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Abstract: Estimating the true underlying images from distorted high-dimensional data is crucial for applications in high-
profile fields such as crime detection in security, clinical settings and medical diagnosis in healthcare, and radar imaging 
in signal processing. Existing statistical methods often struggle with robustness and image reconstruction quality when 
processing high-dimensional image data. While Robust Principal Component Analysis (RPCA) is widely used for image 
recovery, its reliance on uniform weights with singular value decomposition (SVD) weakens performance, especially in 
noisy environments. The !! norm also fails to capture image details and recovery under high noise levels, a critical 
limitation for applications like medical diagnoses, where detail is essential. These challenges emphasize the need for 
improved methods to handle noise and enhance image quality in sensitive fields. Therefore, this paper proposes a novel 
RPCA method that integrates CLAHE with Log weighted nuclear norm (LWNN) and the !!,! norm for high-dimensional 
natural and medical imaging. To reduce the computational load, our novel method is formulated into a new optimization 
problem and solved using the Alternating Direction Method of Multipliers (ADMM). This method leverages LWNN for 
enhanced low-rank approximation to drastically prune out the anomalies in images and the !!,! norm for improved 
sparse component recovery. Our approach has superior performance in image reconstruction compared to other state-
of-the-art methods (SOTAs), showing significant advancements with real-world datasets. An interesting finding of this 
research is that combining the LWNN with the !!,! norm is highly effective at removing noise from images. Furthermore, 
when the CLAHE technique is combined with LWNN and the !!,! norm, it significantly enhances the extraction of 
previously unseen features, making blood vessels in medical images much clearer and more distinguishable. This 
combination proves to be a powerful approach for medical image analysis, revealing details that are otherwise difficult to 
detect. This method will be used for crime detection in security intelligence, and clinical settings and medical diagnosis in 
human retinal eyes. 
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INTRODUCTION 

In computational statistics, RPCA is a powerful 
statistical method in high-dimensional image recovery 
[2, 10-12], widely used for decomposing data into low-
rank and sparse components. This decomposition is 
crucial in diverse applications such as image alignment 
[26], anomaly detection for security purposes [7], video 
background subtraction [24], medical image analysis 
[6, 16-18], and retinal image enhancement [10]. RPCA 
also finds significant utility in tasks like image denoising 
[21] and image classification [28]. By isolating the un- 
derlying low-rank structure from high dimensional 
images influenced with noise and outliers [4, 30], RPCA 
plays a central role in accurate image recovery data 
analysis from high-dimensional image data [3, 14, 29]. 
However, these methods lack to be computationally 
efficient. 

To estimate the true underlying object from a 
distorted high dimensional images, the pioneering 
RPCA framework by [2] is formulated as: 
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minL,S ! ∗ + ! ! 1   !S. t    ! = ! + !   (1) 

Where ! ∗ represents the nuclear norm of the matrix 
! (the sum of its singular values), ! ∗ is the ℓ!-norm of 
the matrix ! (the sum of the absolute values of its 
entries). The regularization parameter ! ! 0 balances 
the contributions of the low-rank matrix ! and the 
sparse matrix !. 

Since the groundbreaking work on RPCA by 
Candés et al. (2011) [2], a wide array of methods has 
emerged for robust sparse low-rank image 
recovery[31]. Pluim et al (2003) [20] introduced a novel 
technique for mutual information based registration of 
medical images for measuring image similarity. Peng et 
al. (2012) [19] proposed a robust image recovery 
method to address misalignment issues, but its 
performance is limited as all images are compressed 
with the same SVD, reducing its adaptability. To 
enhance the performance, a new method was 
introduced by [8], utilizing geometric transformations. 
However, the technique struggles when noise levels 
are excessively high. Lui et al. (2022) [14] proposed 
RPCA with low-rank matrix recovery (RPCA-LRMR), 
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leveraging local smoothness for image recovery. This 
approach uses the correlated total variation norm 
minimization problem. However, this reliance on local 
features limits its versatility. Similarly, Liu et al. (2018) 
[13] introduced RPCA with !! − !! regularization 
(RPCA-NNM), where the !! norm addresses sparse 
outliers and the !! norm tackles additive noise. While 
this method enhances image quality, it still struggles to 
deliver significant performance improvements. Likassa 
et al. (2024) [10] developed an enhanced RPCA with 
weighted nuclear norm and Affine transformation 
(RPCA-WAT) for medical image recovery. This method 
uses the weighted nuclear norm to minimize errors and 
the !!,! norm to filter out noise. Despite its strengths, 
this method lacks the capability to effectively recover 
intricate image details. This limitation in capturing and 
detailing certain characteristics during medical image 
analysis may restrict its applicability in clinical settings 
and medical diagnosis. Rajpurohit et al. (2024) [23], a 
Block Minorization-Maximization Method for Row-
Sparse Principal Component Analysis (BM2A) was 
introduced, offering enhanced image reconstruction by 
effectively addressing row-sparsity and improving 
recovery accuracy compared to traditional RPCA 
methods. Moreover, the block minorization-
maximization (MM) algorithm may suffer from slow 
convergence, the risk of converging to local optima, 
dependence on the initial solution, and high 
computational cost, especially if the subproblems are 
complex or poorly partitioned. Furthermore, a log 
weighted and !!,! norms has been suggested for 
enhanced image recovery [5]. Despite these 
improvements, existing methods still exhibit insufficient 
robustness, as optimizing weight adjustments remains 
critical for more accurate recovery of image structures. 
The deep learning [1, 9] is though good for image 
reconstruction, however they require more datasets 
which undermines the computational loading. 

Existing RPCA methods face significant challenges 
when applied to high-dimensional medical images. 
They struggle to handle noise, variations, and 
occlusions effectively. These limitations make them 
less robust for clinical and medical diagnoses. A key 
issue is their reliance on SVD, which treats the entire 
image as having the same singular values. This 
approach is not realistic as it fails to capture the 
detailed characteristics of the image. As a result, it 
does not effectively reveal hidden underlying features 
such as background extractions or clearly highlight 
structures like blood vessels. 

This paper proposes a novel RPCA method that 
integrates LWNN and the !!,! norm for better image 

recovery. LWNN reduces noise by adjusting singular 
values, while the !!,! norm potentially captures the 
issue of outliers and variations, offering more accurate 
image reconstruction in challenging conditions. 

The major contributions of this paper are: 

•  We propose a novel RPCA model integrating LWNN 
for improved image recovery data analysis, 
effectively weighting and truncating singular values to 
enhance noise robustness and preserve low-rank 
features. Incorporating the log-weighted nuclear 
norm enhances low-rank recovery, noise 
suppression, and robustness compared to the 
traditional weighted nuclear norm in matrix tasks. 

•  To enhance robustness against noise and outliers, 
we also incorporate the !!,! norm into RPCA to 
remove correlated samples in high-dimensional 
images. 

•  By incorporating CLAHE, our method accurately 
extracts the underlying object and background, 
improving image decomposition and reducing noise 
sensitivity. 

•  To reduce the computational load, our method intro- 
duces LWNN, solved via ADMM, achieving significant 
performance gains over traditional methods. 

•  The combination of CLAHE and LWNN marks a 
major advancement over existing RPCA techniques, 
outperforming recent SOTAs.  

The structure of this paper is organized as follows. 
The problem formulation is described in Section 2. The 
datasets described in Section 3 and the simulation 
results are given in Section 4. Finally, discussions and 
conclusions are given in Section 5. 

2. PROBLEM FORMULATION 

Given an observed matrix ! ∈ ℝ!×! where ! is 
obtained from pixels and ! is number of images, RPCA 
aims to decompose ! into a low-rank matrix ! and a 
sparse matrix !, such that:  

  ! = ! + !   (2) 

 The optimization problem in Eqn. 1 has a 
significant drawback: it assigns equal weights to all 
images. To address this limitation, we introduce the 
LWNN, defined as follows: 

min
L,S

log 1 +
σ! L

!

!

!=1

+ ! ! 1  (3) 

                    S. t.! = ! + ! 
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To mitigate the influence of correlated samples, the 
!!,! norm was proposed as an improvement over the !! 
norm as in [12]. The !! norm still struggles with 
robustness, as it imposes uniform sparsity across all 
groups of images, which can be overly restrictive. To 
enhance the robustness and resilience of the method 
against noise and outliers, we considered the !!,! norm 
over the !! norm as in [10], and log weighted nuclear 
norm as in [15]. This leads to a new and improved 
optimization problem, formulated as follows: 

min
L,S

log 1 +
σ! L

!

!

!=1

+ ! ! 2,1  (4) 

                    ! . t.! = ! + ! 

where ! ∈ ℝ!×! is the low-rank matrix, ! ∈ ℝ!×! is the 
sparse matrix, !!(!) denotes the !!! singular value of !, 

and ! !,! = !!,!!!
!!!

!
!!! , !"#( ⋅) is the natural 

logarithm function. The summation is taken over all 
rows ! of the matrix !. This optimization problem for 
RPCA with a log-based weighted nuclear norm along 
with the CLAHE can be expressed as: 

min
L,S

! !"# + ! ! 2,1  
(5) 

                  !                            S. t.!ℂ!"ℍ! = ! + ! 

where ! !"# is represented by !"# 1 + !!(!)
!

!
!!! , ! is 

representing the truncation level, it is noted that the 
! !,! can measure the columnwise sparsity more 

accurately than the !!,! norm if contains larger values. 

2.1. Proposed Method 

To solve an optimization problem, we used an 
ADMM approach as in [12]. Then, when we apply the 
ADMM approach to Eqn. 5, which is given by: 

  ℒ(!,!, ,!) = ! !"# + ! ! !,! + !,!ℂ!"ℍ! − ! − !  
(6) 

                                            +
!
!
!ℂ!"ℍ! − ! − ! !

!  

where ! ! ℜ!×! denotes that the Lagrangian multiplier, 
! is denoting the penalty parameter. Then, considering 
the relationship between the Frobenious and cross 
product, then Eqn (6) can be further modified to first we 
need to find the optimal parameter corresponding to ! 
so that we can get  

!!!!!) = argmin
!

ℒ{ ! !"# +
!(!)

2
||!ℂ!"ℍ!

(!) − ! 
(7) 

                      !                    −! ! +
! !

! ! |!!  

To find the optimal parameter of ! as in [27], 
consider two matrices ! ∈ ℜ!×!, ! ∈ ℜ!×! and 
!! ! = !,!!! = !. Then, the LWNN can redefined as  

! !,!   = ! !,∗−arg min
!!!!!,!!!!!

tr(!"!!)      (8) 

where ! is an identity matrix. When ! = [!!. . . .!!]! 
and ! = [!!. . . . !!!!, tr(!"!!) can achieve its 
maximum value. Then, Eq. 8 can be rewritten as  

min
L,S

! !"−min
!=!

tr(!"!!) + ! ! 2,1 
(9) 

                                                                 s.t. !ℂ!"ℍ! = ! + ! 

To solve Eq. 9, we employ the ADMM scheme 
again. Then setting !! = 0 as initialization, in the !!! 
iteration we compute the SVD of !! to obtain !! and !!, 
then update !!!! and !!!! by solving the following 
optimization problem on the use of !! and !!   

                                            min
!,!

! ∗,! − tr(!!!!!!)+ ! ! !,! 
(10) 

!                                                               s.t. !! !"ℍ! = ! + ! 

The above equation can be reduced to the following 
form  

ℒ(!!!,!, !) = ! !,! − tr(!!!!!!) + ! ! !,!  
(11) 

                      +⟨!,!ℂ!"ℍ! − ! − !⟩ +
!
2
!CLAHE − ! − ! !

!  

By applying singular value shrinkage operator on 
Eq. 11, then we can get:  

!!!! = !!!
!! !!"#$% −

   !!!! ! !!!!(!! + !!,!!!,!! )
                    !                          !                                                      !              !              = !!!!!!!!!

     (12) 

where !, ! and ! are obtained by tw SVD of !CLAHE −
!!!! + !!!!(!! + !!,! ,!!,!! ) where ! = (!!. . .!!) ∈
ℜ!×! and ! = (!!. . .!!) ∈ ℜ!×!, and ! is the diagonal 
matrix with the thresholded singular values obtained 
after taking the log-weighted thresholding on the 
singular values !! . 

Secondly, to update !, we keep ! and ! as 
constants, so !(!!!) can be determined by  

!(!!!) = argmin
!

ℒ   !(!!!),!,!       (13) 

Again, by ignoring all irrelevant terms of !, Eq. (13) 
can be simplified as  

!(!!!) = argmin
!

{! ! !,! +
!(!)

!
||!ℂ!"ℍ! − !(!) (14) 

                                            −! +
!(!)

!(!)
||!!} 
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Invoking the augmented Lagrangian multiplier and 
the soft shrinkage operator as in [10], by considering 
lemma as in [12], the update of the !!! column of !(!!!), 
!!
(!!! ) is given by  

! !
(!!!) =

!!
!

!
!!

!

! !

!!
!

!

! !
! , if !!

!
!
≥ ! !

! !

0, otherwise

 (15) 

where !(!) = {!ℂ!"ℍ! − !(!) − ! +
!(!)

!(!)
}. 

Following the same steps, the Lagrangian multiplier 
! is updated by 

!(!!!) = !(!) + !(!!!){!!"#$%
(!) − !(!!!) − !(!!!)}     (16) 

Likewise, updated parameters, the regularization 
parameter ! is updated by  

! !+1 ! !"# !!!"#, !!
(!)        (17) 

The performance of the proposed method is 
evaluated through visualization and numerical 
simulations, utilizing the Peak Signal-to-Noise Ratio 
(PSNR), Structural Similarity Index (SSIM), and 
Relative Absolute Error (RAE). Higher performance is 
indicated by lower PSNR and SSIM values between 
the corrupted and recovered images, while a higher 
RAE suggests better recovery of distorted images. This 
means that a lower PSNR and SSIM between the 
degraded and recovered images using the proposed 
method, along with a higher RAE, indicate that the 
recovered images are closer to the ground truth. This 
suggests that the proposed method has greater 
potential in recovering degraded images compared to 
SOTA methods. For PSNR and SSIM, higher values 
between the ground truth and enhanced images 
indicate better performance, while for RAE, lower 
values signify better performance of the method.  

3. DATASETS 

This section describes various natural complicated 
images and medical image datasets to evaluate the 
performance of the new method described in Section 2. 
In this research, we considered two distinct datasets: 
The first comprises complicated natural images, while 
the second consists of medical retinal images. The 
details of each dataset considered in this research are 
provided in the following subsections.  

3.1. Complicated Natural Images 

First, we considered various types of images: 
dummy face images, natural face images, complex 

face images in the form of video sequences, and 
intricate window images. These images exhibit 
variations and illumination, with dummy images sized 
at 49×49 pixels, natural face images at 80×60 pixels, 
video face images at 232×312 pixels, and complicated 
window images each measuring 512×512 pixels. We 
evaluated the performance of the proposed method 
using dummy face images, complex images in the form 
of video sequences, and the challenging Labeled 
Faces in the Wild (LFW) dataset [19], which includes 
images with variations in pose, expression, lighting, 
and occlusion. The natural face images are sourced 
from a database, with each image having dimensions 
of 80×60 pixels. Finally, we conduct an experiment on 
more complicated face images in videos taken from the 
Al Gore talking [19]. In this, video, three different video 
face images with the size 232×312 are considered. 
Following this, we tested the method on complex, 
distorted window images sized at 512×512 pixels from 
[22].  

3.2. Medical Retinal Images 

Second to verify the performance of the proposed 
method in medical aspect, we considered several 
retinal images, from which first the EyeQ [25], consists 
of 28,480 training and 15,128 testing images, including 
the high-quality retinal images called ground truth and 
degraded low-quality images with added artifacts and 
noises. We selected three retinal images with each 
image size of 800×800 pixels retinal images from 
EyeQ for performance assessment through 
visualization and numerical analysis based on the full 
and non-full reference categories. The dataset is 
publicly available at (https://github.com/HzFu/EyeQ). 
Following this, we considered a synthetic dataset 
generated by adding salt and pepper noise 
(5%, 10%, 15%, 20%, 25% noise density) to input retinal 
images (! ), introducing white pixels to simulate 
challenging conditions for image processing algorithms. 

Third, we considered the Digital Retinal Images for 
Vessel Extraction (DRIVE) (https://paperswithcode. 
com/dataset/drive) dataset for retinal vessel 
segmentation. Each image resolution is 584×565 
pixels with eight bits per color channel (3 channels). It 
consists of a total of 40 color fundus images. The 
images were obtained from a diabetic retinopathy 
screening program in the Netherlands. Thus, we 
considered three distorted testing images from these 
images to see the performance of the proposed 
method as compared with SOTA methods. 
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Finally, the STARE (Structured Analysis of the 
Retina dataset) (https://paperswithcode.com/ 
dataset/stare) which primarily used in medical research 
ophthalmology. These images are often used to 
evaluate and develop advanced image processing 
techniques and machine learning models in retinal 
imaging for automatic detection and classification of 
retinal diseases such as diabetic retinopathy, macular 
degeneration, and glaucoma. The STARE dataset 
includes retinal vessel segmentation. It contains 81 
equal-sized 700×605 color retinal fundus images. For 
each image, two groups of annotations are provided. 

The purpose of the datasets is to examine the 
effectiveness of the proposed method to see the 
efficiency of the newly developed method, we 
compared it with SOTAs. To verify the visualization 
results we also considered three different metrics 
mainly the PSNR, SSIM and RAE. The formula for 
each metrics is mentioned in below. The effectiveness 
of the proposed method is checked through numerical 
measures using PSNR, which is defined as:   

!"#$(!, !) = 10!"!!"

!"!!
!

!×! (!!"!!!")!
!
!!!

!
!!!      (18) 

where both the original image ! and the recovered 
image ! are of size !×!. Similarly, the relative 
absolute error between the ground truth and recovered 
images is given by:  

RAE(!, !) =
!!! !
! !

        (19) 

where ! 1 = |!!"|
!
!=1

!
!=1  

Moreover, the SSIM between the ground truth and 
recovered images is given by: 

SSIM(!! ! ) =
(!!!!!!!!)(!!!!!!!)

(!!
!!!!

!!!!)(!!
!!!!

!!!!!
      (20) 

4. NUMERICAL EXPERIMENTS 

The proposed method is rigorously compared with 
other SOTAs, including RPCA NNM [13], RPCA WAT 
[10], RPCA with LRMR [14], and BM2A [23] through 
image visualization and numerical simulations using 
the PSNR, SSIM and RAE between the recovered and 
the original images. Furthermore, the performance of 
the new method is compared between the ground truth 
and the recovered images generated by the specified 
baseline methods. The recovered images are obtained 

from the degraded images by adding noisy images that 
combine salt and pepper noise. 

4.1. Ablation Studies: Synthetic Retinal Image Data 
Analysis 

First, we generated synthetic noise by combining 
salt-and-pepper noise to evaluate the performance of 
adding a log-weighted nuclear norm with the !!,! norm 
in removing noise from the original retinal images with 
each having 800×800 pixels retinal images from EyeQ. 
When we added 5% noise to the original retinal 
images, as shown in Figure 1, the log-weighted nuclear 
norm combined with the !!,! norm outperformed both 
the classical nuclear norm and the weighted nuclear 
norm with the !! norm. Furthermore, when we add the 
level of noise from 5% to 15%, the result we attained 
are given in Figures 1-3. These findings are consistent 
with the numerical results presented in Table 1 and 2. 
The findings of the study showed that as the noise level 
increases the performance of the methods with 
different norms decline but the LWNN with the !!,! 
norm is relatively better in substantially removing 
outliers and noises, and enhancing the quality of retinal 
image analysis as illustrated in Figures 4-6. 

Table 1: PSNR, SSIM, and RAE for each Method Figure 
1 

Methods  PSNR  SSIM  RAE  

RPCA with LWNN + !!,! Norm   42.7863   0.96544   0.024173  

RPCA with !∗ + ! ! Norm   17.6445   0.58494   0.29832  

RPCA with !! ,∗ + !! + !!   35.1509   0.94567   0.058323  

 
Table 2: PSNR, SSIM, and RAE for Each Method at 10% 

Noise Figure 2 

Methods  PSNR  SSIM  RAE  

RPCA with LWNN + !!,! Norm   36.0213   0.89542   0.06362  

RPCA with !∗ + !! Norm   14.6401   0.45326   0.42160  

RPCA with !!,∗ + !! + !!   34.2208   0.94311   0.07286  

 
These numerical values were obtained by 

computing between the ground truth and recovered 
images. From this, we observed that RPCA with the 
log-weighted nuclear norm (LWNN) and !!,! norm 
outperforms over RPCA with !∗ + !! Norm and RPCA 
with !!,∗ + !! + ! !. 

4.2. Natural Face Image Data Analysis 

We evaluated our proposed method on the 
challenging in LFW dataset [19], which includes images  
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Figure 1: Retinal Image Recovery: a) Original; b) 5% Noise; c) RPCA with LWNN + ! !,! Norm; d) RPCA with !∗ + !! Norm; e) 
RPCA with !!,∗ + !! + !!. 
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Figure 2: Retinal Image Recovery: a) Original; b) 10% Noise; c) RPCA with LWNN + !!,! Norm; d) RPCA with !∗ + !! Norm; e) 
RPCA with !!,∗ + !! + !!. 
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Figure 3: Retinal Image Recovery: a) Original; b) 15% Noise; c) RPCA with LWNN + !!,! Norm; d) RPCA with !! + !! Norm; e) 
RPCA with !!,∗ + !! + !!. 
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Figure 4: PSNRs versus Noise Levels: RPCA with LWNN + !!,! Norm; RPCA with !∗ + !! Norm; RPCA with !!,∗ + !! + !!. 

 
Figure 5: SSIMs versus Noise Levels: RPCA with LWNN + !!,! Norm; RPCA with !∗ + !! Norm; RPCA with !!,∗ + !! + !!. 
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Figure 6: RAEs versus Noise Levels: RPCA with LWNN + !!,! Norm; RPCA with !! + !! Norm; RPCA with !!,∗ + !! + !!. 

 

Figure 7: Natural Face Image Recovery: a) Degraded; b) Ours; c) RPCA NNM [13]; d) RPCA WAT [10]; e) RPCA with LRMR 
[14] and BM2A [23]. 

with variations in pose, expression, lighting, and 
occlusion. Figure 7 shows the results: starting with 
the degraded image in Fig. (7a), recovered images 
by our method in Fig. (7b) significantly enhances 
image quality, outperforming RPCA NNM (c), RPCA 
WAT (d), RPCA with LRMR (e), and BM2A (f). Our 
method clearly surpasses SOTAs in complex 
conditions, as summarized in Table 3. 

4.3. Complicated Image Data Analysis  

To verify the performance of our proposed method 
with the baseline methods, we tested it on complex 

512×512 pixels distorted windows taken from [22]. As 
shown in Fig. 8, our method delivers clearer visual 
image quality results, consistent with the numerical 
simulations in Table 3. The combination of CLAHE with 
LWNN in RPCA enhances resilience to noise and 
outliers. We further validated our method using 100 
dummy head images from the CMU Multi-PIE face 
database and the first three frames of a 140 frame 
video of Al Gore [19], significantly improving image 
quality. Our method consistently outperforms state-of-
the-art (SOTA) techniques in image recovery, as 
summarized in Table 3. The image quality results 
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achieved by the proposed method for the dummy and 
Al Gore video sequence images are comparable to 
those of other techniques. We have also included 
numerical simulations in this paper to support our 
findings. This is due to we incorporated LWNN and 
CLAHE along with the !!,! to enhance the quality of 
images. 

4.4. Medical Retinal Image Data Analysis 

4.4.1. EyeQ Dataset 

Next, we conduct simulations on degraded retinal 
images taken from the training dataset as in [10]. In this 

experiment, three degraded retinal images with size 
800×800 pixels are considered. As a visualization, 
some of the improved retinal images based on the 
above methods are given in Fig. (9a), in which our 
novel method, shown in Fig. (9b), better enhances the 
degraded retinal images as compared to the baseline 
methods including RPCA NNM [13], RPCA WAT [10], 
RPCA with LRMR [14], and BM2A [23] from which the 
results attained by our method is better as compared 
with the baseline methods. This result resembles the 
results given in Table 4, and further verify the 
effectiveness of the proposed method. 

 

Figure 8: Complicated Window Image Recovery: a) Degraded; b) Ours; c) RPCA NNM [13]; d) RPCA WAT [10]; e) RPCA with 
LRMR [14] and BM2A [23]. 

Table 3: Comparison of PSNR, SSIM, and RAE Values for Different Methods across Various Image Types Figs. 7 and 8. 

Image Types  Metrics  Ours  RPCA NNM [13]  RPCA WAT [10]  BM!A [23]  

Dummy 

 PSNR   10.61   24.62   26.79   27.57  

 SSIM   0.17   0.69   0.75   0.73  

 RAE   1.64   0.29   0.23   0.20  

Video 

 PSNR   13.54   22.15   21.00   19.82  

 SSIM   0.36   0.62   0.63   0.61  

 RAE   0.35   0.14   0.14   0.15  

Natural 

 PSNR   11.57   17.09   16.80   15.68  

 SSIM   0.28   0.51   0.52   0.52  

 RAE   0.51   0.382   0.38   0.38  

Windows 

 PSNR   10.92   14.81   14.69   14.00  

 SSIM   0.23   0.40   0.41   0.42  

 RAE   0.62   0.61   0.61   0.60  
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Similarly, by taking different retinal images from the 
EyeQ, we achieved similar results which justify 
incorporating the log weighted nuclear norm along with 
the !!,! norm in addition to the CLAHE is outperforming 
to the state of the art methods. The result shown in 
Figure 10 is more consistent with the results illustrated 
in the Table 4. 

Table 4: PSNR, SSIM, and RAE for Each Method Figure  
9 

Methods  PSNR  SSIM  RAE  

Ours   14.75   0.21   0.55  

RPCA NNM [13]   20.79   0.65   0.31  

RPCA WAT [10]   20.70   0.67   0.30  

RPCA with LRMR [14]   20.81   0.67   0.33  

BM2A [23]   20.10   0.66   0.32  

 

4.4.2. STARE Dataset 

To further verify the performance of the proposed 
method, we also employed our newly developed 
method on the STARE dataset in which the results are 
illustrated in Figure 11 and Table 6. 

4.4.3. DRIVE Dataset 

To further validate the performance of the proposed 
method as compared with the baseline methods, we 
also consider the DRIVE dataset, from which the 
performance of the proposed method is far better in 
improving the quality of retinal images. The improved 
quality attained by the proposed method is given in Fig. 

12, from which this result is more consistent with the 
results given in Table 7. 

Table 5: PSNR, SSIM, and RAE for Each Method Figure 
10 

Methods  PSNR  SSIM  RAE  

Ours   14.38   0.36   0.68  
RPCA NNM [13]   20.97   0.70   0.41  
RPCA WAT [10]   20.51   0.71   0.41  

RPCA with LRMR [14]   20.96   0.71   0.41  
BM2A [23]   19.42   0.68   0.42  

 
Table 6: PSNR, SSIM, and RAE for Each Method Figure 

11 

Methods  PSNR  SSIM  RAE  

Ours   14.06   0.38   0.4517  

RPCA NNM [13]   20.34   0.75   0.2684  

RPCA WAT [10]   20.37   0.76   0.2662  

RPCA with LRMR [14]   20.36   0.76   0.2676  

BM2A [23]   20.25   0.77   0.2626  

 
Table 7: PSNR, SSIM, and RAE for each method Figure 

12 

Methods  PSNR  SSIM  RAE  

Ours   17.5306   0.3759   0.3566  

RPCA NNM [13]   24.2370   0.8138   0.1685  

RPCA WAT [10]   24.2406   0.8211   0.1676  

RPCA with LRMR [14]   24.2506   0.8165   0.1682  

BM2A [23]   24.0004   0.8295   0.1676  

 
Figure 9: Retinal Image Recovery: a) Degraded; b) Ours; c) RPCA NNM [13]; d) RPCA WAT [10]; e) RPCA with LRMR [14] and 
BM2A [23]. 
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Figure 10: Retinal Image Recovery: a) Degraded; b) Ours; c) RPCA NNM [13]; d) RPCA WAT [10]; e) RPCA with LRMR [14] and 
BM2A [23] 

 
Figure 11: STARE Retinal Image Recovery: a) Degraded; b) Ours; c) RPCA NNM [13]; d) RPCA WAT [10]; e) RPCA with LRMR 
[14] and BM2A [23]. 
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Figure 12: DRIVE Retinal Image Recovery: a) Degraded; b) Ours; c) RPCA NNM [13]; d) RPCA WAT [10]; e) RPCA with LRMR 
[14] and BM2A [23]. 

 

 

Figure 13: Time Complexity versus Time in Computation. 
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4.5. Time Complexity 

The results of the proposed method, in terms of 
computational complexity, are compared with state-of-
the-art methods using the dataset shown in Figure 13. 
The time complexity of the proposed method is higher 
compared to state-of-the-art methods due to the 
integration of the Truncated Weighted Nuclear Norm 
(TWNN) and Adaptive Histogram Equalization (AHE) 
into the Robust Principal Component Analysis (RPCA) 
framework. This increased complexity arises because 
the combination of TWNN and AHE requires additional 
computations, particularly in handling the weighted 
nuclear norm and adjusting the image features through 
histogram equalization. While this process enhances 
the method’s robustness, especially in noise reduction 
and preserving image details, it also demands more 
computational resources. Specifically, TWNN focuses 
on significant singular values for low-rank matrix 
recovery, and AHE adapts image contrast, both of 
which involve more intensive matrix operations and 
parameter adjustments compared to simpler, traditional 
methods. Therefore, the trade-off between improved 
performance and increased time complexity should be 
considered based on the application’s requirements for 
accuracy and efficiency. 

5. DISCUSSIONS AND CONCLUSIONS 

This work is dedicated to developing a novel 
method for retinal image enhancement by RPCA 
method components [11, 12] through combining LWNN 
with CLAHE and !!,! norm into the pioneering RPCA, 
aimed at improving their robustness. The development 
of these approaches represents a significant 
contribution to the field of computational statistics and 
data analysis in imaging, particularly in the realm of 
high-dimensional medical images. Existing methods, as 
referenced in [11, 12], often lack robustness in the 
presence of gross noises and outliers within high-
dimensional retinal images. In response to this 
challenge, this article presented a novel method 
developed to address these issues. 

Despite the pioneering RPCA method used for 
image recovery, several components have been 
developed. However, their performance in recovering 
high-dimensional distorted images is not satisfactory 
for crime detection and clinical diagnosis. Therefore, 
this paper is proposing a novel RPCA method for 
improving the quality of highly distorted high 
dimensional images. The problem is formulated as an 
optimization problem and the parameters involved are 

solved via the ADMM approach, our method achieved 
superior performance compared to SOTAs. A large gap 
between the recovered and degraded images suggests 
that the recovery process has substantially improved 
the image, indicating that the new method has 
effectively removed distortions or noise and 
significantly enhanced image quality. One of the major 
interesting findings of the study show that our method 
has a closed-form solution, and effective when 
analyzing large-scale imaging data. In this research, 
we identified two major findings. First, the combination 
of LWNN and the !!,! norm is more effective at 
reducing noise. Second, integrating the LWNN + !!,! 
norm with CLAHE enhances the details in retinal 
images that are not visible with existing methods and 
helps extract the background from natural images. As a 
future work, we need to incorporate ridge affine 
transformation to address the misalignment problem 
and also apply this method in radar imaging to better 
learn the hidden features.  
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