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Abstract: This paper presents advanced methodological approaches and practical tools for sample size calculation in 
epidemiological studies involving multivariable analyses. Traditional sample size calculation methods often fail to 
account for the complexity of modern statistical analyses, particularly regarding the correlation between covariates in 
multivariable models. 

We introduce a series of R packages (SampleSizeMulti) designed to address these limitations. These packages offer 
two distinct calculation approaches: one based on the multiple correlation coefficient between covariates (rho-based 
method) and another utilizing standard errors from previous studies (SE-based method). These complementary 
approaches provide comprehensive solutions for different association measures commonly used in epidemiological 
research: prevalence ratios, odds ratios, risk ratios, and hazard ratios. 

The rho-based method innovatively incorporates the explicit consideration of the multiple correlation coefficient between 
covariates, significantly impacting required sample sizes in multivariable analyses. The SE-based method leverages 
information from previous studies through their confidence intervals, offering an alternative when correlation estimates 
are unavailable but published results exist. Furthermore, both approaches integrate crucial logistical considerations, 
including rejection rates, eligibility criteria, and expected losses to follow-up, providing researchers with realistic 
estimates of recruitment requirements and timelines. 

Seven detailed case studies covering various epidemiological study designs and analytical scenarios demonstrate the 
practical application of these methods. These examples illustrate how correlation values, standard errors, and logistical 
factors influence sample size calculations and study planning. 

The implementation in R ensures accessibility and reproducibility, while the incorporation of logistical planning tools 
bridges the gap between theoretical calculations and practical research requirements. These methods represent a 
significant advancement in study design methodology, potentially improving the quality and efficiency of epidemiological 
research by ensuring adequate statistical power while optimizing resource utilization. 

Keywords: Sample size, Statistical Inference, Regression Analysis, Epidemiological methods, Software Design, 
Research Design, correlation coefficient (source: Mesh). 

INTRODUCTION 

Appropriate sample size calculation is a critical 
component in the design of biomedical and 
epidemiological research studies. An adequate sample 
size ensures that the study has sufficient statistical 
power to detect relevant effects while avoiding the 
waste of resources on unnecessarily large samples [1]. 
However, despite its importance, the methods used for  
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sample size calculation often fail to reflect the 
complexity of modern statistical analyses, particularly in 
the context of multivariable analyses, especially in 
observational studies [2]. 

Traditionally, researchers have relied on simplified 
methods for calculating sample sizes, such as those 
based solely on chi-square or Student's t-tests [1,3]. 
While useful in certain contexts, these methods may be 
inadequate for studies involving multiple regression 
analysis, survival models, or complex designs with 
multiple confounding variables [4]. Consequently, many 
studies may be under or over-dimensioned, 
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compromising the validity of their conclusions or 
leading to inefficient resource utilization [5]. 

In recent decades, more sophisticated methods for 
sample size calculation have been developed that 
account for the multivariable nature of many modern 
analyses [4]. These methods offer a more precise and 
flexible approach to determining sample size across 
various research scenarios [6-8]. However, adopting 
these advanced methods in practice has been slow, 
possibly due to their perceived complexity and the lack 
of accessible tools for their implementation [4]. 

This review aims to provide a comprehensive 
overview of advanced methods for sample size 
calculation in multivariable analyses, with particular 
emphasis on their practical application. We will review 
traditional methods and their limitations, present more 
sophisticated approaches for various studies, and 
discuss important practical considerations in their 
implementation. Additionally, we will introduce a new R 
package that implements these advanced methods, 
aiming to make these techniques more accessible to 
the research community. 

By providing this review and practical tool, we aim 
to promote broader adoption of sample size calculation 
methods that adequately reflect the complexity of 
modern statistical analyses, thereby enhancing the 
quality and efficiency of biomedical and epidemiological 
research. 

TRADITIONAL METHODS OF SAMPLE SIZE 
CALCULATION  

Description of Commonly Used Methods  

Traditional sample size calculation methods have 
been widely employed in biomedical and 
epidemiological research due to their relative simplicity 
and ease of application. These methods are generally 
based on formulas for specific statistical tests and 
simple research scenarios. The following describes 
some of the most commonly used methods [1,3,9]: 

1. Comparison of Two Proportions: This 
method is used when the objective is to 
compare the proportion of an event between 
two independent groups. The basic formula is: 

n = (Zα/2 + Zβ)² * [p1(1-p1) + p2(1-p2)] / (p1-p2)² 

 Where n is the sample size per group, Zα/2 and 
Zβ are the critical values from the normal 
distribution for the desired significance and 

power levels, and p1 and p2 are the expected 
proportions in each group. 

2. Comparison of Two Means: To compare the 
means of a continuous variable between two 
independent groups, the following formula is 
commonly used: 

n = 2σ²(Zα/2 + Zβ)² / Δ² 

 Where σ² is the assumed common variance, and 
Δ is the minimum clinically important difference 
to be detected. 

3. Case-Control Study Calculations: In case-
control studies, the sample size is calculated 
using the formula: 

n = [Zα/2√(r+1)p(1-p) + Zβ√(rp1(1-p1) + p2(1-p2))]² / 
r(p1-p2)² 

 Donde r es la razón de controles a casos, p es la 
proporción de expuestos en la población, y p1 y 
p2 son las proporciones de expuestos entre 
casos y controles, respectivamente. 

4. Cohort Study Calculations: For cohort 
studies, a commonly used formula is: 

n = (Zα/2 + Zβ)² * [p1(1-p1)/r + p2(1-p2)] / (p1-p2)² 

 Where r is the ratio of unexposed to exposed 
subjects, and p1 and p2 are the expected 
incidences in the exposed and unexposed 
groups, respectively. 

These traditional methods have been widely 
adopted due to their relative simplicity and the 
availability of tables and software that facilitate 
calculations. However, as discussed in the following 
section, these methods have important limitations, 
particularly when applied to more complex study 
designs or multivariable analyses. 

Limitations in the Context of Multivariable Analyses  

Although traditional sample size calculation 
methods have been widely used, they present 
significant limitations when applied to multivariable 
analyses, which are common when examining 
associations in observational studies. These limitations 
can lead to inadequate sample sizes, compromising 
studies' validity and statistical power [5]. The main 
limitations are described below: 

First, traditional methods generally do not consider 
multiple variables. They are based on bivariate 
comparisons and do not account for the effect of 
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numerous independent or confounding variables. In 
multivariable analyses, such as multiple regression, 
covariates can significantly affect statistical power and 
the precision of estimates [10]. 

Second, these methods tend to underestimate 
sample size in regression analyses. In the context of 
multiple regression, traditional methods do not consider 
the additional variance introduced by covariates, which 
can result in studies with insufficient statistical power 
[11]. 

Third, they ignore the correlation among predictors. 
Traditional methods do not account for collinearity 
between predictor variables, which can significantly 
affect the precision of estimates and, consequently, the 
required sample size [12]. 

Fourth, they do not adapt to different types of 
outcome variables. Many traditional methods assume 
continuous or binary outcome variables. Still, in 
practice, researchers often work with more complex 
outcome variables, such as survival data or counts, 
requiring specific sample size calculation approaches 
[13]. 

These limitations underscore the need for more 
advanced and flexible methods for sample size 
calculation in multivariable analyses. Approaches that 
address these limitations can provide more accurate 
estimates of the required sample size, thereby 
improving the validity and efficiency of research 
studies. 

ADVANCED METHODS FOR SAMPLE SIZE 
CALCULATION  

Calculation for Prevalence/Risk Ratios  

Sample size calculation for studies involving 
prevalence ratios (PR) or risk ratios (RR) is crucial in 
research that compares event occurrence between 
exposed and unexposed groups. Advanced methods 
for this calculation consider the multivariable nature of 
the analysis and provide more precise estimates than 
traditional approaches. 

In this context, the general formula for sample size 
calculation is based on the Poisson regression model 
with robust variance, commonly used to estimate PR or 
RR in cross-sectional or cohort studies. The formula is 
expressed as follows [4]: 

n = (z₁₋α/₂ + z₁₋β)² * (1 / (p₀ * (1-p₀)) + 1 / (p₁ * (1-p₁))) / 

(ln(MA))² * (1 / (1 - ρ²)) 

Where: n = required sample size per group; z₁₋α/₂ = 
critical value from the normal distribution for α/2 
(significance level); z₁₋β = crucial value from the 
normal distribution for β (statistical power); p₀ = 
prevalence or risk in the unexposed group; p₁ = 
prevalence or risk in the exposed group; MA = 
measure of association which can be either PR or RR 
to be detected; ρ² = multiple coefficient of 
determination between the exposure and other 
covariates 

Sample size calculation in studies using PR/RR 
requires consideration of several fundamental aspects 
that affect the study's validity and precision. The 
adjustment for covariates, represented by the term (1 / 
(1 - ρ²)), is a crucial element that accounts for the 
correlation between the main exposure and other 
covariates in the model. This adjustment, particularly 
important in multivariable analyses, typically increases 
the required sample size, ensuring that the study 
maintains its statistical power even after controlling for 
confounding variables. 

The prevalence or incidence of the event under 
study also plays a fundamental role in determining 
sample size—the prevalences p₀ and p₁ in the 
unexposed and exposed groups significantly impact 
calculations. In particular, larger sample sizes are 
required to maintain adequate statistical power when 
studying rare events, which can have important 
logistical and budgetary implications for the study. 

Another determining factor is the magnitude of the 
effect to be detected, represented by ln(PR) in the 
formula's denominator. When attempting to detect 
small effects, that is prevalence or risk ratios close to 1, 
considerably larger sample sizes are required. This 
becomes particularly relevant in studies where weak 
but clinically significant associations are expected. 

The specific study design also influences the 
interpretation of parameters. Although the basic 
formula is similar for cross-sectional and cohort 
studies, the interpretation of p₀ and p₁ varies according 
to the design: in cross-sectional studies, they represent 
prevalences, while in cohort studies, they reflect risks 
or cumulative incidences. This distinction is crucial for 
proper study planning and interpretation. 

Alternatively, sample size calculation can be 
performed using the standard error method, particularly 
useful when information from previous studies is 
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available. This method uses the standard error of the 
logarithm of the measure of association, allowing for 
more precise estimation when confidence intervals of 
earlier studies are available. This approach is 
particularly valuable in contexts where the correlation 
between covariates is difficult to estimate but published 
results with their respective confidence intervals are 
available. 

The ratio of exposed to unexposed subjects in 
observational studies deserves special attention. The 
proportion of individuals in exposed and unexposed 
groups is rarely equal in the study population, making it 
necessary to adjust the sample size calculation 
considering this unequal distribution. This adjustment is 
fundamental to ensure adequate statistical power in 
both groups. 

These advanced methods for calculating sample 
sizes in studies related to these measures of 
association allow researchers to plan more robust 
studies, considering both the complexity of 
multivariable analyses and the specific characteristics 
of their research designs. Careful consideration of all 
these aspects, along with the appropriate choice of 
calculation method (whether based on correlation 
between covariates or standard error), significantly 
contributes to the study's validity and efficiency. 

Calculation for Case-Control Studies  

Case-control studies are widely used research 
designs in epidemiology, especially for studying rare 
diseases or those with long latency periods. Due to 
their retrospective nature and the use of odds ratios 
(OR) as the measure of association, sample size calcu- 
lation for these studies requires specific considerations. 

The general formula for sample size calculation in 
case-control studies is based on the logistic regression 
model and is expressed as follows [4]: 

n = (z₁₋α/₂ + z₁₋β)² * [p₀(1-p₀) + p₁(1-p₁)] / (p₁ - p₀)² *  
(1 + 1/c) * (1 / (1 - ρ²)) 

Where: n = required number of cases; z₁₋α/₂ = 
critical value from the normal distribution for α/2 
(significance level); z₁₋β = critical value from the 
normal distribution for β (statistical power); p₀ = 
proportion of exposure among controls; p₁ = proportion 
of exposure among cases; c = ratio of controls per 
case; ρ² = multiple coefficient of determination between 
the exposure and other covariates. 

The proportion p₁ can be calculated from p₀ and the 
expected OR using the following formula: 

p₁ = (OR * p₀) / [1 + p₀(OR - 1)] 

Sample size calculation in case-control studies 
requires consideration of various methodological 
aspects that influence the study's precision and validity. 
In unmatched designs, a fundamental element is the 
ratio of cases to controls, represented by the term (1 + 
1/c), which adjusts the sample size according to the 
number of controls per case. While increasing the 
number of controls can improve statistical power, 
especially when cases are limited, this benefit shows 
diminishing returns beyond a ratio of 1:4. This 
consideration is particularly relevant in rare diseases or 
when cases are difficult to identify [14]. 

The frequency of exposure in the population plays a 
crucial role in determining sample size. The proportion 
of exposure among controls (p₀) significantly impacts 
calculations, where rare and common exposures 
generally require larger sample sizes to maintain 
adequate statistical power. This aspect must be care- 
fully considered during the study planning phase [15]. 

The magnitude of the effect to be detected directly 
influences the sample size through its effect on p₁. 
When attempting to detect small effects, ORs close to 
1, considerably larger sample sizes are required. This 
inverse relationship between effect magnitude and 
required sample size is fundamental for realistic study 
planning. 

In multivariable analyses, covariates are adjusted 
through the term (1 / (1 - ρ²)), which accounts for the 
correlation between the main exposure and other 
covariates in the model. This adjustment is crucial for 
maintaining adequate statistical power when 
performing adjusted analyses. Alternatively, when 
information from previous studies is available, the 
standard error method provides a valuable approach 
for sample size calculation, particularly useful when 
published confidence intervals are available. 

Matched designs represent a special case requiring 
additional considerations. In matched case-control 
studies, sample size primarily depends on the expected 
proportion of discordant pairs and the number of 
matched controls per case. This design can increase 
statistical efficiency by controlling for important 
confounding factors but requires specific formulas that 
account for the matched nature of the data. The 
decision to employ a matched design must balance the 
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advantages of confounding control against the 
additional logistical complexities of matching. 

These advanced methods for calculating sample 
size in matched and unmatched case-control studies 
allow researchers to plan more robust studies, 
considering the complexity of multivariable analyses 
and the specific characteristics of each design. 
Choosing between matched and unmatched designs 
and carefully considering all these methodological 
aspects significantly contribute to the study's validity 
and efficiency. The availability of multiple calculation 
methods, including the standard error-based approach, 
provides flexibility to adapt to different scenarios and 
available information sources. 

THE CALCULATION FOR HAZARD RATIO  

Sample size calculation for studies using Hazard 
Ratio (HR) in Cox proportional hazard models requires 
specific considerations due to the nature of survival 
analysis and the complexity of multivariable models. 
Advanced methods for this calculation provide more 
precise estimates than traditional approaches. 

The formula for sample size calculation in this 
context is derived from the score test for the Cox model 
and is expressed as follows [4]: 

n = (z₁₋α/₂ + z₁₋β)² / (β²j σ²x,j)ψ(1 - ρ²j) 

Where: n = required sample size; z₁₋α/₂ = critical 
value from the normal distribution for α/2 (significance 
level); z₁₋β = critical value from the normal distribution 
for β (statistical power); β²j = hypothesized value of the 
regression coefficient under the alternative (logarithm 
of HR); σ²x,j = variance of the predictor of interest; ψ = 
probability that an observation is not censored; ρ²j = 
multiple coefficient of determination between the 
predictor of interest and other covariates. 

A unique aspect of survival studies is the 
consideration of censoring, represented by the 
probability ψ, which indicates the expected proportion 
of events (non-censored) during the follow-up period. 
This parameter has a direct impact on the required 
sample size. A larger sample size is needed to 
maintain adequate statistical power when there is a 
higher proportion of censored data (i.e., lower ψ). This 
consideration is particularly relevant in studies with 
prolonged follow-up periods or where a high rate of 
losses is expected. 

The magnitude of the effect to be detected, 
expressed through the coefficient β²j (the squared 

logarithm of the Hazard Ratio), is another factor in 
sample size calculation. When attempting to detect 
small effects, HRs close to 1, considerably larger 
sample sizes are required. The study planning phase 
must consider this inverse relationship between the 
effect magnitude and the sample size needed. 

The distribution of the predictor of interest, charac- 
terized by its variance (σ²x,j), also directly influences 
the required sample size. Interestingly, predictors with 
greater variability allow for detecting the same effect 
with smaller sample sizes, which can be advantageous 
in certain research contexts. Alternatively, when 
information from previous studies is available, the 
standard error method provides a valuable approach 
for sample size calculation, particularly useful when 
confidence intervals for published hazard ratios are 
available. 

Follow-up time is a critical consideration in survival 
studies, as it must be sufficient to observe the 
necessary number of events. This aspect is directly 
related to the probability of censoring (ψ) and has 
statistical and logistical implications. Proper planning of 
the follow-up period is essential to ensure that the 
required number of events is observed while 
maintaining study feasibility. 

These advanced methods for sample size 
calculation in studies using the Cox model allow 
researchers to plan more robust studies, considering 
both the inherent complexity of survival analyses and 
the multivariable nature of the models. Explicit 
consideration of censoring and correlation between 
covariates is particularly important in this context, as is 
the availability of alternative methods, such as the 
standard error-based approach. Careful integration of 
all these aspects in study planning significantly 
contributes to its validity and efficiency, allowing for a 
more precise estimation of the effects of interest in 
survival analysis. 

Practical Considerations Effect of Multiple 
Correlation Coefficient  

The multiple correlation coefficient, generally 
denoted as R² or ρ², is crucial in advanced sample size 
calculation for multivariable analyses. This coefficient 
represents the proportion of variance in the dependent 
variable explained by the set of independent variables 
in the model. Its inclusion in sample size calculations 
has important implications that must be carefully 
considered in study planning [16]. 
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For the estimation of ρ², it is fundamental to 
understand its calculation process. A regression model 
must be performed where the exposure variable acts 
as the dependent variable (Y), while the covariates 
must be considered independent variables in the final 
model function. It is important to note that at this stage 
of calculation, the main dependent variable of the 
original analysis is not included. This procedure allows 
evaluation of the variance explained by additional 
covariates in the exposure, a fundamental aspect for 
correctly adjusting the final model and controlling 
possible confounding factors. 

The impact of the multiple correlation coefficient on 
sample size materializes through the term 1 / (1 - ρ²). 
This adjustment typically increases the required sample 
size. For example, with a ρ² of 0.3, the necessary 
sample size will be multiplied by approximately 1.43, 
representing a 43% increase. The effect of this 
adjustment varies significantly according to the value of 
ρ²: when it is close to zero, it indicates that the 
covariates explain little of the variability and the 
adjustment will have a minimal effect; however, when it 
is high, it suggests that the covariates explain a 
significant proportion of the variability, resulting in a 
substantial increase in the required sample size. As rho 
increases, the required sample size will also increase. 
Indeed, Figure (1) illustrates how the necessary sample 
size increases non-linearly (exponentially) as the 
correlation between covariates increases. Specifically, 
it shows that when correlation is low (rho < 0.25), 
sample size remains relatively stable, but as correlation 
increases, especially after 0.5, the required sample 
size grows more pronouncedly. This relationship 
reflects the need to compensate for the loss of 

statistical efficiency caused by collinearity between study 
variables. 

Precise determination of ρ² represents a significant 
challenge, especially during study planning. 
Researchers can employ strategies to address this 
difficulty: reviewing similar literature to obtain ρ² 
estimates, conducting pilot studies to estimate it in a 
small sample, or performing sensitivity analyses by 
calculating sample size for different ρ² values. Each 
approach has advantages and limitations; the choice 
will depend on the specific study context. 

The implications for study design are substantial 
and require careful balance between various factors. 
On the one hand, the balance between precision and 
feasibility must be considered: a high ρ² can result in 
very large sample sizes, which may affect the study's 
practical viability. On the other hand, the selection of 
covariates directly influences ρ². Although including 
relevant covariates may increase ρ² and, consequently, 
the required sample size, it can also significantly 
improve the precision of estimates. 

The study context also significantly influences the 
value of ρ². Observational studies tend to present 
higher ρ² values due to the natural correlation between 
variables in uncontrolled populations. In contrast, 
experimental studies may show lower ρ² values due to 
randomization, although these can still be significant, 
particularly in clinical trials involving multiple baseline 
risk factors. 

Finally, certain limitations and precautions must be 
considered when using the multiple correlation 

 
Figure 1: Relationship between correlation (rho) and required sample size. 
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coefficient. A very high ρ² may indicate a risk of model 
overfitting, especially in small samples, and it is 
important to remember that a high ρ² does not 
necessarily imply causal relationships between vari- 
ables. The interpretation and application of the multiple 
correlation coefficient must be performed carefully, 
considering the specific study context and objectives. 

Exposed/Unexposed Ratio in Observational 
Studies  

In observational studies, particularly cross-sectional 
and cohort studies, the ratio of exposed to unexposed 
subjects represents a crucial factor in sample size 
calculation. Unlike experimental studies, where the 
investigator can control this ratio, it is determined by 
the natural prevalence of exposure in the study 
population. This fundamental characteristic of 
observational studies has important implications for 
their design and analysis. 

The impact of the exposed-to-unexposed ratio on 
sample size is direct and significant. An unbalanced 
ratio substantially different from 1:1 generally requires 
a larger sample size to maintain the same statistical 
power. Precise estimation of this ratio can be 
performed through various methods, including 
reviewing previous studies in similar populations, 
analyzing epidemiological surveillance data, or 
conducting pilot or feasibility studies. Each estimation 
method has advantages and limitations, and the choice 
will depend on the specific study context. 

The impact of the ratio varies according to the study 
design. In cohort studies, it directly affects the number 
of subjects needed in each group, while in case-control 
studies, it influences matching efficiency and power to 
detect interactions. Although a 1:1 ratio generally 
provides maximum statistical efficiency, this distribution 
is not always feasible or desirable in observational 
studies, where practical and logistical constraints may 
dictate other configurations. 

Practical considerations play a fundamental role in 
determining the optimal ratio. In the case of rare 
exposures, it may be necessary to oversample the 
exposed group to achieve adequate statistical power. 
Additionally, economic aspects can significantly 
influence the decision. In some cases, recruiting more 
controls than cases may be more cost-effective, 
leading to unbalanced but economically viable ratios. 
Considering the study's statistical validity and practical 
feasibility, these decisions must be made. 

The planning process should include sensitivity 
analyses, varying the exposed to unexposed ratio to 
evaluate its impact on sample size and statistical 
power. This exercise provides valuable information 
about the robustness of the proposed design and can 
help identify optimal configurations that balance 
statistical and practical considerations. 

The ethical implications of the exposure ratio cannot 
be ignored. An unbalanced ratio may have significant 
ethical consequences in certain contexts, particularly 
when including disproportionate subjects in risk 
situations. Researchers must consider these ethical 
implications carefully when designing their studies and 
obtaining the corresponding approvals. 

Design flexibility is crucial in long-term studies. If the 
observed ratio differs significantly from the expected, 
recruitment strategies may need to be adjusted during 
the study. This adaptability is essential to maintaining 
study validity and achieving the proposed research 
objectives. 

Thus, carefully considering the exposed-to-
unexposed ratio is fundamental in designing 
observational studies. Its impact extends beyond the 
required sample size, affecting statistical efficiency, 
study costs, and results interpretation. Researchers 
must seek an optimal balance between statistical, 
practical, and ethical considerations when determining 
the most appropriate sampling strategy for their study. 

POWER VERSUS SAMPLE SIZE CALCULATION  

Power calculation and sample size calculation are 
two sides of the same coin in research study design. 
Both are intrinsically related and based on the same 
statistical principles but are used at different stages 
and for other purposes in study planning [17].  

While sample size determines the number of 
subjects or units needed to conduct a study with 
sufficient validity, statistical power calculation works 
with a fixed sample size, as frequently occurs with pre-
existing databases collected for other purposes. In this 
context, power is evaluated to determine if the 
available sample is sufficient to answer the research 
question adequately. That is, it is calculated to 
determine if the existing sample has the necessary 
statistical power to detect a significant effect, thus 
ensuring the validity of the results. 

Furthermore, power calculation, particularly the 
determination of the β value, can be performed using 
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the same formulas presented for sample size 
calculation but adapted to a situation where a fixed 
sample is already available. In this case, the available 
sample size is used instead of seeking the necessary 
sample size, and the probability of committing a type II 
error (β) is calculated, which is the probability of not 
detecting an existing real effect. This process evaluates 
whether the available sample has sufficient statistical 
power to answer the research question reliably. 

It is important to emphasize that there is a direct 
relationship between sample size and statistical power. 
Generally, a larger sample size means greater 
statistical power. Indeed, unlike sample size 
calculation, which we have been discussing throughout 
the article, power calculation: a) Can be used in both 
the planning phase or post-hoc. b) Requires 
specification of sample size, α, and effect size. c) Is 
useful for evaluating the adequacy of a given sample 
size or for interpreting non-significant results. 

Logistical Considerations in Sample Size 
Calculation  

Sample size calculation involves determining the 
number of participants needed to achieve the desired 
statistical power and considering crucial logistical 
aspects affecting study feasibility. These logistical 
adjustments are particularly important for determining 
the number of subjects needing contact or evaluation. 

To make these adjustments, three main factors 
must be considered: 

1. Rejection or non-response rate: The basic formula 
for adjusting for rejection rate is n_adjusted = n / (1 - 
p), Where 'n' is the calculated sample size and 'p' is 
the expected proportion of rejections or non-
responses. For example, if a rejection rate of 20% is 
expected (p = 0.2) and the calculated sample size is 
100, it will be necessary to approach 125 people 
(100/0.8 = 125). This correction ensures that, even 
with expected rejections, the required sample size 
will be achieved. 

2. Eligibility criteria: After adjusting for rejections, it is 
necessary to consider what proportion of the 
population will meet eligibility criteria. If only 20% of 
the evaluated population will be eligible, the number 
of people to assess is calculated as n_eligibility = 
n_adjusted / 0.2. Following the previous example, if 
we need 125 people who accept to participate, and 
only 20% will be eligible, we must evaluate 625 
people (125/0.2 = 625). 

3. Losses during follow-up: In longitudinal or cohort 
studies, it is crucial to consider losses during follow-
up. If a loss rate of 10% is expected, the adjustment 
would be: n_final = n_eligibility / 0.9 

4. Recruitment capacity and estimated time: Once the 
total number of people to evaluate is determined, it 
is fundamental to consider daily recruitment 
capacity and calculate the time needed to complete 
the study:  

• Daily recruitment = Number of people/medical 
records/registers that can be evaluated per day  

• Working days per month = Typically 20-22 days, 
depending on context  

• Total time (months) = (Total number to evaluate 
/ Daily recruitment) / Working days per month 

For example, if we need to evaluate 625 people and 
can process 10 people per day, with 22 working days 
per month:  

• Days needed = 625 / 10 = 62.5 days  
• Months needed = 62.5 / 22 ≈ 2.8 months 

It is important to note that these adjustments should 
be applied sequentially, as each affects the number 
calculated in the previous step. Furthermore, the 
proportions used for these adjustments should ideally 
be based on 1) previous pilot studies, 2) existing 
literature on similar studies, 3) previous experience in 
the study population, and 4) specific population 
characteristics and research settings. 

Careful consideration of these logistical aspects 
ensures study feasibility and helps plan the resources 
and time needed to complete participant recruitment 
and follow-up. 

IMPLEMENTATION IN R  

To facilitate the sample size calculation process in 
epidemiological studies, the authors have developed a 
series of R packages that address different association 
measures commonly used in research. These 
packages have been designed considering statistical 
and logistical considerations necessary for study 
planning. 

The first package, SamplePrevRatioMulti, is 
oriented toward sample size calculation in studies 
using prevalence ratio as the measure of association. 
This package allows researchers to specify key 
parameters such as significance level, desired  
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statistical power, and the prevalence ratio to be 
detected. A distinctive feature is its ability to consider 
different correlation values between covariates, thus 
providing a more comprehensive assessment of the 
necessary sample size under various scenarios. 

For unmatched case-control studies, the 
SampleCCNoMatchedlMulti package provides two 
distinct methodological approaches. The Rho-based 
method considers the correlation between the 
exposure of interest and other covariates to be 
included in the multivariable analysis, requiring 
parameters such as the proportion of exposure in 
controls and the OR to detect. The Standard Error-
based method leverages information from previous 
studies using the observed OR and its confidence 
intervals. Additionally, it includes a function for logistical 
planning that considers practical aspects such as 
differentiated rejection rates for cases and controls and 
estimated recruitment time. 

In matched case-control studies, the SampleCC 
MatchedlMulti package specializes in calculations that 
consider the matched nature of the data. This package 
requires specification of the expected proportion of 
discordant pairs and allows different matching ratios 
(e.g., multiple controls per case). Like the previous 
packages, it offers correlation-based and standard 
error-based methods specifically adapted for matched 
data. 

For cohort studies, the SampleRiskRatioMulti 
package focuses on sample size calculation when 
using relative risk as the measure of association. This 
package incorporates specific adjustments for 
longitudinal studies, including considerations about 
losses during follow-up and the expected proportion of 
exposed and unexposed in the study population. 

Finally, the SampleHazardRatioMulti package is 
designed for studies employing the Cox proportional 
hazards model. This package handles the additional 
complexities of survival analyses, such as considering 
censored data and specifying the expected hazard 
ratio. Like the previous packages, it offers correlation-
based and standard error-based methods, allowing 
researchers to choose the most appropriate according 
to available information and study objectives. 

These packages have been developed considering 
researchers' practical needs, including the statistical 
aspects of sample size calculation and the crucial 
logistical aspects for successful study planning and 

execution. The flexibility in calculation methods and the 
inclusion of functions for logistical planning make these 
packages comprehensive tools for epidemiological 
study design. 

A particularly useful feature of these packages is 
their ability to handle multiple scenarios 
simultaneously, especially concerning the correlation 
between covariates. This allows researchers to 
understand how different degrees of correlation can 
affect the required sample size, facilitating more robust 
study planning. 

The developed packages are available for 
installation through GitHub, facilitating access to the 
scientific community. For their implementation, users 
must have previously installed the "devtools" package 
in R, which allows the installation of packages from 
external repositories. Installation is performed using  
the command devtools::install_github("VicVePo/X"), 
replacing X with the corresponding package name. 

Once installation is complete, the packages can be 
loaded into the R session using the library("X") 
command, replacing X with the respective package 
name. This simple installation and loading process 
allows researchers to immediately access all sample 
size calculation and logistical planning functionalities in 
each package, thus facilitating the design and planning 
of their epidemiological studies. 

EXAMPLES OF USE WITH PRACTICAL CASES  

To illustrate the application of the developed 
packages, we present four practical cases representing 
different measures of association commonly used in 
epidemiological research. Each example considers 
different correlation values (rho) between covariates. 

Case 1: Prevalence Ratio - Cross-sectional Study 
(Using Rho)  

A group of researchers plans to study the 
association between remote work and musculoskeletal 
disorders in administrative workers. Based on previous 
literature, they expect to find a prevalence of 
musculoskeletal disorders of 20% in on-site workers 
(unexposed) and seek to detect a prevalence ratio of 
1.5. The team plans to include sociodemographic and 
occupational variables in the multivariable analysis, 
estimating a moderate correlation (rho = 0.3) with these 
covariates. For the calculation, they consider a 
significance level of 5% and power of 80%, with a 1:1 
ratio between comparison groups. 
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This yields a total of 645 participants. Additionally, 
for the logistical planning of the study, the researchers 
estimate a rejection rate of 15% and that approximately 
80% of evaluated workers will meet eligibility criteria. 
Considering that they can determine 15 workers per 
day, during 22 working days per month: 

 

Considering the established rejection and eligibility 
rates, approximately 949 workers must be evaluated to 
achieve the required sample size. With the planned 
evaluation capacity, a recruitment time of 64 days is 
estimated. 

Case 2: Prevalence Ratio - Cross-sectional Study 
(Using SE)  

Researchers from a primary care center plan to 
study the association between prolonged social media 
use (more than 3 hours daily) and the presence of 
depressive symptoms in adolescents. They base their 
study on a previous study with 250 participants with a 
prevalence ratio of 1.8 (95% CI: 1.3 - 2.5), suggesting a 
significant association. For the new research, they  
 

 

establish a significance level of 5% and power of 80%. 
Since confidence intervals from the previous study are 
available, they choose to use the standard error-based 
method for sample size calculation. 

For logistical planning, the researchers consider 
that they will work with a local secondary school. They 
estimate a rejection rate of 20% (assuming the need for 
consent from both parents and adolescents) and an 
eligibility rate of 85% (excluding adolescents with a 
previous diagnosis of depression or under psychiatric 
treatment). They plan to evaluate 18 adolescents per 
day during school days: 

 

Considering the established rejection and eligibility 
rates, approximately 236 adolescents must finally be 
invited to achieve the required sample size. With the 
planned evaluation capacity, a recruitment time of 14 
working days is estimated. 

Case 3: Statistical Power Calculation in Cross-
sectional Study (Using Rho)  

A researcher has completed a cross-sectional study 
on the association between sedentary behavior (more 
than 8 hours sitting) and chronic low back pain in office 
workers. They managed to recruit 300 participants (150 
per group), finding a prevalence of low back pain of 
25% in non-sedentary workers. The observed prevalence 
ratio was 1.6, and variables such as age, BMI, and years 
of work were included in the multivariable analysis, 
estimating a correlation of 0.45 with these covariates. 
The researcher wants to calculate the achieved 
statistical power, considering a significance level of 5%. 

 



Sample Size and Statistical Power Calculation in Multivariable Analyses International Journal of Statistics in Medical Research, 2024, Vol. 13      269 

The results indicate that the study achieved a 
statistical power of 69.97% with the sample size and 
the observed correlation with covariates. This value 
suggests that if there is a true prevalence ratio of 1.6 in 
the population, the study had a 76% probability of 
detecting this association as statistically significant. 
Although this value is slightly below the traditionally 
desired 80%, it still represents a reasonable capacity to 
detect the interest association. 

Case 4: Unmatched Case-Control Study (Using Rho 
with 1:3 design)  

A hospital research team seeks to study the 
association between occupational exposure to organic 
solvents and the development of interstitial lung 
disease. Based on previous studies, they estimate that 
the prevalence of exposure in controls (workers without 
disease) is 15%. They expect to detect an Odds Ratio 
of 2.5, considering a moderate correlation (rho = 0.4) 
with other covariates to be included in the analysis, 
such as age, smoking, and other occupational 
exposures. To optimize study efficiency, they plan to 
recruit three controls for each case (1:3 ratio), with a 
significance level of 5% and power of 80%. 

 

The results indicate that 75 cases and 225 controls 
are needed (300 participants in total). For logistical 
planning, the researchers anticipate different rejection 
rates for cases (10%) and controls (15%), given that 
cases are already in hospital follow-up. They estimate 
they can identify 2 potential cases per day and select 3 
controls per day from the healthy worker's registry: 

 

Considering the different rejection rates, approxi- 
mately 84 potential cases and 265 potential controls 
will need to be contacted. With the established 
identification and selection rates, a recruitment time of 
89 days is estimated. 

Case 5: Age and Sex-Matched Case-Control Study 
(Using Rho)  

Researchers from an oncology center plan to study 
the association between regular consumption of ultra-
processed foods and the development of gastric 
cancer. To minimize the effect of potential confounders, 
they decided to employ a matched design by age (±3 
years) and sex. Based on a pilot study, they estimate 
that the proportion of discordant pairs (where case and 
control differ in exposure) will be 35%. The researchers 
expect to detect an Odds Ratio of 2.0, considering a 
moderate correlation (rho = 0.35) with other variables 
to be included in the analysis, such as socioeconomic 
status, alcohol consumption, and family history. They 
establish a significance level of 5% and a power of 
80%. 

 

The results indicate that 89 case-control pairs (178 
participants total) are needed. They consider that 
identifying adequately matched pairs requires 
considerable logistical planning effort. They estimate 
they can identify and evaluate 3 case-control pairs per 
day, with a rejection rate of 20% (considering that both 
case and control must agree to participate): 

 



270     International Journal of Statistics in Medical Research, 2024, Vol. 13 Vera-Ponce et al.  

Considering the 20% rejection rate, approximately 
112 potential pairs will need to be contacted. With the 
established identification capacity of 3 pairs per day 
during 22 working days per month, a recruitment time 
of 38 days is estimated. 

Case 6: Cohort Study (Using Standard Error)  

Researchers from an occupational health clinic plan 
a cohort study to evaluate whether anemia during 
pregnancy increases the risk of preterm birth. They 
base their analysis on a pilot study with 180 workers 
that found a Relative Risk of 1.8 (95% CI: 1.2 - 2.7) 
after one year of follow-up. The incidence of preterm 
birth in women without anemia (unexposed) was 12%. 
For the new study, they establish a significance level of 
5% and power of 80%. Since they have confidence 
intervals from the previous research, they use the 
standard error-based method. 

 

The results indicate that 296 pregnant women are 
needed (88 workers in the exposed group and 88 in the 
unexposed group). Additionally, considering a rejection 
rate of 10%, a loss to follow-up rate of 15%, and an 
eligibility rate of 80%, the following logistical calculation 
was made: 

 

The calculation based on the standard error from 
the pilot study provides a more precise estimate by 
incorporating previously observed variability 
information. Approximately 53 cases of preterm birth 

are expected during follow-up. Considering the loss 
and rejection rates, 654 pregnant women will need to 
be contacted initially. With a recruitment rate of 5 
people per month, a recruitment period of 9.8 months is 
estimated. The total study time, including the year of 
follow-up, will be approximately 5.95 months. 

Case 7: Survival Analysis for Diabetes (Using 
Standard Error)  

Researchers plan a study to evaluate whether high 
consumption of sugary beverages (more than 2 
servings daily) increases the risk of developing type 2 
diabetes. They base their analysis on a previous study 
with 250 participants with a Hazard Ratio of 2.2 (95% 
CI: 1.4 - 3.5). For the new research, they establish a 
significance level of 5% and power of 80%. Since they 
have confidence intervals from the previous study, they 
use the standard error-based method. 

 

The results indicate that 178 participants in total are 
needed. For logistical planning, the researchers 
consider that the planned follow-up time will be 36 
months, and the estimated recruitment rate will be 25 
participants per month. In contrast, the expected loss to 
follow-up rate will be 15%, and the initial rejection rate 
will be 12%. Finally, approximately 30% of participants 
are expected to develop the event (diabetes) during 
follow-up. Thus, the following steps will be applied: 

 

Expecting that 30% will develop diabetes during 
follow-up (approximately 53 events), and considering a 
loss rate of 10% and rejection rate of 20%, it will be 
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necessary to contact approximately 250 people initially. 
With a recruitment rate of 15 participants per month 
and a planned follow-up of 24 months, it is estimated 
that the complete study will take approximately 41 
months. 

DISCUSSION  

Research Implications  

Adequate sample size calculation is a crucial 
element in the design of epidemiological studies, and 
its proper implementation has important research 
implications. The methods and tools presented in this 
work address several significant limitations of 
traditional approaches and offer practical solutions for 
researchers. 

One of the most relevant contributions is the explicit 
incorporation of correlation between covariates in 
sample size calculation. Traditional methods often 
ignore this aspect, resulting in studies with insufficient 
statistical power [18,19]. Considering rho allows for a 
more realistic estimation of the necessary sample size, 
especially in observational studies where predictor 
variables are often correlated. This adjustment is 
particularly important in epidemiological studies 
involving multiple confounding factors. 

Another significant aspect is the integration of 
logistical considerations in the planning process. The 
gap between theoretical sample size and the number of 
subjects that must be contacted is frequently 
underestimated in practice. Our approach, which 
incorporates rejection rates, eligibility criteria, and 
losses during follow-up, provides a more realistic view 
of the resources needed to complete a study 
successfully. This is especially relevant in contexts with 
limited resources or when working with hard-to-reach 
populations. 

The developed packages' flexibility in handling 
different measures of association (PR, RR, OR, and 
HR) reflects the diversity of epidemiological designs in 
current practice. This versatility allows researchers to 
select the most appropriate measure of association for 
their specific design without compromising the 
precision of sample size calculation. 

Implementing these methods in R, with open-source 
code and detailed documentation, facilitates their 
adoption by the research community. This promotes 
transparency in the sample size calculation process 

and allows other researchers to reproduce and validate 
calculations. 

In the broader context of epidemiological research, 
these tools improve the methodological quality of 
studies. More precise sample size calculation increases 
the probability of detecting significant effects when they 
truly exist and helps avoid wasting resources on 
studies with insufficient statistical power. This is 
particularly relevant when research reproducibility is 
under intense scrutiny. 

Incorporating these methods into routine research 
practice could help reduce the number of studies with 
inconclusive results due to inadequate sample sizes. 
Furthermore, explicit consideration of logistical aspects 
from the planning phase can improve the feasibility and 
efficiency of study execution. 

Advantages and limitations of advanced methods  

The advanced methods presented offer substantial 
advantages over traditional approaches to sample size 
calculation. The main strength lies in their ability to 
incorporate correlation between covariates, an aspect 
frequently ignored in conventional methods. This 
feature is particularly valuable in observational studies, 
where predictor variables are rarely independent. The 
flexibility to adjust calculations according to different 
correlation values (rho) allows researchers to evaluate 
how interdependence between variables affects the 
required sample size, facilitating more robust planning. 
Furthermore, integrating logistical considerations in the 
calculation process provides a more realistic view of 
the resources needed to execute the study, a crucial 
aspect of research feasibility. 

However, these methods also present important 
limitations that must be acknowledged. The precision of 
calculations heavily depends on the quality of initial 
estimates, particularly of Rho, which can be difficult to 
estimate accurately without similar previous studies or 
pilot data. The additional complexity of these methods 
may also represent a barrier for researchers less 
familiar with advanced statistical concepts, although 
the R implementation seeks to mitigate this limitation. 
Another important consideration is that, while these 
methods are more precise in theory, their practical 
advantage may be marginal in situations where the 
correlation between covariates is low or when other 
sources of variability (such as measurement errors or 
losses to follow-up) have a greater impact on study 
precision. 
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COMPARATIVE ANALYSIS AND LIMITATIONS 

The SampleSizeMulti packages offer several 
distinct advantages compared to existing sample size 
calculation tools. While established packages like 'pwr,' 
'power analysis,' and 'G*Power' provide robust 
solutions for basic study designs, they generally do not 
account for covariate correlations in multivariable 
analyses. Commercial software such as PASS and 
nQuery include some multivariable capabilities, but 
their proprietary nature and cost can limit accessibility. 
Our implementation bridges this gap by providing a 
free, open-source solution specifically designed for 
multivariable analyses in epidemiological research. 

However, it is important to acknowledge certain 
limitations of the current implementation. The packages 
assume complete data and may require modification 
when dealing with substantial missing data. While the 
current version handles continuous and binary 
covariates effectively, complex interactions between 
multiple categorical variables may require additional 
consideration. Furthermore, the accuracy of the rho-
based method depends heavily on the quality of 
correlation estimates, which may be challenging to 
obtain in the planning phase of some studies. 

The packages currently focus on the most common 
epidemiological measures of association (PR, OR, RR, 
HR). Future developments will expand this scope to 
include additional statistical analyses frequently 
employed in epidemiological research. Specifically, we 
plan to incorporate sample size calculation methods for 
binary and multinomial logistic regression, simple and 
multiple linear regression, multilevel analysis and 
mixed models, longitudinal data analysis, models for 
ordinal dependent variables, and mediation and 
moderation analyses. 

Regarding package maintenance and user support, 
we have established a systematic approach to updates 
and improvements. Package updates will be released 
quarterly, with bug fixes addressed more frequently as 
needed. Error reports and user suggestions are 
managed through our GitHub repository, with a 
structured protocol for review and implementation. 
Critical issues affecting calculation accuracy receive 
immediate attention, while feature requests are 
evaluated and prioritized during quarterly development 
reviews. 

These enhancements and expansions will be 
implemented gradually to maintain package stability 
and reliability while expanding its utility for diverse 

epidemiological research scenarios. The modular 
development approach allows users to access new 
features while retaining the simplicity and accessibility 
of core functionalities. 

FUTURE DIRECTIONS AND DEVELOPMENT 
ROADMAP 

While the current implementation of the SampleSize 
Multi packages addresses critical needs in sample size 
calculation for common epidemiological designs, we 
acknowledge several important areas for future 
development and expansion. 

The next phase of development will incorporate 
support for more complex sampling designs. This 
includes calculations for multi-stage sampling, cluster 
sampling adjustments, stratified sampling design 
considerations, complex survey design power 
calculations, and weighted analysis accommodations. 
These additions will enhance the packages' utility for 
researchers working with more complex study designs 
while maintaining the user-friendly approach that 
characterizes the current implementation. 

Technical enhancements are also planned to 
expand the packages' capabilities. These include 
integrating popular R statistical packages, expanded 
analytical approaches for specialized study designs, 
advanced reporting capabilities, interactive visualiza- 
tion features, and automated report-generation tools. 
These improvements will streamline researchers' 
workflows and provide more comprehensive analytical 
support. 

We have established several key infrastructure 
elements to ensure robust development and mainten- 
ance. A public GitHub repository has been created for 
issue tracking, comprehensive unit testing protocols 
are being implemented, detailed documentation with 
practical examples is under development, and 
systematic validation procedures for new features are 
being established. These measures will ensure the 
continued reliability and effectiveness of the packages 
as they evolve. 

User engagement and support are crucial elements 
of our development roadmap. We are implementing a 
structured system for collecting user feedback, 
planning regular webinars and training sessions, 
developing a dedicated website for documentation and 
resources, and establishing quarterly newsletters to 
keep users informed of updates and developments. 
These initiatives will facilitate user adoption and ensure 
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future developments align with the research 
community's needs. 

These planned developments aim to enhance the 
utility and accessibility of the packages while 
maintaining their core focus on practical application in 
epidemiological research. The implementation will 
follow a modular approach, ensuring that basic 
functionality remains straightforward while advanced 
features are available for more complex needs. 
Through these improvements, we aim to continue 
supporting the evolving needs of epidemiological 
researchers while maintaining the packages' 
commitment to methodological rigor and practical 
utility. 

CONCLUSIONS AND RECOMMENDATIONS  

The advanced methods for sample size calculation 
presented in this work represent a significant 
improvement over traditional approaches, especially in 
the context of epidemiological studies involving 
multivariable analyses. Incorporating correlation 
between covariates and logistical considerations in the 
calculation process allows for more realistic and robust 
research planning. Implementing these methods through 
R packages facilitates their practical application and 
promotes reproducibility in epidemiological research. 

The developed experience suggests that 
researchers should consider the correlation between 
covariates from the initial stages of study planning. In 
this regard, conducting pilot studies when possible or 
utilizing data from similar previous studies is 
fundamental for a more precise estimation of the 
multiple correlation coefficient. This preventive 
approach allows for better analysis of the necessary 
sample size and reduces the risk of obtaining 
inconclusive results due to insufficient statistical power. 

It is crucial to systematically incorporate logistical 
considerations in the sample size calculation. 
Adjustments for expected rejection rates, eligibility 
criteria, and losses during follow-up are fundamental 
elements for realistic resource and timeline planning. 
These practical aspects, often underestimated in 
traditional calculations, can significantly impact study 
feasibility and success. 

The selection of the most appropriate measure of 
association for the specific study design, whether 
prevalence ratio, odds ratio, relative risk, or hazard 
ratio, should be carefully made using the calculation 
methods developed for each case. This specificity in 

the methodological approach ensures greater precision 
in sample size estimation and contributes to the 
soundness of the research design. 

Maintaining detailed documentation of all 
parameters used in sample size calculation is 
essential, including justifications for selected values 
and sources of information used. This documentation 
process not only facilitates research transparency and 
reproducibility but also allows for sensitivity analyses 
when specific correlation values or expected loss rates 
are uncertain. 

The adoption of these methods can significantly 
contribute to improving the methodological quality of 
epidemiological studies. By providing more precise and 
realistic planning that considers both statistical and 
logistical aspects of research, these advanced methods 
represent an important step toward resource optimization 
and strengthening scientific evidence in epidemiology. 
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