent events are more, then it may lead to a terminal event and in this case terminal event becomes ‘dependent’. In 
this article, we study a joint modelling and analysis of recurrent events with a dependent terminal event. Here, the 
proportional intensity model for the recurrent events process and the proportional hazard model for the terminal event 
time are taken. To account for the association between recurrent events and terminal events, mixing frailty or random 
effect is studied rather than available pure frailty. In our case, the distribution of frailty is introduced as a mixture of folded 
normal distribution and gamma distribution rather than using pure gamma distribution. An estimation procedure in the 
joint frailty model is applied to estimate the parameters of the model. This method is close to the method of minimum 
chi-square rather than a complicated one. An extensive simulation study has been performed to estimate the model 
parameters and the performances are evaluated based on bias and MSE criteria. Further from an application point of 
view, the method is illustrated to a hospital readmission data for colorectal cancer patients.  

Keywords: Frailty, Proportional hazard model, Proportional intensity model, Mixture distribution, Recurrent events.  

1. INTRODUCTION 

Sometimes the event of interest per subject can 
occur more than once and such outcomes have been 
termed as recurrent events. Examples include cancer 
tumour recurrences, repeated drug use, repeated 
hospitalization, and many others. Various methods 
based on modelling the intensity or rate functions have 
been considered for the analysis of recurrent event 
data. Prentice et al. [1] studied the regression analysis 
of multivariate failure time data when there are a fairly 
large number of study subjects. In the context of a 
single failure time variable, Pepe and Cai [2] suggested 
some rate functions when analysing recurrent failure 
time data or when the effect of a categorical 
time-dependent covariate is of interest. Based on the 
Nelson’s method for estimating the cumulative mean 
function for identically distributed processes of 
recurrent events, Lawless and Nadeau [3] suggested a 
similar method with more general models, including 
regression. A class of mixed models for recurrent event 
data was proposed by Sun et al. [4].  

However, the recurrent events and the follow-up for 
a particular subject may be stopped by terminal events 
like death. For example, patients may experience 
cancer tumour recurrences which are terminated by 
death. Usually, this terminal event is expected to be 
related and also may be strongly related to the 
recurrent events of interest, and that is to be accounted 
for in the analysis. In the last few years, joint analysis of 
recurrent events with informative terminal events  has 
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become more popular. For more details, one may see 
[5-8] etc.  

The existing methods for the analysis of recurrent 
event data in the presence of a terminal event are 
generally classified into two approaches: frailty 
methods and marginal methods. Frailties or random 
effects are used in the frailty method to account for the 
relation between recurrent and terminal events [9]. 
Huang and Wang [10] provided a shared frailty model 
with proportional intensity for recurrent events and 
proportional hazards for terminal events. Ye et al. [11] 
discussed a semiparametric method to jointly model 
the recurrent and terminal event processes, 
incorporating shared gamma frailty in both the 
recurrent event rate and terminal event hazard function 
to account for their interdependence. In the marginal 
method, focus is given on the marginal rates of the 
recurrent and terminal events and leaving their 
correlation unspecified [12-14]. Frailty models are seen 
to be the extensions of the Cox proportional hazards 
model [15] and can be used to analyse such data and 
provide explicit measures about the dependency 
between the events [16-17]. While determining the 
relationship between the time of occurrence and one of 
the independent variables, the Cox proportional 
hazards model is used [29]. Most of the time, the 
proportional hazard model is used for recurrent events. 
It is known that when proportional hazard assumptions 
are not met or violated then the proportional hazards 
model may not fit survival data well and, in this case, 
the additive hazard model is one such alternative [18]. 

In many applications, Monte Carlo 
Expectation-Maximization (EM) algorithm is issued to 
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estimate the hazard functions and model parameters 
[19-20]. Simulation by this algorithm takes much time 
and also, we cannot directly estimate the smooth 
hazard function. Joly et al. [21] introduced a penalized 
likelihood approach to estimate the model parameters 
of arbitrarily censored and truncated data. Later on, 
Rondeau et al. [22] used a semiparametric estimation 
procedure by using penalized likelihood to estimate the 
parameter of the joint model. In this approach robust 
Marquardt optimization algorithm which is a 
combination of the Newton-Raphson algorithm and the 
steepest decent algorithm, was used to estimate the 
parameters [23]. 

In this article, we propose a joint model for recurrent 
events and terminal events by a subject-specific 
common frailty. The frailty is in our cases taken as a 
mixture of a folded normal and gamma distribution. 
Some earlier authors including Mazroui et al. [24], 
Toenges, and Jahn-Eimermacher [25] worked with 
gamma frailty. It is reasonable as it generalises the 
basic exponential life distribution, which is frequently 
helpful for simulating positive data [26]. We try to 
generalise the case of concentrated distribution and 
also skewed distribution. That is why, here a mixture of 
folded normal and gamma has been taken in a more 
general form. Also, the normal distribution has been 
folded to make things positive. Similar to Liu et al. [19], 
the proportional intensity model is used for recurrent 
event processes, and for modelling terminal event time, 
we use the proportional hazard model. A general 
estimation procedure in the joint frailty model is applied 
to estimate the parameters of the model. Based on the 
numerical results, we observe that the MSEs of all the 
estimators are very small and these are reduced with 
sample sizes. So, our proposed method performs 
reasonably well. Here our interest is to see whether a 
simpler method may be tried in such cases and also to 
generalize the frailty structure. 

The article is organized in the following manner. In 
Section 2, we describe the joint frailty models and 
explain the estimating procedure of the model 
parameters in Section 3. Some results from the 
simulation study are reported in Section 4 and in Sec- 
tion 5, the method is applied to hospital readmission 
data for colorectal cancer patients, and summaries in 
this respect are given. Finally, a concluding discussion 
is presented in Section 6. The construction of full 
log-likelihoods, mathematical derivations, and 
parameter estimations are included in the Appendix. 

2. JOINT FRAILTY MODELFOR RECURRENT 
EVENTS AND A TERMINAL EVENT 

We denote !!"  as the !!!(! = 1, 2,…… , !!) 
recurrent event time for the individual !  (! = 1,2,… . . ,!), 

!!  as the right-censoring time and !!  as the death 
time. Each follow-up time or event time for the 
individual !  is denoted by !!" = min !!" ,!! ,!!  and 
also we denote the last follow-up time for the individual 
! by !!∗ = min !! ,!! . We define the recurrent events 
indicator as !!" = 0  when either !!" = !!  or !!  and 
!!" = 1 when !!" = !!" and death indicator as !!∗ = 0 
when !!∗ = !! and !!∗ = 1 when !!∗ = !!. 

Let !!!
∗ ! = Number of recurrent events for !!! 

individual over the interval 0, ! . We observe the 
process !!! ! = !!!

∗ min !!∗, !  which counts the 
observed number of recurrent events. Similarly, we 
denote the actual death indicator by !!!

∗ ! = !(!!!!) 
and observed death indicator by !!! ! = !(!!∗!!,!!∗!!). 
Furthermore, let !! ! = !(!!∗!!) denote whether or not 
the individual ! is at risk at time !. The number of 
recurrent events that occur over the interval [!, ! + !") 
for the individual !  is !!!!

∗ ! = !!!
∗ ! + !" ! −

!!!
∗ !!  and we have !!!! ! = !! ! !!!!

∗ ! . The 
process history of !!! individual up to time ! is  

!!" = ! !! ! ,!!! ! ,!!! ! ,!! ! ; 0 ≤ ! ≤ ! , ! =
1, 2,… . . ,!, 

where !! !  is a vector of covariates. We denote the 
following ! fields 

ℱ!" = ! !!" ,!! , ! = 1, 2,… . . ,!. 

The random effect !!  links the recurrent event 
intensity process and the terminal event intensity 
process for !!! individual. We assume that recurrent, 
terminating, and censoring processes are continuous. 
We consider that death happens first in the small 
interval !, ! + !" . The observation of new recurrent 
events precludes death but censoring for end of study 
or loss of follow-up, does not interrupt the occurrence 
of new recurrent events.  

The recurrent event intensity process at time  ! is 
expressed from the above ! fields as 

!! ! !! ! !" = !(!!!! ! = 1|ℱ!"!) , where !! ! !" =
!(!!!!

∗ ! = 1|!! ! ,!! , ! ≤ !!) in general form 

and the terminal intensity process at time ! is  

!! ! !! ! !" = !(!!!! ! = 1|ℱ!!!) , where !! ! !" =
!(!!!!

∗ ! = 1|!! ! ,!! , ! ≤ !!). 

Now the above general form is studied through 
hazard function as in the following. Similar to Liu et al. 
[19] and Peng et al. [27], the joint model for the hazard 
functions for recurrent events and terminal events are 
respectively as follows in time scale: 

!! ! !! = !!!! ! exp !!!! !   (recurrent)
!! ! !! = !!!!! ! exp(!!!! ! )   (terminal)

     (1) 
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and  

!! ! !! = !!!! ! exp !!!! !   (recurrent)
!! ! !! = !!! !! ! + !!!! !   (terminal)

     (2) 

where !! ! !! !  is the baseline hazard function for 
recurrent (terminal) events and !! !!  is the 
regression coefficient associated with the covariate 
!!(!). The random effect !!  (frailties) associate the 
recurrent event process with the terminal event for !!! 
individual and can be generated from a mixture of 
folded normal distribution and gamma distribution. For 
simulation purposes, we are taking folded normal with 
mean 0 and standard deviation 1/3 and gamma with 
unit mean and variance  0.5. Variations can be studied. 

The probability density function for frailty ! is given 
by 

! ! = !" ! + 1 − ! !(!) 

= !.
1

! 2!
!!

!!! !

!!! + !!
!!! !

!!!

+ 1 − !
!!

Γ !
!!!!!!!",   

where ! > 0, ! ∈ ℝ,!, !,! > 0, 0 < ! < 1. 

When we assume ! = 0 then the terminal event 
will be non-informative, that is recurrent event and 
terminal event are not associated. When ! = 1, the 
effect of frailty is identical to both events.  

3. ESTIMATION PROCEDURES 

Let us denote ! = !! . , !! . ,!,!, ! . The full 
marginal log-likelihood function in timescale is given by 
(details construction of the likelihood function is given 
in Appendix) 

! ! = !!" log !! !!"
!!
!!! + !!∗ log !! !!∗ +!

!!!

log !!!
! !!

∗ !!!!
∗ !
! !!

exp −! !!! !
!"#
!" !!!

!!
!!! −!

!

!! !! ! !Λ! !
!
! !!

!!! !

!!! + !!
!!! !

!!! +

!!! !!

! !
!!!! exp −! !!! !

!"#
!" !!!

!!
!!! −

!! !! ! !Λ! !
!
! − !" !"        (3)  

where Λ! ! = !!(!) !"
!
!  and !! ! = !!(!) !"

!
!  are 

the cumulative hazard functions for death and recurrent 
events respectively and !!! = 0 and !!!! = !!∗.  

There are scopes to estimate the parameters from 
the likelihood function by using penalized likelihood 
estimation method (Rondeau et al. [22]). In this article, 
we estimate the parameters !! , !!  and !  from the 

dataset by using the method of having a minimum !! 
norm and hence we obtain the estimated parameters 
by solving the following equations successively (details 
are given in the Appendix). 

!!! = !! !!(!!!)!!!(!!!)!⋯!!!(!!!!)
!
!!!

!!!!
!!

!!!
       (4) 

!!! = !! !!∗ !!
!!

!!!
!!
!!!

!!!
= !!

!!
!!!

!!
!!!

!!!
       (5) 

and 

!!!! + !!
!!
!!

!!!
!!
!!!

!!!

!
log! !! .!

!!! !!!! + !!! −!
!!!

1 log! !! .!!! = 0.        (6) 

So, for !!,!!,… . ,!!  drawn from the mixture 
distribution of folded normal distribution and gamma 
distribution, we get a numeric solution for ! from (6) 
and then we get !! from (5). This method is simpler. 

4. SIMULATION STUDIES 

In this section, we conduct a simulation study to 
evaluate the performance of the estimators of the joint 
frailty mixing model. The performances of the 
estimators are evaluated based on the bias and mean 
squared error (MSE) criteria. The simulations are 
performed in R software (version 4.2.3). The numerical 
outcomes are presented in Tables 1-6, where the 
estimates and the corresponding bias and MSE values 
are displayed. We generate 1000 simulated datasets, 
each with 200, 350, and 500 subjects or samples. The 
algorithm of the simulation study is given below. 

For each subject !, 

• we generate the covariate !! from a Bernoulli 
distribution with ! ! = 1 = 0.5. 

• The frailty !!  is generated from a mixture of 
folded normal distribution with mean 0  and 
standard deviation 1/3 and gamma distribution 
with mean 1 and variance 0.5. 

• We generate terminal event time !! by using a 
proportional hazard model 
!! ! !! = !!!!! ! exp(!!!! ! ) with !! ! = 1.0. 

• We set censoring time !! = min !! + 0.5, 2.5  
where !! follows an exponential distribution with 
a mean of 1. 

• We generate the recurrent event times from a 
Poisson process with an intensity function 
!! !|!! = !!!! ! exp  (!!!!) with !! ! = 1.0. 

• The data generation continued until the 
observed time reached to min  (!! ,!!).  
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Table 1: Simulation Results for the Estimation of the Parameters for !! = −!.!,!! = !.! when ! = ! 

! ! Parameter Est BIAS MSE 

200 

0.3 

! 0.3099 −0.0388 0.0036 

!! −1.5105 0.0105 0.0142 

!! 0.0782 0.1218 0.0151 

0.5 

! 0.3949 0.0412 0.0045 

!! −1.5065 0.0065 0.0174 

!! 0.1407 0.0593 0.0041 

0.7 

! 0.5110 0.0177 0.0058 

!! −1.4747 −0.0253 0.0301 

!! 0.2383 −0.0383 0.0028 

350	  

0.3 

! 0.3098 0.0131 0.0014 

!! −1.5027 0.0027 0.0079 

!! 0.0792 0.1208 0.0148 

0.5 

! 0.3940 −0.0248 0.0026 

!! −1.4963 −0.0037 0.0114 

!! 0.1402 0.0598 0.0039 

0.7 

! 0.5027 −0.0834 0.0102 

!! −1.4724 −0.0276 0.0170 

!! 0.2351 −0.0351 0.0020 

500	  

0.3 

! 0.3099 0.0061 0.0010 

!! −1.5064 0.0064 0.0056 

!! 0.0791 0.1209 0.0147 

0.5 

! 0.3910 0.0172 0.0017 

!! −1.4979 −0.0021 0.0075 

!! 0.1394 0.0606 0.0039 

0.7 

! 0.5019 0.1134 0.0151 

!! −1.4636 −0.0364 0.0113 

!! 0.2355 −0.0355 0.0018 

 
Table 2: Simulation Results for the Estimation of the Parameters for !! = −!.!,!! = !.! when ! = !.! 

! ! Parameter Est BIAS MSE 

200 

0.3 

! 0.3420 0.0306 0.0029 

!! −1.5618 0.0618 0.0211 

!! 0.0770 0.1230 0.0154 

0.5 

! 0.4202 −0.0651 0.0070 

!! −1.5415 0.0415 0.0259 

!! 0.1358 0.0642 0.0047 

0.7 

! 0.5389 −0.1551 0.0294 

!! −1.4987 −0.0013 0.0334 

!! 0.2342 −0.0342 0.0025 

350	  

0.3 

! 0.3371 −0.0059 0.0012 

!! −1.5603 0.0603 0.0139 

!! 0.0754 0.1246 0.0157 

0.5 

! 0.4182 0.0252 0.0023 

!! −1.5398 0.0398 0.0138 

!! 0.1348 0.0652 0.0046 

0.7 

! 0.5311 −0.0518 0.0056 

!! −1.4975 −0.0025 0.0174 

!! 0.2310 −0.0310 0.0017 
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(Table 2). Continued. 

! ! Parameter Est BIAS MSE 

500	  

0.3 

! 0.3354 −0.0024 0.0008 

!! −1.5569 0.0569 0.0100 

!! 0.0748 0.1252 0.0158 

0.5 

! 0.4185 0.0059 0.0014 

!! −1.5370 0.0370 0.0112 

!! 0.1346 0.0654 0.0045 

0.7 

! 0.5312 0.0602 0.0060 

!! −1.4871 −0.0129 0.0127 

!! 0.2309 −0.0309 0.0014 

 
Table 3: Simulation Results for Estimation of the Parameters for !! = −!.!,!! = !.! when ! = !.! 

! ! Parameter Est BIAS MSE 

200 

0.3 

! 0.3572 0.0223 0.0023 

!! −1.6279 0.1279 0.0368 

!! 0.0720 0.1280 0.0166 

0.5 

! 0.4416 0.0206 0.0032 

!! −1.6009 0.1009 0.0400 

!! 0.1330 0.0670 0.0051 

0.7 

! 0.5539 −0.0593 0.0086 

!! −1.5454 0.0454 0.0408 

!! 0.2286 −0.0286 0.0020 

350	  

0.3 

! 0.3555 −0.0075 0.0011 

!! −1.6281 0.1281 0.0290 

!! 0.0718 0.1282 0.0166 

0.5 

! 0.4393 −0.0152 0.0018 

!! −1.5950 0.0950 0.0232 

!! 0.1314 0.0686 0.0050 

0.7 

! 0.5528 0.0235 0.0038 

!! −1.5186 0.0186 0.0204 

!! 0.2270 −0.0270 0.0015 

500	  

0.3 

! 0.3548 −0.0008 0.0007 

!! −1.6266 0.1266 0.0241 

!! 0.0716 0.1284 0.0166 

0.5 

! 0.4359 −0.0165 0.0015 

!! −1.5957 0.0957 0.0195 

!! 0.1305 0.0695 0.0051 

0.7 

! 0.5480 0.1145 0.0153 

!! −1.5288 0.0288 0.0153 

!! 0.2276 −0.0276 0.0013 

 

We consider two sets of (!!,!!)  such as 
!! = −1.5,!! = 0.2 and !! = −1.3,!! =   0.3. Logically, 
!! should not be highly negative as the effect will be 
negligible in that case. Also, !! should not be positive 
from the structure of the model. Similarly, !! should 
be positive and too high. For each set, we consider the 
following three settings for !: 

1. Setting I corresponding to ! = 0 

2. Setting II corresponding to ! = 0.5 

3. Setting III corresponding to ! = 1.0 

For each setting of ! , we consider the mixing 
parameter ! = 0.3, 0.5, 0.7 . The estimate of the 
parameters !! , !!  and !  are obtained successively 
by using (4), (5), and (6) respectively.  

From the simulation results, it has been observed 
that, as the sample size increases, the MSE values 
decrease and thus the consistency property of all the 
estimators holds. Based on mixing parameter !,  we 
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Table 4: Simulation Results for Estimation of the Parameters for !! = −!.!,!! =   !.! when ! = ! 

! ! Parameter Est BIAS MSE 

200 

0.3 

! 0.3108 0.0077 0.0021 

!! −1.4997 0.1997 0.0534 

!! 0.0800 0.2200 0.0487 

0.5 

! 0.3957 0.0083 0.0029 

!! −1.4794 0.1794 0.0507 

!! 0.1412 0.1588 0.0258 

0.7 

! 0.5135 0.0837 0.0138 

!! −1.4603 0.1603 0.0543 

!! 0.2373 0.0627 0.0054 

350	  

0.3 

! 0.3105 −0.0003 0.0015 

!! −1.4876 0.1876 0.0428 

!! 0.0786 0.2214 0.0492 

0.5 

! 0.3911 0.0277 0.0025 

!! −1.4785 0.1785 0.0420 

!! 0.1398 0.1602 0.0260 

0.7 

! 0.5040 0.0545 0.0060 

!! −1.4551 0.1551 0.0392 

!! 0.2364 0.0636 0.0048 

500	  

0.3 

! 0.3079 −0.0053 0.0011 

!! −1.4919 0.1919 0.0423 

!! 0.0778 0.2222 0.0495 

0.5 

! 0.3901 −0.0100 0.0016 

!! −1.4824 0.1824 0.0403 

!! 0.1388 0.1612 0.0262 

0.7 

! 0.5030 −0.0152 0.0027 

!! −1.4546 0.1546 0.0346 

!! 0.2358 0.0642 0.0047 

 
Table 5: Simulation Results for Estimation of the Parameters for !! = −!.!,!! =   !.! when ! = !.! 

! ! Parameter Est BIAS MSE 

200 

0.3 

! 0.3397 0.0117 0.0020 

!! −1.5379 0.2379 0.0726 

!! 0.0758 0.2242 0.0505 

0.5 

! 0.4244 −0.0079 0.0028 

!! −1.5141 02141 0.0692 

!! 0.1368 01632 0.0272 

0.7 

! 0.5369 −0.0778 0.0116 

!! −1.4797 0.1797 0.0596 

!! 0.2323 0.0677 0.0058 

350	  

0.3 

! 0.3380 0.0201 0.0016 

!! −1.5389 0.2389 0.0661 

!! 0.0747 0.2253 0.0509 

0.5 

! 0.4204 −0.0194 0.0021 

!! −1.5213 0.2213 0.0608 

!! 0.1353 0.1647 0.0274 

0.7 

! 0.5317 0.0747 0.0087 

!! −1.4748 0.1748 0.0474 

!! 0.2310 0.0690 0.0055 
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(Table 5). Continued. 

! ! Parameter Est BIAS MSE 

500	  

0.3 

! 0.3377 0.0337 0.0020 

!! −1.5393 0.2393 0.0633 

!! 0.0751 0.2249 0.0507 

0.5 

! 0.4172 0.0124 0.0014 

!! −1.5195 0.2195 0.0562 

!! 0.1346 0.1654 0.0276 

0.7 

! 0.5291 −0.0208 0.0026 

!! −1.4712 0.1712 0.0403 

!! 0.2294 0.0706 0.0055 

 

Table 6: Simulation Results for Estimation of the Parameters for !! = −!.!,!! =   !.! when ! = !.! 

! ! Parameter Est BIAS MSE 

200 

0.3 

! 0.3603 0.0330 0.0032 

!! −1.6143 0.3143 0.1197 

!! 0.0734 0.2266 0.0516 

0.5 

! 0.4421 0.0131 0.0029 

!! −1.5878 0.2878 0.1128 

!! 0.1328 0.1672 0.0285 

0.7 

! 0.5570 −0.0494 0.0079 

!! −1.5148 0.2148 0.0804 

!! 0.2284 0.0716 0.0064 

350	  

0.3 

! 0.3553 −0.0180 0.0014 

!! −1.6125 0.3125 0.1087 

!! 0.0718 0.2282 0.0522 

0.5 

! 0.4376 −0.0328 0.0027 

!! −1.5802 0.2802 0.0930 

!! 0.1313 0.1687 0.0288 

0.7 

! 0.5491 0.0169 0.0032 

!! −1.5133 0.2133 0.0646 

!! 0.2263 0.0737 0.0061 

500	  

0.3 

! 0.3564 −0.0461 0.0029 

!! −1.6069 0.3069 0.1018 

!! 0.0716 0.2284 0.0523 

0.5 

! 0.4371 −0.0356 0.0024 

!! −1.5763 0.02763 0.0863 

!! 0.1306 0.1694 0.0289 

0.7 

! 0.5456 −0.0241 0.0028 

!! −1.5084 0.2084 0.0573 

!! 0.2259 0.0741 0.0060 

 

see that when it increases, MSE of !  increases 
whereas the MSE of !!  decreases. Also, when ! 
increases, for the first set of (!!,!!) , i.e. when 
!! = −1.5  and  !! = 0.2 , the MSE of !!  increases, 
however for the second set, i.e. when !! = −1.3,!! =
  0.3 the MSE of !! decreases. Further, based on the 
different choices of !, it is observed that ! increases, 
MSE of both the estimators !!  and !!  increase in 
most of the cases for fixed sample size n and the 
mixture parameter !. 

5. APPLICATION 

For illustration purposes, we consider a dataset 
published by González et al. [28] regarding the sex 
differences in hospital readmission among colorectal 
cancer patients. The study took place in the Hospital de 
Bellvitge, Barcelona, Spain. A total 523 patients from 
January 1996 to December 1998 were identified with 
incident colorectal cancer and among them 403 
patients had operations. In our study, we consider the 
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data of these 403 patients. The remaining 120 (23%) 
patients were excluded because either they died before 
the study started they were refused to participate in the 
study or due to their lack of information. The study 
began from the date of surgery and follow-up continued 
till June 2002. Consequently, the follow-up period for 
each patient is different and depends on their surgery 
date. After surgery for colorectal cancer, patients may 
have several hospital readmissions. In general, more 
readmission of cancer patients leads to a higher 
mortality rate. That is, the terminal event (death) will be 
strongly correlated with recurrent events (hospital 
readmission) of interest. Here, we apply the proposed 
method to analyse jointly the recurrent events and 
death and thus focus on the effects of receiving 
chemotherapy on hospital readmission, and death is 
evaluated.  

Information on patients receiving chemotherapy in 
the follow-up period and the number of readmissions 
(recurrent events) or deaths is given in Table 7. A total 
of 108 (26.8%) patients died during the study and all 
subjects had at least one recurrent event. Table 7 
shows that the patients receiving chemotherapy have a 
lower death rate and also rate of recurrences is 
decreased in nature.  

The survival functions following hospital recurrent 
admission are presented in Figure 1. This figure does 
not show a clear trend about the risk of recurrence.  

 
Figure 1: Survival functions for successive recurrences. 

For individual ! , let !!  be a binary indicator of 
treatment (chemotherapy received = 1, chemotherapy 
not received = 0). We model the joint distribution of 
the survival times and hospital readmission (joint model 
(1)). Subject-specific frailty term represents to account 
of the effects of unobserved factors on the chances of 

both hospital readmission and death. Based on the 
methodology discussed above, we obtain the 
estimated values of the unknown parameters by 
varying the mixture parameter !. Table 8 shows the 
result for the recurrence of the hospital admission data. 

Table 8: Application Results for Recurrent Events and 
Death  

! Parameters Est 

0.3 ! 0.3982 

!! −0.9435 

!! 0.0641 

0.5 ! 0.5776 

!! −0.8172 

!! 0.0678 

0.7 ! 0.7494 

!! −0.6724 

!! 0.1587 

 
The negative value of !!  (−0.8172)  makes the 

hazard rate of recurrent events smaller and the positive 
value of !!  (0.0678) makes the hazard rate of terminal 
events higher, which means that the rate of hospital 
readmission decreases for the cancer patients who are 
receiving chemotherapy and the survival risk higher for 
them. It is clear that the joint model helps understand 
the effect of chemotherapy for hospitalization and also 
gives about their survival. Also, the positive value of 
! = 0.5776  in the joint model indicates that the 
incidence of hospital readmission is positively 
associated with terminal events. 

6. CONCLUSION 

In literature, earlier works were done on the joint 
frailty model where the authors considered the frailty as 
gamma or uniform distribution only. But usually, 
uniform distribution is not preferable over the whole 
positive range. Here, we explore the more general form 
of frailty distribution i.e., a mixture of a folded normal 
and gamma distribution with associated weight ! and 
1 − ! respectively. The advantage of taking a mixture 
distribution is that we can study the behaviour of the 
estimators over a range of mixing parameters and 
sometimes this may be close to gamma which is 
usually the general form of life distribution or a peaked 

Table 7: Number of Hospital Readmissions and Death according to Chemotherapy Received or Not 

Chemotherapy No. of  
Patients 

No. of 
death 

No. of readmission since 1st discharge 

1 2 3 4 5 6 ≥ ! 

Treated 216 57 124 51 22 7 4 4 4 

Non-treated 187 51 75 54 23 14 11 4 6 
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distribution like normal. An extensive simulation study 
has been carried out to estimate the parameters of the 
considered joint mixing frailty model. Also, the 
performances of the estimator are studied based on 
bias and MSE criteria. It has been observed that the 
method is consistent as the MSEs of all the estimators 
are reduced with the sample size. So, we observe that 
for different combinations of sample size ! while 
varying the mixing parameter ! , the method can 
estimate the regression coefficients of the joint mixing 
frailty model to some extent. We also illustrate the 
method through a study of patients in hospital 

readmission with colorectal cancer. As the theoretical 
findings from the simulation seem to be reasonable, the 
estimation using the hospital readmission data is 
expected to be quite accurate. 

In addition, from this work, we see that α should be 
in between (0,1) and lower α values give more hazard 
to terminal events. So using this model in a prior study 
of such disease, we can estimate α value. Then by new 
recurrent observation or !!, we can get the hazard of 
the terminal event !!! . Thus we can predict the 
terminal case of a patient using !!!. 

APPENDIX 

Construction of Full Log-Likelihood Function for the Joint Frailty Model with Calendar Timescale 

The conditional distribution of the survival times given !! is the product of the individual contributions is given by 
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The probability density function for frailty ! is given by 

! ! = !" ! + 1 − ! !(!) 
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where ! > 0, ! ∈ ℝ,!, !,! > 0, 0 < ! < 1 

The marginal contribution to the likelihood for subject ! is  
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Then the full log-likelihood function is given 
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Estimation of Parameters of Joint Frailty Model 

Suppose, data of recurring of ! patients are 

!!!,!!",!!",………… . ,!!!! 

!!",!!!,!!",………… . ,!!!! 

⋮ 

!!!,!!!,!!!,………… . ,!!!! 

We can obtain data-based hazard function, !!(!) ! = 1,2,…… , !  as 

!!(!) =
!(!)

! − ! + 1
!(!)!!

 

where !(!) ≤ ! ⇒ j many observations are less than or equal to t.  

Similarly, for terminal data, we have !!∗ 

!!∗ 

⋮ 

!!∗ 

From this, we can get data-based estimate as !!(!)   ! = 1,2,… . , !  [mentioned above]. 

From recurring data, we estimate !! using the method of having minimum !! norm and similarly we estimate !! 
from terminal data. 
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Now, let us first obtain !! from the following: 

!!(!) ≅ !!!! ! !!!!! !   ∀!  &   over all ! 

and then we minimize 

!!(!) − !!!!(!)!!!!! !
!
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!
!!! . 

To do that, 
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− − − − − − −(7) 

Now,  

!!~  !" + 1 − ! ! 

where !~folded normal having mean 0, standard deviation !
!
 and !~ Gamma with mean 1, variance 0.5. These 

means and variances can be taken other also. 

For theoretical simulation, we take the values of the parameters of the distributions and that of !. So, these are 
known for our purpose, and from these we draw !!,!!,… . . ,!!. Also !! !  may be taken as 1, because the 
standard hazard function from natural level is uniformly 1 . Also, we have ! !!! ,! !!! ,…… ,!(!!!!)  from 
independent Bernouli distribution with known parameter. This indicates whether recurrent events occur or not. Thus, 
values are 1 at these points and at others are 0. So, we have from (7), 
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Similarly for !! we have, 



224  International Journal of Statistics in Medical Research, 2023, Vol. 12 Barman et al. 

!
!!!

!!(!) − !!!!!!!! !
!
!"

!

!

!

!!!

= 0 

⟹ !!(!) − !!!!!!!! ! !!!!! ! !!!!! !
!!
∗

!

!

!!!

= 0 

⟹ !!(!!∗) − !!!!!! !!!!!!
!

!!!

= 0 

⟹ !!(!!∗) − !!!!!! !!!
!

!!!

= 0 

⟹ !!(!!∗)!!!
!

!!!

= !!!!
!

!!!

!!! 

⟹ !!! =
!! !!∗ !!!!

!!!

!!!!!
!!!

=
!!!!

!!!

!!!!!
!!!

 

Similarly for !, we have 
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