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Abstract: Graph theory has been a powerful tool in solving difficult and complex problems arising in all disciplines. In 
particular, graph matching is a classical problem in pattern analysis with enormous applications. Many graph problems 

have been formulated as a mathematical program then solved using exact, heuristic and/or approximated-guaranteed 
procedures. On the other hand, graph theory has been a powerful tool in visualizing and understanding of complex 
mathematical programming problems, especially integer programs. Formulating a graph problem as a natural integer 

program (IP) is often a challenging task. However, an IP formulation of the problem has many advantages. Several 
researchers have noted the need for natural IP formulation of graph theoretic problems. The aim of the present study is 
to provide a unified framework for IP formulation of graph matching problems. Although there are many surveys on graph 

matching problems, however, none is concerned with IP formulation. This paper is the first to provide a comprehensive 
IP formulation for such problems. The framework includes variety of graph optimization problems in the literature. While 
these problems have been studied by different research communities, however, the framework presented here helps to 

bring efforts from different disciplines to tackle such diverse and complex problems. We hope the present study can 
significantly help to simplify some of difficult problems arising in practice, especially in pattern analysis. 
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1. INTRODUCTION 

Graph theory has been a powerful tool in solving 

difficult and complex problems that arise in different 

disciplines. In particular, graph matching has enormous 

applications. Recent surveys of graph theoretic 

problems are presented in [1-9]. Most graph 

optimization problems are NP-hard. In fact, all 

problems discussed in this paper are known to be NP-

hard, except for the graph isomorphism and the 

Golomb Ruler problems whose complexity statuses are 

still open, [10,11]. 

Over the years, many graph and combinatorial 

problems have been formulated as an optimization 

problem and have been solved by using exact, 

heuristic, or approximation-guaranteed procedures [12-

16]. Similarly, graph theory has been a powerful tool in 

visualizing and understanding complex optimization 

problems, (see for example, [17-19] for integer 

programming, [20-23] for image analysis, [24-26] for 

bioinformatics, and [27] for the social sciences). 

Since the graph theory and optimization are so 

closely related, the theoretical and algorithmic 

developments from one area have been successfully 

used to address difficult and complex problems in the 

other discipline. Formulating graph problems as natural  
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integer programs (IP) is often a challenging task. 

However, to tackle such difficulty researchers often use 

an indirect IP formulation of the problem and use it as 

an upper (lower) bound to design algorithms. A series 

of indirect linear programs for seven graph theoretic 

problems is presented in [28] where it is noted that “the 

formulation is indirect in the sense that it captures 

certain properties of an optimal (integer) solution, yet 

an integral solution (to the formulation) does not 

provide an integral solution to the original problem, as 

opposed to standard linear programming relaxation” 

(Page 588). A natural integer programming formulation 

of a graph problem has several advantages: (1) it is 

equivalent to the graph problem;(2) its relaxation often 

serves as a good upper (lower) bound for the graph 

problem; and (3) it is often used in designing 

approximation-guaranteed and heuristic algorithms. A 

unified approach based on graph matching and using 

mathematical programming formulations provides 

avenues for better understanding of relationships 

between these complex problems. In connection to 

metric labeling problems, Kleinberg and Tardos in [29] 

presented natural IP formulations for special cases and 

gave approximation-guaranteed results. They pointed 

out that “the difficulty of the general case has to do with 

the absence of a natural integer programming 

formulation for the problem,” [30]. In that spirit, Chekuri, 

Khanna, Naor and Zosin in [30] presented a natural IP 

formulation for the general case with an approximation-

guaranteed algorithm. Several other papers, [30-33], 

have pointed out the need for natural IP formulations of 
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graph problems. An early IP formulation of a matching 

problem is given in [34]. Luttamazuzi, Pelsmajer, Shen 

and Yang in [33] suggested a natural IP formulation for 

three graph optimization problems, including Bandwidth 

minimization. A different natural IP formulation of 

Bandwidth minimization is also introduced in [35]. The 

first approach to a natural IP formulations of a linear 

arrangement problem is given in [36,37]. In [38], a 

natural IP formulation of a graceful labeling problem is 

discussed. A natural IP formulation for multi-layer 

crossing minimization is proposed in [39]. The natural 

IP formulations for the Golomb Ruler problem are 

presented in [10,40] and in [41], a natural IP 

formulation for a contact map problem is given. 

In Part I of this paper, we provide a unified 

approach based on graph matching that allows natural 

integer program formulations for many graph theoretic 

problems. The relationship between these problems 

and the quadratic assignment problem (QAP) is 

pointed out. The approaches include an IP formulation 

for a variety of problems including the list given below. 

IP formulations for problems 1-12are presented in Part 

II, while IP formulations for problems 13-18 are 

presented in Part I. For some of these problems, we do 

not know of any other natural IP formulations available 

in the literature, for some other problems our 

formulations are different from those that appear in the 

literature and provide alternative approaches. 

1. Several variations of traveling salesman 

problem, 

2. Bandwidth problem, 

3. Linear arrangement problem, 

4. Profile minimization in graphs, 

5. Minimum cut linear arrangement, 

6. Graph and subgraph isomorphism, 

7. Largest common subgraph problem, 

8. Maximum subgraph matching, 

9. Graph coloring and related problems: graph 

homomorphism, list coloring, optimum cost 

chromatic partition, sum coloring, graph labeling, 

T-coloring, maximum independent set and 

clique, and maximum clique partitioning, 

10. Metric labeling variations: embedding a graph in 

a d-dimensional mesh, linear arrangement with 

d-dimensional cost, minimizing storage-time 

product, and task assignment in distributed 

computing systems, 

11. Golomb ruler problem, 

12. Contact map problem, 

13. Graph orientation 

14. Facility layout problem, 

15. Quadratic assignment problem, 

16. Fixed spectrum frequency assignment, 

17. Interval graph completion, 

18. Multi-layer crossing minimization. 

PART I 

2. GENERAL APPROACHES 

Parameters: 

G=(V,E),an undirected graph, 

G=(V,A),a directed graph, 

V, (|V|=n), set of vertices in a graph G, 

 E V V , set of edges in undirected graph G 

(allowing possible self-loop), 

 A V V , set of arcs in digraph G (no self-loop is 

allowed), 

  a = (u,v) A , an arc directed from u toward v, 

  
w

e

(w
a

) , weight of an edge   e = {u,v} E (an arc 

  a = (u,v) A ), 

 E , set of edges in complement of a graph G, 

 A , set of edges in complement of a digraph G,(i.e., 
removing all ‘arcs’ in A and adding an ‘edge’ 

between every two nodes where there is no arc in 

  u V . Thus, if {u,v} A
 
then  (u,v),(v,u) A ), 

  N (u) = {v V :{u,v} E} , neighbors of a node 

 u V in graph G, 

  N (u) = {v V : (u,v) A} , neighbors of a node 

 u V in digraph G, 

  N[u] = N (u) {u} , 

  f :V V ' , a function mapping V in graph G toV’ in 

graph G’, 

c(u,u’), non-negative cost of assigning a node u V  
to a node   u ' V ' , 

d({u,v},{u’,v’}), the interaction (or communication) 
costs (possibly negative) between two edges, 
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d((u,v),(u’,v’)), the interaction (or communication) 
costs (possibly negative) between two arcs. 

Decision Variables: 

  
x

uu '
= 1 , if a node  u V is assigned to a node 

  u ' V ' , and 0 otherwise, 

  
y

ee '
= 1 , if an edge  e E  is assigned to an edge 

  e ' E ' , and 0 otherwise,  

  
y

aa '
= 1 , if an arc  a A is assigned to an arc 

  a ' A ' , and 0 otherwise, 

  
y

ee '
= 1 , if an edge  e E  is assigned to an edge 

  e ' E ' , and   d(e,e ') =
 

for a constant ; and 0 

otherwise, 

  
y

aa '
= 1 , if an arc  a A  is assigned to an arc 

  a ' A ' , and   d(a, a ') =
 

for a constant ; and 0 

otherwise,  

  K 0 , non negative variable (in some cases it is a 
given constant), 

  
K

u
0 (

  
K

u '
0 ), for  u V (  u ' V ' ),non negative 

variable. 

With no loss of generality, we let elements of V and 
V’ be integer values, i.e., V={1,…,n} and V’={1,…,n’}. 
Notations  u V  and   u ' V '  represent nodes in graph 
(or digraph) G and G’, respectively. Since the nodes 
are integer values thus for ease of presentation, we 
may use them as weight of the nodes. With these 
notations, for u,v V and u ',v ' V ' , we denote |u-v| 

and |u’-v’|, as absolute values of the difference 
between the numbers representing the nodes. For 
each problem, we look for a matching (possibly many-

to-many), 
  f :V V ' , between nodes of two graphs 

where some conditions need to be satisfied. The 
imposed conditions depend on the given problem. For 
most problems, we define a graph G’=(V’,E’)in the case 
of undirected graph; and a digraph G’=(V’,A’) in the 
case of directed graph, with the ‘desirable’ output 
characteristics, then we find a function f to map nodes 
of graph G to nodes of the defined graph G’. Example 1 
illustrates this point. 

Example 1. Consider the k-traveling salesman 
problem (k-TSP). In k-TSP we are given a graph G 
(directed or undirected) with a distance between edges 
(arcs in the case of digraph). We look for a minimum 
distance tour (circuit) of k cities [42,43]. When k=n, we 
have the TSP (see [43,44], for comprehensive surveys, 
and [45,46] for classification of integer programming 

formulations). In k-TSP, we define a graph G’=(V’,E’) in 
the form of a cycle, Figure 1 without arrows, and in 
directed graph G’=(V’,A’) in the form of a circuit, Figure 
1, with k nodes and distance one between consecutive 
cities. Then we look for a subset  S V  with |S|=k, and 

a one-to-one function, 
  f : S V ' , that minimizes the 

total distance on the tour (circuit), i.e., a subgraph 
isomorphism of G to G’ that minimizes total distance 
traveled. In the case of Bottleneck k-TSP, one looks for 
a tour (circuit) to minimize the maximum distance 
traveled between any two cities. As we mentioned, 
here we have a subgraph isomorphism (SI) of G to G’. 
Given two undirected graphs G=(V,E) and G’=(V’,E’), 

with   |V |= n |V ' |= n ' , a subgraph isomorphism of G to 

G’ is a graph   G = (S , L) with  S V  and 
 
L E  such 

that |S|=|V’|, |L|=|E’| and there exists a one-to-one 

function f :V ' S  satisfying {u ',v '} E '  if and only if 

  { f (u '), f (v ')} L . Equivalently, SI asks whether there 

is a subset of edges and vertices of G that is 
isomorphic to a smaller graph G’. A slightly different k-
TSP may be defined as follows, called induced k-TSP. 
In that the subgraph is an induced subgraph 
isomorphism (ISI). Given two undirected graphs 

G=(V,E) and G’=(V’,E’), with   |V |= n |V ' |= n ' , an 

induced subgraph isomorphism of G to G’ is a graph 

  G = (S , L)
 
with S V  and L E  such that |S|=|V’|, 

|L|=|E’| and there exists a one-to-one function 

  f :V ' S  satisfying   {u ',v '} E '  if and only if 

  { f (u '), f (v ')} E . Equivalently, the question is whether 

we can delete vertices from G to obtain a graph 
isomorphic to G’. Note that in SI we do not rule out 

possibility of existing   {u,v} E \ L  such that f(u’)=u and 

f(v’)=v for some   {u ',v '} E ' . To illustrate the points, 

consider graph G in Figure 2, where there are several 
subgraphs with 4 nodes and 4 edges that each creates 
a 4-TSP. For example, 1-2-3-4-1 is a subgraph which is 
a 4-TSP, while it is not an induced subgraph. Another 4 

 

Figure 1: A desired feasible output graph for TSP with k 
nodes. 
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nodes 4edges subgraph which is 4-TSP is 1-5-2-3-1 
but it is not induced subgraph. However, by deleting 
node 1 we get an induced subgraph2-3-4-5-2 with 4 
nodes and 4 edges which creates an induced 4-TSP. 
Integer programming formulation of subgraph 
isomorphism and induced subgraph isomorphism are 
presented in Part II. 

 

Figure 2: Illustration of subgraph isomorphism (SI) and 
induced subgraph isomorphism (ISI). 

While in some problems, we look for a feasible 
solution, in other problems, we may need to optimize 
an objective function. The objective functions are in 
one of the formsP1-P7 given in Table 1. In the table, 
objective functions are in a minimization format. 
However, they need to be appropriately modified when 
formulating a specific problem. Objective functions P1-
P7 cover a wide range of combinatorial problems. In 
the next section, we present several general matching 
problems where focus is on undirected graphs, but the 
formulas can easily be modified for directed graphs.  

Based on the aforementioned discussion, we 
present three general but related problems, outputs 1-
3. Output 1 is a feasibility problem. Both outputs 2 and 
3, optimizes an objective function while satisfying 
‘some form of feasibility’ introduced by output 1. The 
feasibility in output 1 ensures that nodes of two graphs 
are assigned to each other while cost of 
communication between edges of the two graphs must 
be limited to a pre-specified set of numbers. Output 2 
optimizes one of the objective functions P1-P7 while 
feasibility in output 1 is satisfied. Output 3 optimizes 
sum of penalties for violating feasibility conditions of 
output 1. For each output, natural IP formulation is 
presented. In each case, proofs are available. Due to 
saving space we do not present the proofs here, 
however, upon request the proofs are available from 
the authors. These outputs provide a general 
framework that within which many problems including 
those listed in 1-18 with appropriate modifications of 

the formulations can be considered as special cases of 
one of these three outputs. IP formulations for 
problems 1-12 are presented in Part II, while IP 
formulations for problems 13-18 are presented in Part I. 

Table 1: General Objective Functions Used in the 
Problems 

  

  P1 :   Min
f

Max
u V ,v N ( u )

c(u, f (u)) + d {u,v},{ f (u), f (v)}( ){ }{ } ,

  P2 :   Min
f

c(u, f (u)) + d {u,v},{ f (u), f (v)}( )
{u ,v } Eu V

{ } ,

  P3 :   Min
f

Max
v N ( u )

c(u, f (u)) + d {u,v},{ f (u), f (v)}( ){ }
u V

{ } ,

  P4 :   Min
f

Max
u ' V '

c(u, f (u))

u V : f ( u )=u '

+ d {u,v},{ f (u), f (v)}( )
{u ,v } E:( f ( u )=u '  or f ( v )=u ')

                and{ f ( u ), f ( v )} E '

,

  P5 :   Min
f

Max
u V : f ( u )=u '

c(u, f (u)) + d {u,v},{ f (u), f (v)}( )
v N ( u )

{ }
u ' V '

{ } ,

  P6 :   Min
f

Max
u V

c(u, f (u)) + d {u,v},{ f (u), f (v)}( )
v N ( u )

{ }{ } ,

  P7 :   Min
f

Max
i ' V '

c(u, f (u)) + c(v, f (v)) + d {u,v},{ f (u), f (v)}( ){ }
{u ,v } E , f ( u ) i '< f ( v )

{ }{ }.   

 

 
2.1. Three General Matching Problems 

Input: Undirected graphs G=(V,E), and G’=(V’,E’) 
with possible self-loop for each vertex in V’. A set of 

allowable assignments, 
  
L

u
V ' , for each u V . A set 

of integers, 
 
t

e
, (possibly empty) for each edge e E , 

called the forbidden set. A penalty 
 
p

e  
associated with 

each element 
 

t
e
. A cost of c(u,u’) for assigning a 

node  u V to a node   u ' V ' . A cost of d(e,e’) for 
assigning an edge e E  to an edge e ' E ' . In each 
output 1-3 below, the task is to find a function 

  f :V V '
 

such that 
  
f (u) L

u  
for u V , and 

  { f (u), f (v)} E '
 
whenever   {u,v} E ,and 

Output 1: 
  
d({u,v,},{ f (u), f (v)}) t

{u ,v}
. 

Output 2: d({u,v,},{ f (u), f (v)}) t
{u ,v}

, to minimize 

one of the objectives P1-P7. 

Output 3: if 
  
d({u,v,},{ f (u), f (v)}) = t

{u ,v}
there is a 

penalty 
  
p

{u ,v}
. The task is to minimize total penalty.  

In the following we will present IP formulation for 
each output 1-3. We will point out problems from the 
list that are special cases of the outputs. However, the 
IP formulations for outputs 1-3 need to be appropriately 
modified to represent these special cases, presented in 
Part II. 

2.1.1. Formulations for Output 1 

The matching problem with output 1 is known as the 
T-coloring problem [47,48]. An IP formulation of the 
output 1 is as follows. 
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x

uu 'u ' L
u

= 1,  for u V ,           (1) 

x
uu '
+ x

vv '
1, x

uv '
+ x

vu '
1,  for {u,v} E,  

and {u ',v '} E ',u ' v ',
        (2) 

  

x
uu '
+ x

vv '
1, x

uv '
+ x

vu '
1,  for {u,v} E,  

and {u ',v '} E ',  and d({u,v},{u ',v '}) t
{u ,v}

.
       (3) 

Constraints (1)e nsure node assignments are from 
allowable sets. Constraints (2) ensure that end points 

of each edge   {u,v} E
 
can only be assigned to end 

points of an edge from E’. Here, for a node in graph G’ 
self-loop is allowed. Thus endpoints of an edge in E 
can be assigned to one node in V’. Constraints (3) 
forbid an edge e in E be assigned to an edge e’ in E’ if 

communication cost d(e,e’)is in the set 
 
t

e
.  

Modification of these formulations for directed 
graphs is given below. In that, constraint (1) has the 
same effect as was explained. Since a complement of 
a directed graph is a graph with edges, thus constraints 
(4) include edges instead of arcs in the complement of 
graph A’. Constraints (4) ensure that end points of each 

arc   (u,v) A
 
can only be assigned to end points of an 

arc from A’. Constraints (5) ensure that arcs are 
correctly assigned to each other. In that, if two arcs 
(u,v) and (u’,v’) are assigned to each other, we must 
have u’=f(u) and v’=f(v). Constraints (6) forbid two arcs 
a and a’ be assigned to each other, if the 

communication cost d(a,a’)is in the set 
 
t

a
. 

  
x

uu 'u ' L
u

= 1,  for u V ,           (1) 

  

x
uu '
+ x

vv '
1, x

uv '
+ x

vu '
1,  for (u,v) A,  

and {u ',v '} A ',
        (4) 

  
x

uv '
+ x

vu '
1,  for (u,v) A,  and (u ',v ') A ',        (5) 

  

x
uu '
+ x

vv '
1,  for (u,v) A,  and (u ',v ') A ',  

and d((u,v),(u ',v ')) t
( u ,v )

.
       (6) 

2.1.2 Formulations for Output 2 

2.1.2.1. Output 2 and Objective Function P1 

The matching problem with output 2 and the 
objective function P1 is a bottleneck minimization that 
includes as special case: Bottleneck k-TSP, bottleneck 
induced k-TSP, Bandwidth minimization, several 
variations of graph coloring, graph labeling, and the 
Golomb Ruler problems. An IP formulation of the 
problem can be stated as follows. Note that the 

formulations need to be appropriately modified for 
special cases. Formulations for these special cases are 
presented in Part II. 

Min K,   s.t. (1-3), K 0 , and  

  

x
uu '
+ x

vv '
y

{u ,v}{u ',v '}
+ 1,    x

uv '
+ x

vu '
y

{u ,v}{u ',v '}

+1,  for {u,v} E,  and {u ',v '} E ',

       (7) 

  

c(u,u ')x
uu 'u ' L

u

+ d({u,v}{u ',v '}) y
{u ,v}{u ',v '}v ' L

v
N [u ']u ' L

u

K ,   for u V ,v N (u).

             (8) 

Constraints (1-3) ensure feasibility of output 1 is 

satisfied. Constraints (7) ensure that y
ee '
= 1  if and only 

if two edges e and e’ are assigned to each other which 
adds a value of d(e,e’) to the LHS of (8). If a node 

 u E  is assigned to a node   u ' E ' , and if a node 

  v N (u)  is assigned to   v ' N[u '] , i.e., a neighboring 

edge of u assigned to a neighbor edge of u’ then it can 
add a cost of c(u,u’)+d({u,v},{u’,v’}) to the objective 
function. Since we minimize K, the largest cost over all 
nodes  u V  is being minimized. 

Example 2 illustrates the formulation when used in 
bottleneck k-TSP, and bottleneck induced k-TSP. 

Example 2. Given graph G=(V,E), the problem is to 
find (1) an induced k-TSP, and (2) a k-TSP, to 
minimizes the longest distance between any two cities, 

where 
  
w

{u ,v}  
is a given real number representing 

distance between two cities u and v.  

In order to give IP formulation, we create a graph 
G’=(V’,E’) with |V’|=k nodes similar to graph in Figure 1 
without arrows. Then we want to find: (1) an ISI of G 
and G’ to minimize longest distance between every two 
cities, and (2) an SI of G and G’ to minimize longest 
distance between every two cities. Let c(u,u’)=0 for all 

 u V and   u ' V ' . Also let distance between every two 
cities with an edge in G’ be equal to one. Define 

d(e,e ') = w
e
w
e '

 for all  e E  and   e ' E ' . In order to give 

IP for induced k-TSP, we need to find subsets  S V  

and 
 
L E  such that |S|=k, and |L|=|E’|, and a one-to-

one function 
  f : S V '  satisfying   {u ',v '} E '  if and 

only if   { f (u '), f (v ')} E  to minimize longest distance 

between every two cities in S. Here, clearly the 
objective function is a special case of P1, as follows. 

  

P1: Min
f

Max
u V ,v N ( u )

d {u,v},{ f (u), f (v)}( ){ }{ } =

Min
f

Max
e E ,e ' E '

d e,e '( ){ }{ }.
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A modification of the above IP for this special case 
is as follows. We need constraints (9) to create a 
subset S and a one-to-one function between nodes of 
V’ and S. 

x
uu 'u ' V '

1,   for u V , x
uu 'u V

= 1,   for u ' V ' .      (9) 

Furthermore, to have induced subgraph 
isomorphism we need constraints (10-11). 

x
uu '
+ x

vv '
1,   x

uv '
+ x

vu '
1,   for {u,v}

E,  and {u ',v '} E ',
      (10) 

  

x
u 'u

+ x
v ' v

1,   x
v 'u

+ x
u ' v

1,   for {u,v}

E ,  and {u ',v '} E ' .
      (11) 

If an edge {u,v} is assigned to an edge {u’,v’} then 

we have 
  
y

{u ,v}{u ',v '}
= 1

 
ensured by constraints (7). 

  

x
uu '
+ x

vv '
y

{u ,v}{u ',v '}
+ 1,     x

uv '
+ x

vu '
y

{u ,v}{u ',v '}

+1,  for {u,v} E,  and {u ',v '} E ' .

       (7) 

For a given node  u V , consider a neighbor node 

 v V  (i.e., there is an edge   e = {u,v} E ). If the edge 

e is assigned to an edge e’={u’,v’} then we have 

  
d(e,e ') = w

e
w

e '
= w

e
. The objective is to minimize the 

maximum of d(e,e’) for all e E  and e ' E '  when 
assigned to each other, this is done by adding an 
objective function, Min K, and constraints (12). 

  

d({u,v}{u ',v '}) y
{u ,v}{u ',v '}

K ,    d({u,v}{v ',u '}) y
{u ,v}{u ',v '}

K ,  for {u,v} E,  and {u ',v '} E ' .

(12) 

Constraints (12) can also be replaced by constraints 
(13) that are the same as constraints (8). Note that in 
(13), given an edge {u,v},only if it is assigned to an 

edge {u’,v’} then we have y
{u ,v}{u ',v '}

= 1 . Here, given a 

node u and one of its neighbors   v N (u)
 
(i.e., there is 

an edge   e = {u,v} E ), since we already have ensured 

a one-to-one correspondence between S and V’ by (9) 
then the left hand side (LHS) of the (13) will be exactly 
equal to the LHS of (12). 

d({u,v}{u ',v '})y
{u ,v}{u ',v '}v ' L

v
N [u ']u ' L

u

K ,   for u V ,v N (u).

      (13) 

Now, to appropriately modifying the formulations for 
k-TSP, we only need to remove the constraints (10) 
from the set of constraints presented for induced k-
TSP. Note that, different but simpler formulations for k-
TSP and induced k-TSP are presented in Part II.  

2.1.2.2. Output 2 and Objective Function P2 

The matching problem with output 2 and objective 
function P2includes as special case: k-TSP, induced k-
TSP, variations of coloring problems, linear 
arrangement, variations of metric labeling, the largest 
common subgraph problem, maximum subgraph 
matching, facility layout, and contact map problem. An 
IP formulation is as follows. Similar to the case for P1, 
the formulations for special cases need to be 
appropriately modified. They are presented in Part II. 

  

Min  c(u,u ')x
uu 'u ' L

u
u V

+
1

2
d({u,v}{u ',v '}) y

{u ,v}{u ',v '}v ' L
v

N [u ']u ' L
u

v N ( u )u V

(14) 

s.t.   (1-3),(7). 

Given a matching between the two graphs the 
objective function P2 sums up all node assignments 
and all edge assignments costs and minimizes the total 
quantity, constraints (1-3) ensure feasibility of 
assignments. Constraints (7) ensure that 
communication costs between edges are added to total 
cost. Note that the objective function (14) has similarity 
with constraints (8). In constraints (8), for a given node 

u and one of its neighbors v(i.e.,   e = {u,v} E ), if 

assigned respectively to u’ and v’(i.e., e ' = {u ',v '} E ' ), 

then we considered the total cost of c(u,u’)+d(e,e’), and 
minimize largest of such cost. However, in (14) sum of 
all such costs is being minimized. Example 3 illustrates 
the formulation when used in k-TSP, and induced k-
TSP.  

Example 3. The problem is similar to problem of 
example 2, however, the objective is minimization of 
the total distance travelled.  

Here, parameters are defined similar to example 2. 
However, we minimize the following quantity for all e 
and e’ assigned to each other. 

  
d(e,e ')

e ' E 'e E

.         (15) 

This is exactly the same as P2 given as follows. 

  
P2 :   Min

f
d {u,v},{ f (u), f (v)}( )

{u ,v} E
{ }.  

An IP formulation for induced k-TSP is thus as 
follows.  

  

Min  d(e,e ') y
ee 'e ' E 'e E
=

1

2
d({u,v}{u ',v '}) y

{u ,v}{u ',v '}v ' N ( u ')u ' V 'v N ( u )u V

  (14) 

 s.t.   (7),(9-11). 
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An IP formulation for k-TSP is similar except that 
constraints (10) are removed. Note that, here also 
different but simpler formulations for k-TSP and 
induced k-TSP are presented in Part II. 

2.1.2.3. Output 2 and Objective Function P3 

The matching problem with output 2 and objective 
function P3 includes profile minimization problem 
(PMP) as special case. The PMP is equivalent to the 
interval graph completion problem, which is to find a 
super-graph of a graph G with as small a number of 
edges as possible. Given an undirected graph G=(V,E), 
the PMP looks for a one-to-one function 

f :V {1,…,|V |}such that 
  

Max
v N [u ]

{ f (u) f (v)}
u V

 

is minimized. The objective function in PMP is a special 
case of P3. Example 4 below illustrates this point. 

Example 4. Define a complete undirected G’=(V’,E’) 
with |V’|={1,…,|V|}. For each  u V  let 

  c(u, f (u)) = f (u) , and for each   {u,v} E  let 

  d({u,v},{ f (u), f (v)}) = Min[ f (u), f (v)] . The objective 

of PMP is now equal to P3 given as 

  
P3 :   Min

f
Max

v N ( u )
c(u, f (u)) + d {u,v},{ f (u), f (v)}( ){ }

u V
{ }.  

IP formulation for PMP is presented in Part II. An IP 
formulation of output 2 with the objective function P3 is 
given below. Note that, the objective function P3 has 
similarity with P1. Given a node  u V the maximization 
part of P3 (the quantity in the summation) is the same 
as maximization in P1. However, P3 sums up such 
quantity over all nodes u. 

  
Min  K

uu V

,  s.t. (1-3),(7), 
  
K

u
0 , and 

c(u,u ')x
uu 'u ' L

u

+

d({u,v}{u ',v '})y
{u ,v}{u ',v '}v ' L

v
N [u ']u ' L

u

K
u
,   for u V ,v N (u).

      (16) 

Constraints (1-3) and (7) have the same effect as 
was explained earlier. For a given node  u V , the LHS 
in(16)is the same as constraints (8), however, the 
objective function minimizes sum of all such quantities.  

2.1.2.4. Output 2 and Objective Function P4 

The matching problem with output 2 and the 
objective function P4 includes several variations of 
metric labeling, and task assignment in distributed 
computing systems (TADCS) as special cases. Here, 
we are looking for a function (not necessarily one-to-

one) 
  f :V V '  between nodes of two graphs. If 

anode u V is assigned to a node u ' V '  there is a 
cost of c(u,u’). Given a node u’ there is a possibility that 
several nodes from V are assigned to it. If an edge 

e E  is assigned to an edge e ' E '  then there is a 
cost of d(e,e’).Thus, the total cost of assigning all 
nodes  u V  to a given node   u ' V '  is equal to 

  

c(u, f (u))
u V : f ( u )=u '

+ d {u,v},{ f (u), f (v)}( )
{u ,v} E:( f ( u )=u '  or f ( v )=u ')

                and{ f ( u ), f ( v )} E '

. (17) 

The objective is to find a matching function that 
minimizes the maximum of (17) over all nodes   u ' V '  
which is exactly P4. Given a node u’, the LHS in (18) is 
the total costs equivalent to (17). The reason that the 
triple summation is divided by 2 is that we are 

assuming if 
  
u ' L

u
 then 

  
u ' L

v
for v N (u) . If this 

assumption is not satisfied the formulation needs some 
minor modification. Thus, an IP formulation is as 
follows. 

Min K,  s.t. (1-3),(7),   K 0 , and  

  

c(u,u ')x
uu 'u:u ' L

u

+
1

2
d({u,v}{u ',v '}) y

{u ,v}{u ',v '}v ' L
v

N [u ']v N ( u )u:u ' L
u

K ,  for u ' V ' .

   (18) 

A special case of the above formulation under the 
task assignment in distributed computing systems 
(TADCS) is discussed in [49]. Example 5 illustrates this 
case. 

Example 5. In the TSDCS, we have a set of tasks, 
V, and a set of processors, V’. A task graph G=(V,E) 
represents the set of tasks and their communication 
links shown by the edges of the graph. A processor 
graph G’=(V’,E’) represents the set of processors and 
their communication links shown by the edges of the 
graph. The problem is to find an assignment function 

  f :V V '  that assigns the tasks to the processors. If 

task  u V  is assigned to an eligible processor   u ' V ' , 
the processing time is c(u,u’). If two tasks   u,v V need 

to communicate (i.e., if there is an edge   {u,v} E ), 

they can be assigned to one processor; in that case, 
there is no communication time between them. In this 
case we are assuming node u’ has a self-loop. Two 
tasks can also be assigned to two different processors 
if a communication link is possible between them (i.e., 

if there is an edge   {u ',v '} E ' ). In that case, there is a 

communication time between two tasks measured by 
d({u,v},{f(u),f(v)}). The problem asks for an assignment 

f :V V ' to minimize the completion time of the last 

task completed, i.e., the load of the processor with the 
maximum processing and communication times [49], 
which is a special case of P4. However, if the problem 
is to minimize total times (see for example, [50-53] for 
special cases of such scheduling problem) then we 
have the objective P2 to be minimized. Several other 
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specific examples of metric labeling with objective 
functions P2 or P4 are presented in Part II. Prominent 
applications are in pattern analysis, and image 
processing, (see for example, [28-30]). 

2.1.2.5. Output 2 and Objective Function P5 

The matching problem with output 2 and the 
objective function P5 includes several variations of 
graph coloring as special cases including a problem of 
transmission of real-time messages in a metropolitan 
network or a problem related to dynamic storage 
allocation, [54,55], and scheduling on a batch machine 
with job compatibilities, [55-57]. In P5, if a node u is 
assigned to a node u’ the total costs is a sum of node 
assignment cost, c(u,u’), and edge assignment costs. It 
is the sum of d({u,v},{f(u),f(v)}) for all v such that 

  {u,v} E
 
and   { f (u), f (v)} E ' which is equal to 

c(u, f (u)) + d({u,v},{ f (u), f (v)})
v N (u )

.       (19) 

Among all nodes u assigned to a given node u’ we 
are looking at the maximum that is equal to 

  
Max

u V : f ( u )=u '
c(u, f (u)) + d {u,v},{ f (u), f (v)}( )

v N ( u )
{ }.  (20) 

The problem looks for a function 
  f :V V '  to 

minimize sum of all such maximum costs over all 
nodes u ' V '  which is exactly P5.An IP formulation of 
the problem can be stated as follows. 

  
Min  K

u 'u ' V '
,
 

s.t. (1-3),(7), 
  
K

u '
0 , for   u ' V ' ,  

and 

c(u,u ')x
uu '
+ d({u,v}{u ',v '})y

{u ,v}{u ',v '}v N (u ),u ' L
v

K
u '

,   for u ' V ',  and u V  with u ' L
u
.

     (21) 

The LHS in (21) is the cost contributed by node u 
when assigned to a node u’ plus the cost 
communicated by each edge neighboring u assigned to 
each edge neighboring u’. Since the RHS is the same 
for all u thus the objective function P5 minimizes sum 
over all such values. Also, note that constraints (1-3) 
and (7) plays the same role as explained before. 

Example 6 illustrates a task assignment problem as 
a special case of the above problem. 

Example 6. The problem is similar to the TSDCS 
defined in example 5. However, for a given processor 
u’ the total cost is defined by (19). Special cases of this 
problem is scheduling on a batch machine with job 
compatibilities where communication costs are zero, 
[55,56,57]. In this special case the problem becomes a 
Weighted Vertex Coloring Problem (WVCP) discussed 
in more detail in Part II. Note that in TSDCS since a 

task u V  must communicate with its neighbors, i.e., 

with each   v N (u) , thus if u is assigned to u’ and if 

task v is assigned to the processor u’ there is no 
communication costs however if it is assigned to a 
processor v ' V '  with   u ' v '  then the communication 

cost is d({u,v},{u’,v’}). Thus the total cost for assigning a 
task u V  to a given processor u ' V '  is equal to the 

LHS of (20). The value of 
  
K

u '
 is the largest over all 

tasks  u V , where the sum is being minimized.  

2.1.2.6. Output 2 and Objective Function P6 

The matching problem with output 2 and the 
objective function P6 generalizes the graph orientation 
(GO) problem [58-60], and the edge covering problem 
[61]. Other names for GO are edge linking [62], link 
orientation [63], and vertex-orderings [64]. 

In GO, the problem is to determine a balanced 
ordering of the vertices of a graph; that is, the 
neighbors of each vertex u are as evenly distributed to 
the left and right of u as possible. The problem has 
applications in variety of areas including in graph 
drawing [64], and providing quality of service (QoS) 
networks [60,63]. The major objectives of various 
information services on modern networks are to 
provide high efficiency, good quality, and maximum 
throughput for the system resources [60,63]. The GO 
has been proposed for assigning flow orientations over 
links in a network. Refer to [60,63] for applications, 
proof of NP-hardness, and several polynomial solvable 
special cases. Refer to [61] for a recent IP formulation. 
Sadig, Mozafari and Kashan in [61] mention other 
applications including the edge covering (EC) problem. 
The EC problem has applications in locating 
emergency facilities such as police stations, and road 
hospitals or an electronic network for locating 
information center. The main characteristic of these 
applications is that the customer’s demand distributes 
uniformly in the paths between the location points [61]. 

The GO can be defined as follows, [60,63]. Given 
an undirected graph G=(V,E),each node u is 

associated with a weight (cost) 
 u

, and each edge 

  {u,v} E  is associated with two weights (costs) w
(u ,v )

 

and 
  
w

( v ,u )
 where   (u,v)  is directed from u to v (an 

orientation from u to v, or an out-degree node of u) and 

  (v,u)  is directed from v to u (an orientation from v to u, 

or an in-degree node of u). Thus, each edge is 
considered as two directed arcs. Given an orientation 
for all edges, for a node  u V  defined out-degree 
nodes, ON(u), and in-degree nodes, IN(u), as follows 

  

ON (u) = {v : (u,v) is an out-degree node of u},

IN (u) = {v : (v,u) is an in-degree node of u}.
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The problem is to find an orientation for each edge. 
Given an orientation for a graph, the total cost 
associated with each node is equal to 

  u
+ w

( u ,v )v ON ( u )
.  The GO looks for choosing an 

orientation for each edge to minimize the largest costs 
for all node  u V which is minimization of 

Max
u V
{

u
+ w

(u ,v )v ON (u )
}.  

Output 2 with objective function P6, generalizes the 
GO problem and the EC problem, can be stated as 
follows. We are given two undirected graphs G=(V,E) 

and G’=(V’,E’), we want to find a function 
  f :V V ' . 

In that, if a node u is assigned to a node u’ the cost is 
the same as (19). Among all nodes  u V we are 
looking at the maximum cost which is equal to 

  
Max

u V
c(u, f (u)) + d {u,v},{ f (u), f (v)}( )

v N ( u )
{ }.

   
(22) 

Note that, in (22) for simplicity of presentation we 
did not include edge orientation, i.e., choosing a 
direction for each edge. To consider edge orientation 
minor modification in the formulation is needed. In fact, 
when edge orientation needs to be considered value of 
d({u,v),{f(u),f(v)})for {u,v} depends on directed of the 
edge, i.e., we have  

  d({u,v},{ f (u), f (v)}) d({v,u},{ f (v), f (u)}).  

The objective is to fund a function f to minimize (22) 
which is exactly P6. Now, an IP formulation of the 
problem can be stated as follows: 

Min K, s.t. (1-3),(7),   K 0 , and  

c(u,u ')x
uu 'u ' L

u

+ d({u,v}{u ',v '})y
{u ,v}{u ',v '}v ' L

v
N [u ']v N (u )u ' L

u

K ,  for u V .

     (23) 

Constraints (1-3) and (7) has the same effect as we 
described before. The LHS in (23) is representing the 
cost of assigning a given node  u V to a node   u ' V '  
plus cost of all edges neighboring u, if assigned to 
edges in E’. The objective function P6 minimizes the 
largest of such quantity.  

2.1.2.7. Output 2 and Objective Function P7 

The matching problem with output 2 and the 
objective function P7 includes the Minimum Cut Linear 
Arrangement Problem (MCLAP)as a special case (see 
[6] for recent discussion and complexity of special 
cases).Given an undirected graph G=(V,E), MCLAP 
looks for smallest value of K and a one-to-one function 

f :V {1,…,n}
 

such that for all   1 i n , 

|{{u,v} E, f (u) i < f (v)} | K .IP formulation for 

MCLAP is presented in Part II. Ithas applications in 
telecommunication [65], computer aided design, 
automatic graph drawing, protein engineering, 
optimization of rail systems [2], and computational logic 
[66], among others. 

In output 2 with objective function P7, we are 

looking for a function 
  f :V V ' . In that, given a node 

i ' V ' , if endpoints of an edge {u,v} in E are assigned 
to end points of an edge {f(u),f(v)} in E’ where 

  f (u) i ' < f (v)  then the cost is  

c(u, f (u)) + c(v, f (v)) + d({u,v},{ f (u), f (v)}).  

We want to minimize the maximum of such quantity 
over all nodes   i ' V ' . An IP formulation can be stated 
as follows: 

Min K, s.t. (1-3),(7),   K 0 , and  

  

(c(u,u ') + c(v,v ') + d({u,v},{u ',v '})) y
{u ,v}{u ',v '}

{u ,v} E:{u ',v '} E ',

f ( u )=u ' i '< f ( v )=v '

K ,  for i ' V ' .

 (24) 

Constraints (1-3) and (7) have the same effects as 
described before. The left hand side of (24) represents 

the cost contributed by all edges 
   
K

max
= n

 
if u and v in 

V are respectively assigned to two nodes u’ and v’ in V’ 

where   {u ',v '} E '
 
and such that   u ' i ' < v '  for a given 

node   i ' V ' . The objective function minimizes this cost 
over all nodes   i ' V ' . 

2.1.3. Formulations for Output 3 

The matching problem with output 3is a 
generalization of P2. In that, we allow edges to be 
assigned to each other if the cost of an assignment is 
in the forbidden set. However, this is done with the 
expense of a penalty, and the task is to minimize the 
total penalty. It includes the Fixed Spectrum Frequency 
Assignment (FSFA), [67-70], as a special case. 
Montemanni, Smith and Allen in [68,70] presented an 
IP formulation of FSFA; however, our formulation given 
below for the general case when applied to FSFA is 
different, and is simpler with fewer variables. 

  
Min  p

{u ,v}
y

{u ,v}{u ',v '}t
{ u ,v }

v ' L
v

N [u ']u ' L
u

v N ( u )u V
 

s.t. (1-2), and 

  
x

uu '
+ x

vv '
y

{u ,v}{u ',v '}
+ 1,   x

uv '
+ x

vu '
y

{u ,v}{u ',v '}
+ 1,  

for  

  
{u,v} E,{u ',v '} E ', d({u,v},{u ',v '}) = t

{u ,v}
.
     

(25) 
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Constraints (1) and (2) ensure a one-to-one 
assignment between nodes of V and V’. Constraints 
(25) ensure that if two edges are assigned to each 
other and communication costs is in the forbidden set, 

then 
  
y

{u ,v}{u ',v '}
= 1 . This adds a penalty to the objective 

function to be minimized. 

Example 7 illustrates the FSFA problem as a 
special case. The FSFA problem involves the 
assignment of discrete channels (or frequencies) to the 
transmitters of a radio network, such as a mobile 
telephone network. In that assignment, frequency 
separation is necessary to avoid interference by other 
transmitters to the signal received from the wanted 
transmitter at the reception points [68,69,70]. 

Example 7. The FSFA problem can be represented 
by a weighted undirected graph G=(V,E). The problem 

looks for a mapping f :V F  where each  u V  

represents a transmitter of a radio network, and 
F={0,1,…,|F|-1} is a set of consecutive frequencies 
available for every vertex (transmitter) in V. The set of 
edges E represents those pairs of transmitters for 
which the assigned frequencies are constrained. The 
constraint arises because one of the transmitters can 
interfere with signals received from the other. For each 

  {u,v} E  there is 
  
t

{u ,v}
N

+

. The value of 

  
t

{u ,v}
represents the highest separation between the 

frequencies assigned to the transmitter u and the one 
assigned to v that generates unacceptable 
interference. If we indicate with f(u) the frequency 

assigned to transmitter u, then if 
  
| f (u) f (v) |> t

{u ,v}
, 

the interference involving the two transmitters is 

acceptable. The larger   | f (u) f (v) |  is the better the 

assignment, i.e., less interference. If however, 

  
| f (u) f (v) | t

{u ,v}
there is a cost (penalty) equal to 

p
{u ,v}

N
+

. The objective is to find an assignment f that 

minimizes the sum p
{u ,v}

 over all pairs   {u,v} E
 
for 

which 
  
| f (u) f (v) | t

{u ,v}
. It is clear that FSFA is a 

special case of the above formulation. 

3. RELATIONSHIP WITH QUADRATIC 
ASSIGNMENT PROBLEM 

The Quadratic assignment problem (QAP) is one of 
the most celebrated combinatorial problems with 
enormous applications [71]. There is a close 
relationship between the problems studied in this paper 
and QAP. Several variations of the QAP have been 
reported in the literature, (see [72] for a comprehensive 
survey). Those are the QAP minimizing total costs 
(QAP), the quadratic bottleneck assignment problem 
(QBAP), the quadratic semi-assignment problem 

(QSAP), the biquadratic assignment problem (BiQAP), 
the quadratic 3-dimensional assignment problem 
(Q3AP), and the multiobjective QAP (mQAP). The QAP 
and QSAP are special cases of the problem with output 
2 and the objective function P2. The QBAP is a special 
case of the graph matching problem with output 2 and 
objective function P1. The BiQAP (also known as the 
quartic assignment problem [73,74]), and Q3AP are 
generalizations of QAP where the interaction is among 
several nodes of the graph, [72]. To save space, we 
will not go further into details of these problems. 
However, we discuss QAP, and BQAP in context of 
matching two graphs. In all cases proofs are available. 
Due to saving space we do not present the proofs here, 
however, upon request the proofs are available from 
the authors. QSAP is a straightforward variation of 
QAP. 

The next section discusses situations in which there 
are interactions between several nodes of graphs. 
Proofs are available upon request from the authors. 
Then in Part II, specific problems will be discussed. 
The classic book on complexity theory by Garey and 
Johnson [75] is a major source for definitions and 
understanding of these and other related problems that 
we use. For ease of presentation, if applicable, we refer 
to the ‘problem index number’ addressed in [75]. 

4. GENERALIZATION TO MULTI-NODE-
INTERACTION, AND MULTI-LAYER GRAPH 
MATCHING PROBLEMS 

In the problems that we have discussed so far, 
interactions could occur only between two nodes of a 
graph. However, in many realistic situations 
interactions among more than two nodes in the graph 
can occur, [73,74]. Furthermore, there are real 
problems, e.g., multi-layer crossing minimization 
problem [32], where the nodes of a graph are layered 
and thus the solution looks for several matching 
functions at the same time where the solution of each 
matching affects the whole configuration, [76]. Below 
we first consider the interval graph completion (IGC) 
problem, for which Even, Nao, Rao and Schieber in 
[28] presented an indirect IP formulation. It has 
applications in VLSI gate layout problems, [77]. A 
natural IP formulation has been proposed in [78]. 
However, we propose a simpler natural IP formulation.  

(GT35) Interval Graph Completion (IGC): 

Input: A connected undirected graph G=(V,E). 

Output: A minimum cardinality set of edges F such 

that 
  
G = (V , E

S
)  is an interval graph and 

 
E

S
= E F . 

A graph is an interval graph if and only if there is a 
linear ordering of the vertices such that if vertex u with 
index u’ has an edge to vertex v with index v’, where 
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u’<v’, then every vertex whose index is between u’ and 
v’ also has an edge to vertex v, [28]. Define a complete 
undirected graph G=(V’,E’) where |V|=|V’| with nodes 
numbered 1,2,…,|V|. The IGC problem is to find a one-

to-one assignment, 
  f :V V '  where the condition of 

an interval graph is satisfied. Below we give an IP 

formulation of the problem. Here, y
e
= 1

 
if an edge 

 e E  is not among minimum cardinality set F, and 
zero otherwise. 

Min  y
ee E
,  

s.t.  

x
uu 'u ' V '

= 1,  for u V , x
uu 'u V

= 1,  for u ' V ',      (26) 

x
uu '
+ x

vv '
+ x

zz '
y

{z ,v}
+ 2,  for {u,v}

E,  and u ' < z ' < v '  and {z,v} E ,
      (27) 

Constraints (26) ensure a one-to-one assignment 
between V and V’. Constraints (27) ensure that for an 
edge {u,v} where u is assigned to u’ and v is assigned 
to v’ with u’<v’, if a node z is assigned to a node z’ with 
u’<z’<v’ and if there is no an edge {z,v} in E then the 

value of y
{z ,v}

must be equal to 1 and thus edge {z,v} is 

added to the set F. The objective function minimizes 
cardinality of the set F. The IGC is equivalent to the 
profile minimization problem (PMP), [79]. The PMP is 
discussed in Part II.  

Now, we discuss the problem of multi-layer crossing 
minimization that has many applications including 
combinatorial geometry, theory of VSLI, and graph 
drawing, and computational biology 
[25,80,81,82,83,84]. Nollenberg and Wolff in [85] have 
recently presented an IP formulation for a special case 
of this problem. 

Given a directed graph G=(V,A) the set of nodes V 

is partitioned in to p disjoint sets, V
1
,…,V

p
, where 

 
V

l
V

k
, for l,k=1,…,p,  l k  and V = V

ll=1

p

 with 

  
|V

l
|= n

l
. Define an arc   (u,v) A  for 

 
u V

l
 and 

  
v V

l+1
, 

for some l=1,…,p-1(where each set of nodes V
l  

is 

placed on a straight line, i.e., layer l).We look for a 

permutation of vertices 
 
V

l  
in each layer l such that the 

number of crossing arcs is minimized. Here, the set of 

arcs is partitioned into 
   
A

1
,…, A

p 1
 where 

 
A

l  
is the set of 

arcs between nodes 
 
V

l  
 and 

  
V

l+1  
for l=1,…,p-1. 

Multi-layer Crossing Minimization (MLCM): 

Input: A multi-layered graph G=(V,A) where the set 

of nodes V is partitioned into p disjoint sets, V
1
,…,V

p
, 

for l=1,…,p. 

Output: A permutation of vertices 
 
V

l
 in each layer l 

such that the number of crossing arcs is minimized. 

If p=2 the problem is known as 2-layer crossing 
minimization, which is NP-hard [86]. Several IP 
formulations of the 2-layer problem have been 
provided, [37,87]. The MLCM problem is NP-hard even 
if permutation of one layer is fixed, known as one-sided 
crossing minimization [88]. Recently, several other 
special cases of the MLCM problem have shown to be 
NP-hard, [89,90]. In most heuristics and/or exact 
algorithms, the 2-layer version of the problem is 
extensively used with or without permutation of one 
side fixed, [32]. Carpano, [91] stated that the difficulty 
with dealing with the general MLCM involves not only in 
finding the best permutation for each layer with respect 
to its adjacent layers but also the effect of this choice 
on the configuration as a whole. In that spirit, an IP 
formulation was presented in [32]. 

Define a one-to-one function 
   
f

l
:V

l
{1,…, n

l
}  for 

each layer l. Let 
  
x

ui

l

= 1  if node 
 
u V

l
 is assigned to 

   
i {1,…, n

l
} , and 0 otherwise. Two arcs 

  
(u,u '),(v,v ') A

l
 (for 

  
u,v V

l
,
  
u ',v ' V

l+1
) cross iff either 

  
f

l
(u) < f

l
(v)  and 

  
f

l+1
(v ') < f

l+1
(u ')  or 

  
f

l
(v) < f

l
(u)  and 

  
f

l+1
(u ') < f

l+1
(v ') . Let y

(u ,u ')( v ,v ')

l
= 1

 
iff two arcs (u,u’) and 

(v,v’) in layer l cross, and 0 otherwise. Our new IP 
formulation of the problem is as follows. 

  
Min  y

( u ,u ')( v ,v ')

l

( u ,u '),( v ,v ') A
l

i=1

p 1

 

   

s.t.  x
ui

l

i=1

n
l

= 1,  for l {1,…, p),u V
l
,  

 x
ui

l

u V
l

= 1,  for l {1,…, p), i {1,…, n
l
),

      (28) 

   

x
ui

l
+ x

vj

l
+ x

v ' i '

l+1
+ x

u ' j '

l+1
y

( u ,u ')( v ,v ')

l
+ 3,   

for l {1,…, p 1},(u,u '),(v,v ') A
l
,
 

   
for i, j {1,…, n

l
},and i ', j ' {1,…, n

l+1
},  and i < j, i ' < j ', (29) 

x
uj

l
+ x

vi

l
+ x

u ' i '

l+1
+ x

v ' j '

l+1
y

(u ,u ')( v ,v ')

l
+ 3,   

for l {1,…, p 1},(u,u '),(v,v ') A
l
,
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for i, j {1,…, n

l
},and i ', j ' {1,…, n

l+1
},  and i < j, i ' < j ' . (30) 

Constraints (28) represent a one-to-one assignment 

between set of layered nodes V
l
 and {1,…,n

l
} , 

l=1,…,p. Constraints (29-30) ensure a penalty value of 
1 is added to the objective function if two edges cross. 
The objective function therefore minimizes the sum of 
all crossings. 

PART II 

Graph theoretic approaches for solving difficult 
problems have been an important practical and 
theoretical research area for several decades. Graphs 
have been applied to almost every discipline of 
sciences, engineering, and social sciences. Some of 
the major applications in graph matching are in pattern 
analysis, social network analysis, homeland security, 
telecommunications, and manufacturing [10, 
27,29,49,53,92-102]. In Part II we present IP 
formulations for a wide range of difficult problems, 
problems 1-12 from the list we presented earlier, using 
the framework presented in the Part I. For some of 
these problems we have not seen any natural IP 

formulations in the literature and for some others our 
formulations provide alternative approaches. 

5. INTEGER PROGRAMMING FORMULATIONS OF 
GRAPH PROBLEMS 

This section presents natural integer programming 
formulation for problems 1-12 in the list that we 
presented earlier (refer to the survey papers [2,5,92] for 
comprehensive discussion and applications). Also, the 
classic book on complexity theory by Garey and 
Johnson [75] is a major source for definitions and 
understanding of these and other related graph 
problems. We may discuss the recognition (feasibility) 
and/or the optimization problems separately based on 
appropriateness and availability of limited space. For 
simplicity, formulas in Table 2 are used over-and-over 
when we present the formulations. To save space we 
do not present proofs here, however, upon request the 
proofs are available from the authors.  

We start the discussion with some variations of the 
TSP. For a comprehensive survey of variants of TSP 
refer to [103]. We discuss a variation, known as k-TSP, 
that includes TSP and the Bottleneck TSP as special 

Table 2: Assignment Formulas Used in Formulating Problems in Part II 

(a1)   x
uu 'u ' V '

= 1,   for u V ,     (a2)   x
uu 'u V

= 1,   for u ' V ',

(b1)   x
uu 'u ' V '

1,   for u V ,     (b2)   x
uu 'u V

1,   for u ' V ',

(c1)   x
uu '

+ x
vv '

1,   x
uv '

+ x
vu '

1,   for {u, v} E ,  and {u ', v '} E ',  (c2)   x
u ' u

+ x
v ' v

1,   x
v ' u

+ x
u ' v

1,   for {u, v} E ,  and {u ', v '} E ',

(d1)   x
uu '

+ x
vv '

1,   x
uv '

+ x
vu '

1,   for (u, v) A,  and (u ', v '), (v ',u ') A ', (d2)   x
uu '

+ x
vv '

1,   x
uv '

+ x
vu '

1,   for (u ', v ') A ',  and (u, v), (v,u) A

(e)    x
uv '

+ x
vu '

1  for (u, v) A,  and (u ', v ') A ',

( f )   x
uu '

+ x
vv '

y
{ u ,v }{ u ',v '}

+ 1  x
uv '

+ x
vu '

y
{ u ,v }{ u ',v '}

+ 1,   for {u, v} E ,  and {u ', v '} E ',

(g )   x
uu '

+ x
vv '

y
( u ,v )( u ',v ')

+ 1,   for (u, v) A,  and (u ', v ') A ',

(h1)   x
uu '

+ x
uv '

1,   for u V ,  and {u ', v '} E ',   (h2)   x
uu '

+ x
uv '

1,   for u V ,  and (u ', v ') A ',

(i1)   x
uu '

+ x
vu '

1,   for {u, v} E ,  and u ' V ',     (i2)   x
uu '

+ x
vu '

1,   for (u, v) A,  and u ' V ' .
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cases, [42,43]. We discuss the k-TSP for directed 
graphs. Formulations can be easily modified for 
undirected graphs. Our formulation here is different and 
more general than those in the literature, (see [7,46] for 
classification of TSP formulations). Also note that in 
Part I, we gave several new IP formulation of k-TSP 
and induced k-TSP for undirected graphs. Similar 
formulations can be given for directed graphs, 
however, here in Part II we present different formulas 
for these problems. To save space our concentration 
will be on k-TSP for directed graphs. With minor 
modifications the formulation can be extended to 
induced k-TSP. 

5.1. Variations of TSP 

(ND22, ND23, ND24) Some Variations of TSP: 

Input: Directed graph G=(V,A), distance 
  
w

( u ,v )  
for arc 

(u,v) A , and positive integers  k n , andK. 

Output A: Is there a circuit of G with k nodes? 

Output B: Is there a circuit of G with k nodes with 
total traveled distance ofK or less? 

Output C: Is there a circuit of G with k nodes with 
the longest distance between any two cities less than 
or equal to K? 

We first define a circle graph G’=(V’,A’) with k nodes 
similar to Figure 1. In that, for u’=1,…,k-1 we have 

  (k ,1),(u ',u '+ 1) A ' . The problem looks for an 

assignment 
  f :V V ' , where each element of V may 

be assigned to an element of V’, and each element of 
V’ must be assigned to an element of V. This is a 
subgraph isomorphism problem. If k=n, we have the 
Hamiltonian circuit, i.e., the TSP, and the Bottleneck 
TSP, respectively, (see [104,105] for recent optimal 
procedures of TSP and Bottleneck TSP). Formulation 
of the problem for Output A can be stated as follows: 

(a2),(b1), and 
  
x

uu '
x

v ( u '+1)v N ( u )
, for   u V ,u ' V '\ {k} , 

and 
  
x

uk
x

v1v N ( u )
, for  u V . 

Constraints (a2) and (b1), taken from Table 2, 
ensure that a node in V may be assigned to anode in V’ 
and a node in V’ must be assigned to exactly one node 
in V. The first set of inequalities ensure that if a node u 
is assigned to any node u’, except node k, in V’ then a 
node v where (u,v) is an arc in G must be assigned to 
node u’+1. The last set of inequalities endure that for a 
node u in V assigned to node k in V’, there must be a 
node v in V such that (u,v) is an arc in G and v is 
assigned to node 1.If there is a solution to this 
formulation then we have found a circuit of k nodes in 
graph G, otherwise no such circuit exists in the graph 

G. Formulation of the problem for Output B can be 
stated as follows.  

(a2),(b1),(g) and x
uu '

x
v (u '+1)v N (u )

, for 

  u V ,u ' V '\ {k} , and x
uk

x
v1v N (u )

, for u V . 

  

w
( u ,v )

y
( u ,v )( u ',u '+1)u '+1u ' V '\{k }v N ( u )u V

+

w
( u ,v )

y
( u ,v )( k ,1)v N ( u )u V

K .
 

Here to the set of feasible solutions in output A, 
constraints (g), from Table 2, are added. Constraints 
(g) ensure that if two arcs (u,v) and (u’,v’) are assigned 

to each other then 
  
y

( u ,v )( u ',v ')
= 1. The LHS of the last 

inequality adds up all distances in created a circuit that 
needs to be within a bound K. Note that the LHS is in 
the form of P2. Thus, if Min K is added to the 
formulation we find smallest K that satisfies output B. 
Formulation of the problem for Output C can be given 
as a bottleneck optimization. Feasible solution is the 
same as for output B, however, the last inequality is 
replaced by, 

  
w

( u ,v )
y

( u ,v )( u ',v ')
K , for   (u,v) A , and   (u ',v ') A ' . 

Note that here also the LHS is in the form of P1. 
Thus, if Min K is added to the formulation we find 
smallest K that satisfies output C. Next, we present 
several linear arrangement problems. Bandwidth 
optimization on a graph which has variety of 

applications, [26,106-108], is discussed first. IP 

formulations have been given in [33,35], however, our 
formulation differs from theirs. 

5.2. Linear Arrangement Problems on Graphs 

(GT40) Bandwidth Problem (BP): 

Input: Undirected graph G=(V,E), and a positive 
integer  K n . 

Output: Is there a linear ordering of V with the 
bandwidth K or less, i.e., a one-to-one function 

   f :V {1,…, n}
 

such that, for all edges   {u,v} E , 

  | f (u) f (v) | K ? 

Define an undirected graph G’=(V’,E’) with |V’|=n, 
where the nodes are numbered 1,…,n. For nodes 

  u ',v ' V '  define an edge iff   | u ' v ' | K . Now, we 

have E ' = {{u ',v '} : u ',v ' V ',  and w
{u ',v '}

=| u ' v ' | K} . 

The BP feasibility problem can be stated as a 
problem of finding a one-to-one assignment, 

f :V V ' , such that for each {u,v} E
 

we have 

  { f (u), f (v)} E ' . An IP formulation derives from 
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satisfying constraints (a1), (a2), and (c1) in Table 2. In 
the optimization version of the BP, we look for a one-to-

one assignment 
   f :V {1,…, n}

 
to minimize K. In that, 

G’ is a complete graph and the objective function is 

  
Min

f
{Max

{u ,v} E
| f (u) f (v) |}  which is in the form of 

P1. IP formulation is as follows: 

Min K, s.t. (a1),(a2),(f), and 
  
w

{u ',v '}
y

{u ,v}{u ',v '|
K , for 

  {u,v} E , and u ',v ' V ' . 

Inequalities (f) assign a value of 1 to 
   

colorings
 

when an edge   {u,v} E
 

is assigned to an edge 

  {u ',v '} E ' . The last set of inequalities ensures that a 

value of |f(u)-f(v)| is assigned to edge {u,v}. 

(GT41) Directed Bandwidth Problem (DBP): 

Input: Directed graph G=(V,A), and a positive 
integer K n . 

Output: Is there a one-to-one function 

   f :V {1,…, n}
 

such that, for all arcs   (u,v) A , 

f(u)<f(v) and   f (v) f (u) K ? 

Similar to the case of BP define a digraph 
G’=(V’,A’). Define an arc between two nodes   u ',v ' V '  
if v’>u’ and   v ' u ' K . Now, we have 

  
A ' = {(u ',v ') : u ',v ' V ',  with w

( u ',v ')
= v ' u ' K} . The 

DBP feasibility problem can be stated as a problem of 

finding a one-to-one assignment, 
  f :V V ' , such that 

for each   (u,v) A  we have   ( f (u), f (v)) A ' . IP 

formulation of the DBP derives from satisfying 
constraints (a1),(a2),(d1), and (e) in Table 2. In the 
optimization version of the DBP, the graph G’ is a 
complete graph. We look for a one-to-one assignment 

   f :V {1,…, n}  to minimize K. The objective function 

is 
  
Min

f
{Max

( u ,v ) A
{ f (v) f (u)}}  which is in the form of 

P1. IP formulation is as follows: 

Min K, s.t. (a1),(a2),(e),(g), and w
(u ',v ')
y
(u ,v )(u ',v ')

K , 

for   (u,v) A , and   (u ',v ') A ' . 

Next, we discuss the linear arrangement problem 
(LAP) which has variety of applications, [2,109,110].  

(GT42) Linear Arrangement Problem (LAP): 

Input: Undirected graph G=(V,E) with weight 
 
w

e
 for 

each  e E , and a positive integer K. 

Output: Is there a one-to-one function 

   f :V {1,…, n}  such that 

  
w

{u,v}
| f (u) f (v) |

{u ,v} E
K ? 

Define an undirected graph G’=(V’,E’) with |V’|=n, 
and nodes numbered 1,…,n. For two nodes u ',v ' V '  

let 
  
w

{u ',v '}
=| u ' v ' | . Find a one-to-one assignment 

  f :V V '
 
such that 

  
w

{u ,v}
| f (u) f (v) |

{u ,v} E
K . An 

IP formulation can be stated as follows which is 
different from those in [36,37]. 

(a1),(a2),(f), and 
  

(w
{u ,v}

w
{u ',v '}

y
{u ,v}{u ',v '}

)
{u ,v} E ,{u ',v '} E '

K . 

The optimization of the problem is in the form of P2. 
We need to add Min K to the feasibility problem. 

(GT43) Directed Linear Arrangement Problem 
(DLAP): 

Input: Directed graph G=(V,A) with weight w
a
 for 

each  a A , and a positive integer K. 

Output: Is there a one-to-one function 

   f :V {1,…, n}  such that f(u)<f(v) whenever   (u,v) A  

and such that w
(u ,v )
( f (v) f (u))

(u ,v ) A
K ? 

Define a complete digraph G’=(V’,A’) where |V’|=n 
with nodes numbered 1,…,n. For   u ',v ' V ' define an 

arc (u’,v’) if v’>u’, and let 
  
w

a
= v ' u ' . We want to find a 

one-to-one assignment 
  f :V V '  such that for each 

arc   (u,v) A if u is assigned to node ' 'u V and v is 

assigned to node   v ' V ' then there is an arc 

  (u ',v ') A ' such that 
  

w
( u ,v )

( f (v) f (u))
( u ,v ) A

K . An 

IP formulation of the problem is stated as follows. 

(a1),(a2),(e),(g) and 

(w
(u ,v )
w
(u ',v ')
y
(u ,v )(u ',v ')

)
(u ,v ) A ,(u ',v ') A '

K . 

In the optimization version of the problem, we look 
for an assignment that minimizes the total cost. Thus, 
we only need to add Min K to the feasibility problem 
that is in the form of P2. Next, we discuss the profile 
minimization problem which has many applications, 
[79,111,112]. It is closely related to the BP and LAP. It 
has been shown in [79] that the PMP is equivalent to 
the IGC problem (IGC was discussed in Part I). 

Profile Minimization Problem (PMP): 

Input: Undirected graph G=(V,E). 

Output: A one-to-one function f :V {1,…,|V |}
 

such that 
  
K = Max

v N [u ]
{ f (u) f (v)}

u V
 is minimized. 

Define a complete undirected graph G’=(V’,E’) with 
|V’|={1,…,|V|}.We want to find a one-to-one assignment 

f :V V ' that minimizes the value of K. There is a 
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clear similarity between PMP, BP, and LAP. PMP has 
the elements of both BP and LAP, (see [7]). For  u V  
let   c(u, f (u)) = f (u) , and for   {u,v} E

 
let 

  d({u,v},{ f (u), f (v)}) = Min[ f (u), f (v)] . The objective 

of PMP is 

  
Min

f
{ Max

v N ( u )
{c(u, f (u)) + d({u,v},{ f (u), f (v)})

u V
} . 

An IP formulation of PMP can be stated as follows, 
which is in the form of P3: 

 
Min

f
K

uu V
, s.t. (a1),(a2),(f), and 

c(u,u ')x
uu 'u ' V '
+

d({u,v},{u ',v '})y
{u ,v}{u ',v '}v ' V 'u ' V '

K
u
,  for u V ,v N (u)

. 

We next consider the min-cut linear arrangement 
problem, (see [6] for recent discussion and complexity 
of special cases). It has applications in 
telecommunication [65], computer aided design, 
automatic graph drawing, protein engineering, 
optimization of rail systems [2], and computational logic 
[66]. 

(GT44) Minimum Cut Linear Arrangement Problem 
(MCLAP): 

Input: Undirected graph G=(V,E). 

Output: Find smallest value of K and a one-to-one 

function 
   f :V {1,…, n}

 
such that for all   1 i n ,  

  |{{u,v} E, f (u) i < f (v)} | K . 

Define a complete undirected graph G’=(V’,E’) with 
|V’|=n and let the nodes be numbered 1,…,n. In the 
MCLAP feasibility problem we want to find a one-to-
one assignment between nodes graphs G and G’, such 
that given any node   i ' V ' , the cardinality of all edges 
{u,v} in E with one end u assigned to node   u ' V '  
(  u ' i ' ) and the other end v assigned to node   v ' V '  
(v’>i’) is within the limit K. An IP formulation of the 
feasibility problem can be given as follows: 

(a1),(a2),(f), and 
  

y
{u ,v}{u ',v '}u ' i ',v '>i '{u ,v} E

K , for 

  i ' V '  

The formulation can be extended to the optimization 
of MCLAP by adding, 

  
Min

f
{Max

i ' V '
{ y

{u ,v}{u ',v '}u ' i ',v '>i '{u ,v} E
}} . 

An IP formulation is derived by adding Min K to the 
feasibility problem. The objective function is in the form 

of P7. In that, we have c(u,f(u))=0 for all u in V, and 
d({u,v},{f(u),f(v)})=1 for all {u,v} in E. In the next section 
we discuss graph coloring variations. We first consider 
the graph and subgraph isomorphism problems. The 
complexity of the graph isomorphism problem is still 
open [11], although the subgraph isomorphism problem 
is known to be NP-hard [75]. 

5.3. Graph Coloring Variations 

(A13, OPEN 1, page 285) Graph Isomorphism (GI): 

Input: Undirected graphs G=(V,E) and G’=(V’,E’), 
with |V|=|V’|=n. 

Output: Are G and G’ isomorphic, i.e., is there a 

one-to-one onto function 
  f :V V ' such that 

  {u,v} E
 
if and only if   { f (u), f (v)} E ' ? 

An IP formulation of the GI derives from satisfying 
(a1),(a2),(c1), and (c2) in Table 2. Next, we discuss 
subgraph isomorphismproblem (SI) and the induced 
subgraph isomorphismproblem (ISI). A subgraph of a 
graph G is a graph whose vertex set is a subset of that 
of G, and whose edges is a subset of that of G 
restricted to this subset. A subgraph H of a graph G is 
said to be induced (or full) if for any pair of vertices u 
and v of H, {u,v} is an edge of H if and only if {u,v} is an 
edge of G. In other words, H is an induced subgraph of 
G if it has exactly the edges that appear in G over the 
same vertex set (refer to example 1 for pictorial 
illustration). 

(GT48) Subgraph Isomorphism (SI): 

Input: Undirected graphs G=(V,E) and G’=(V’,E’), 

with   |V |= n |V ' |= n ' . 

Output: Does G contain a subgraph isomorphic to 
G’, i.e., a subset 

 S V and a subset L E such that 

|S|=|V’|, |L|=|E’| and there exists a one-to-one function 

f :V ' S
 

satisfying {u ',v '} E '
 

if and only if 

  { f (u '), f (v ')} L ? 

Induced Subgraph Isomorphism (ISI): 

Input: Undirected graphs G=(V,E) and G’=(V’,E’), 

with   |V |= n |V ' |= n ' . 

Output: Does G contain a subgraph isomorphic to 
G’, i.e., a subset 

 S V  and a subset 
 
L E  such that 

|S|=|V’|, |L|=|E’| and there exists a one-to-one function 

  f :V ' S  satisfying   {u ',v '} E '  if and only if 

  { f (u '), f (v ')} E ? 

Note that as was discussed in example 1, Part I, in 

SI we do not rule out possibility of existing   {u,v} E \ L
 

such that f(u’)=u and f(v’)=v for some   {u ',v '} E ' . An 
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IP formulation of SI derives from satisfying (a2),(b1), 
and (c2) in Table 2, and an IP formulation of ISI derives 
from satisfying (a2),(b1),(c1), and (c2). All discussion 
on GI and SI with the undirected graphs can be 
extended to the directed graphs in straightforward 
manner. Thus, in order to save space we will not 
present them here. Below we discuss the largest 
common subgraph problem (LCS) that has variety of 
applications, especially in data analysis, [113,114,115]. 
An IP formulation was presented in [116]. We present a 
simpler formulation with significantly less variables. 

(GT49) Largest Common Subgraph Problem (LCS): 

Input: Undirected graphs G=(V,E) and G’=(V’,E’). 

Output: Find the largest subsets 
 
L E  and 

  L ' E '  with |L|=|L’| such that the subgraphs 

  
G

1
= (V , L) and 

  
G

1
' = (V ', L ')  are isomorphic. 

Consider an assignment 
  f :V V '

 
where a node 

 u V  can be assigned to only one node   u ' V '  and 

vice versa. Here, two edges,   {u,v} E
 
and { ', '} 'u v E  

are assigned to each other only if we have either 

  
x

uu '
+ x

vv '
= 1

 
or 

  
x

uv '
+ x

vu '
= 1 , but not both. Let 

  
w

e
= w

e '
= 1

 
for all  e E  and   e ' E ' . For two edges 

  {u,v} E  and   {u ',v '} E ' , we have 

  
w

{u ,v}
w

{u ',v '}
(x

uu '
x

vv '
+ x

uv '
x

vu '
) = 1

 
iffthey are assigned to 

each other. A quadratic IP formulation of the problem 
can be stated as follows: 

  
Max w

{u ,v}
w

{u ',v '}
(x

uu '
x

vv '
+ x

uv '
x

vu '
)

v ' V 'v Vu ' V 'u V

, s.t. 

(b1),(b2). 

In order to transfer the quadratic formulation to a 

linear integer program, we let 
  
y

{u ,v}{u ',v '}
= 1

 
if an edge 

  {u,v} E
 
is assigned to an edge   {u ',v '} E '

 
with u 

assigned to u’ and v assigned to v’, and 0 otherwise. 

We let z
{u ,v}{u ',v '}

= 1  if an edge   {u,v} E  is assigned to 

edge   {u ',v '} E '  with u assigned to v’ and v assigned 

to u’, and 0 otherwise. An IP formulation can be stated 
as follows where objective function is in the form of P2. 

  
Min  ( y

{u ,v}{u ',v '}
+ z

{u ,v}{u ',v '}
)

{u ,v} E ,{u ',v '} E '
, s.t. (b1),(b2), and 

  
y

{u ,v}{u ',v '}
x

uu '
, y

{u ,v}{u ',v '}
x

vv '
, z

{u ,v}{u ',v '}
x

uv '
, z

{u ,v}{u ',v '}
x

vu '
, f

or {u,v} E,{u ',v '} E ' .  

Next, we present maximum subgraph matching 
(MSM) with variety of applications, [117,118,119]. 

(GT50) Maximum Subgraph Matching (MSM): 

Input: Directed graphs G=(V,A) and G’=(V’,A’). 

Output: Find the largest subsets R V V '  such 

that for all   < u,u ' >,< v,v ' > R ,   (u,v) A  if and only if 

  (u ',v ') A ' . 

Here, we have many-to-many matching. A slightly 
different version of the problem is that the two 
generated subgraphs must preserve all arc relations 
and thus must be isomorphic. Authors in [120] originally 
introduced the MSM problem with no references to 
isomorphism, stated as, “find the maximal matches, 
where a match is a correspondence (many-many 
relation) between a subgraph H of G and a subgraph H’ 
of G’, which preserves the relation.” In the following, 
first we discuss the isomorphic version of the problem 
(MISM) then we discuss MSM as stated in GT50. 

Consider an assignment 
  f :V V '

 
with the 

assumption that node u V  can be assigned to only 
one node   u ' V ' , and vice versa. We look for the 
largest subsets 

 S V  and 
  S ' V '  with |S|=|S’| to be 

assigned to each other and such that for all   u,v S  

and   u ',v ' S ' ,   (u,v) A  if and only if   (u ',v ') A ' . The 

two subsets of nodes 
 S V  and 

  S ' V ' , respectively, 

create induced subgraphs in G and G’. 

Maximum Induced Subgraph Matching (MISM): 

Input: Directed graphs G=(V,A) and G’=(V’,A’). 

Output: Find the largest subsets 
 S V  and 

  S ' V '  with |S|=|S’| and a one-to-one function 

  f : S S ' such that for all   u,v S  and   u ',v ' S ' , 

  (u,v) A  if and only if   (u ',v ') A ' . 

An IP formulation is as follows. 

Max   x
uu 'u ' V 'u V

, s.t. (b1),(b2),(d1),(d2),(e). 

Now, an IP formulation for the MSM problem, GT50, 
can be stated as follows. 

  
Max   x

uu 'u ' V 'u V

, s.t. (d1),(d2),(e),(h2),(i2). 

The objective functions in the above problems are in 
the form of P2. In the next several subsections, we 
consider the graph coloring and several related 
problems and their generalizations. The relationship 
among these problems is discussed, and IP 
formulations are introduced. The problems have 
enormous applications(see for example, [20,56,121-

126]). 



24    Journal of Advances in Management Sciences & Information Systems, 2015, Volume 1 Alidaee et al. 

(GT4) Graph K-Colorability (GKC): 

Input: Undirected graph G=(V,E), and an integer 

 K n . 

Output: Does there exist a function 

   f :V {1,…, K}  such that   f (u) f (v)  whenever 

  {u,v} E ? 

Graph Coloring (GC): 

Input: Undirected graph G=(V,E). 

Output: Find smallest value of K, a function 

   f :V {1,…, K}  such that   f (u) f (v)  whenever 

  {u,v} E . 

A generalization of the GKC is a graph 
homomorphism stated as follows, GT52. Extension to 
directed graph is also presented. 

(GT52) Graph Homomorphism (GH): 

Input: Undirected graphs G=(V,E) and G’=(V’,E’). 

Output: Find a homomorphism from G to G’, i.e., 

find a function 
  f :V V '

 
such that   { f (u), f (v)} E '  

whenever   {u,v} E . 

Directed Graph Homomorphism (DGH): 

Input: Directed graphs G=(V,A) and G’=(V’,A’). 

Output: Find a homomorphism from G to G’, i.e., 

find a function 
  f :V V '

 
such that   ( f (u), f (v)) A '  

whenever   (u,v) A . 

An IP formulation of the GH problem derives from 
satisfying(a1),(c1) and (i1) in Table 2, and for DGH it 
derives from satisfying(a1),(d1),(e) and (i2). Consider 
now the GKC, and define a complete undirected graph 
G’=(V’,E’) where |V’|=K with the nodes 
numbered1,…,K. Now, GKC seeks for an assignment, 

  f :V V ' , such that   { f (u), f (v)} E '  whenever 

  {u,v} E . Since G’ is complete graph this is the same 

as finding an assignment, 
  f :V V '  such that the end 

points of an edge   {u,v} E cannot be assigned 

simultaneously to one node in G’. An IP formulation of 
GKC drives from satisfying (a1) and (i1) in Table 2. In 
the graph coloring optimization problem (GC), the goal 
is to find the smallest number of colors to assign to 
elements of the set V. Given an upper bound for the 
number of nodes V’ (e.g., |V’|=n), similar to GKC define 
a complete graph G’. The IP formulation for GC 
problem is now stated as follows: 

Min K, s.t. (a1),(i1), and u ' x
uu '

K , for   u V ,u ' V ' . 

Consider now a generalization of the coloring 
problem that we call maximum (minimum) weight 
subset coloring problem (MWSCP). The problem both 
in maximum and minimum format has many 
applications. In MWSCP, if node u V  receives a color 

  u ' V '  (where V’ is the set of colors), then there is a 
benefit (or a cost) of c(u,u’) (refer to [56] for 
approximation algorithms for special cases of these 
problems). For a given a subset S V  and a function 

   f : S {1,…, K} , define Z = c(u, f (u))
u S

 to be 

weight of S. Now, MWSCP can be stated as follows: 

Maximum (Minimum) Weight Subset Coloring 
Problem (MWSCP): 

Input: Undirected graph G=(V,E), and an integer 

 K n . 

Output: Find a maximum (or minimum) weight 

subset S V , and smallest positive integer  l K , and 

a function 
   f : S {1,…, l}  such that   f (u) f (v)  

whenever   {u,v} E
 
and   u,v S . 

In MWSCP, we have a bi-objective optimization 
problem. We discuss the problem for maximum weight 
subset. It can be easily modified for minimum case. In 
MWSCP, we look for a maximum weight subset 

 S V  
that can be colored by K colors. Let Z* be the 
maximum weight. We then want to find smallest 
number of colors, l, that admits Z*. Define a complete 
graph G’=(V’,E’) with V’={1,…,K}. Now, IP formulations 
can be given as follows. The IP (A) is in the form of P2, 
and (B) in the form of P1. 

  
Max  Z = c(u,u ')x

uu 'u ' V 'u V

, s.t. (b1),(i1). 

To find smallest number of colors, i.e., strength of 
G, we solve the following IP. 

Min l, s.t. (b1),(i1), and 
  
u ' x

uu '
l , for   u V ,u ' V ' , 

  l 0 , and 

c(u,u ')x
uu 'u ' V 'u V

= Z * . 

Several important combinatorial optimization 

problems are special cases of MWSCP: 

(1) If K=1then we have a single color and thus G’ 
has a single vertex with no edge. For each node 

 u V  let 
 
w

u  
be a given weight and define 

c(u, f (u)) = w
u
. Now, IP (A) solves the well 

known maximum weight independent set 

problem. 

(2) If K=n, then we have S=V. Given an assignment 

   f :V {1,…, K}  that satisfies condition of 
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MWSCP, for node  u V  let c(u, f (u)) = f (u) . 

Here, weight of c(u,f(u)) is exactly equal to the 
integer number of node assigned to u. Now if we 
minimize IP (A) instead of maximizing, then we 
have solved the optimum cost chromatic partition 
(OCCP) [127,128,129], which has the sum 
coloring (SC) [130] as a special case. Both 
OCCP and SC problems have numerous 
applications in scheduling theory, resource 
allocation, and VSLI design [98]. IP (B) then 
solves for strength of graph G. Note that these 
problems can be considered as special cases of 
the Graph Grundy Number (GGN, GT56, [75]), 
which is defined on digraphs. Our formulation 
can easily be modified for GGN (see [93] for 
survey of results). 

Another generalization of the graph coloring is as 
follows, known as weighted vertex coloring (WVCP). Its 
special cases have been discussed in the literature and 
have applications in batch scheduling, transmission of 
real time messages in metropolitan network, and 
dynamic storage allocation [54,55]. IP formulation was 
presented in [57]. 

Weighted Vertex Coloring Problem (WVCP): 

Input: Undirected graph G=(V,E), and positive 

weight 
 
w

u
 for each  u V . 

Output: Find a function 
   f :V {1,…, K}  for some 

 K n  such that   f (u) f (v)  whenever   {u,v} E  and 

  u,v V , to minimize 
  
Z = Max

u V , f ( u )=u '
{w

u
}

1 u ' K
. 

Let 
  
K

max  
be an upper bound to the optimal value of 

K (e.g., 
  
K

max
= n ), now define a complete graph 

G’=(V’,E’) where 
   
V ' = {1,…, K

max
}. The problem is to 

find a function 

Min  w
(u,v )
y

(u,v )(u' ,u'
+1)u'

+1u' V ' \{k}v N (u)u V

+ w
(u,v )
y

(u,v )(k ,1)v N (u)u V
.  

that 

minimizes 
   
w

(u,v )
y

(u,v )(u
' ,v' )

K ,   for (u,v) A,  and (u ' ,v ' ) A
' . . 

Here, the objective function is a special case of P5. An 
IP formulation of WVCP is presented below. In the 
special case when all weights are equal to 1,we have 
the GC problem. However, the IP formulation of the 
special case of GC is different from the one we 
presented earlier (see [131] for similar formulation of a 
special case). In this formulation we have 

  
c(u, f (u)) = w

u
. 

  
Min  K

u 'u ' V '

, s.t. (a1),(i1), and c(u,u ')x
uu '

K
u '

, for 

u V ,u ' V ' . 

An important graph optimization problem with 
enormous applications is the maximum clique partition 
problem (MCPP). It has the graph partitioning problem 
(GPP) as a special case. Applications of MCPP and 
GPP include clustering and pattern analysis(see 
[21,22,23,101,102,132,133,134,135,136] for recent 
applications). The problem is stated as follows: 

Maximum Clique Partition Problem (MCPP): 

Input: Undirected graph G=(V,E), weight 
 
w

e  
(a real 

number) for each  e E . 

Output: Find a partition, 
   
V = {V

1
,…,V

k
} , of vertices 

into disjoint cliques to maximize 

  
Z = w

{u ,v}u ,v V
l
,{u ,v} E1 l K

. 

The value of K that admits maximum in the problem 

is called maximum clique partition number, 
  max

(G) . 

Authors in [137,138] presented an IP formulation of the 
problem. Our formulation is based on the GC concept 

and is different from theirs. Let   G = (V , E )
 

be the 

complement of graph G=(V,E). Now, the MCPP is 

equivalent to the problem of partitioning vertices of  G  
into independent sets (or coloring of vertices) where 

the sum over all weight of edges,  e E , i.e., between 

pair of vertices in each independent set is maximized. 

Let 
  
K

max
 be an upper bound to 

  max
(G)

 
(e.g., 

  
K

max
= n ). Define a graph G’=(V’,E’) where 

   
V ' = {1,…, K

max
}

 
and E’ contains only self-loop edges 

for each node of V’. We look for a function f :V V '  

such that   f (u) f (v)
 
whenever   {u,v} E

 
and such 

that Z is maximized. A set of nodes of G that are 
assigned to a node u’ in G’ create an independent set 

in G , and thus a clique in G. An IP formulation can be 
given as follows, which is in the form of P2. 

Max   w
{u ,v}
y

{u ,v}{u ',u '}u ,v V ,{u ,v} Eu ' V '
, s.t. (a1), and 

x
uu '
+ x

vu '
1 , for   {u,v} E , and   u ' V ' , 

  
y

{u ,v}{u ',u '}
x

uu '
,
  
y

{u ,v}{u ',u '}
x

vu '
, for   {u,v} E , and   u ' V ' . 

If (b1) in Table 2 is substituted for (a1) in the IP 

formulation, and if 
  
K

max
= 1

 
(i.e., G’ has a single node), 

and letting edge weights be equal to 1, then it solves 
the maximum weighted clique problem (MWC), i.e., the 
maximum weighted independent set problem (MWIS) 

in graph G . Next, we discuss another interesting 
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generalization of graph coloring known as graph 
labeling (GL) with many applications. 

Graph Labeling (GL): 

Input: Positive integersm, k ( m k ) and 
 mk

. 

Output: Is there an f(m,k)-labeling of graph G=(V,E), 

i.e., is there an assignment 
   
f :V {0,1,…,

mk
}

 
(coloring of vertices with non-negative integers) such 
that 

(A)   | f (u) f (v) | m , if u and v are adjacent, and 

(B) | f (u) f (v) | k , if u and v are distance two 

apart. 

Input: Positive integers m and k ( m k ). 

Output: Find an f(m,k)-labeling of graph G=(V,E), 

i.e., 
   
f :V {0,1,…,

mk
}

 
such that (A) and (B) are 

satisfied and 
 mk

 is the smallest positive integer. The 

optimal value of 
 mk

, denoted by 
 mk

number , called 

the minimum span of G. 

Applications of graph labeling problems are 
reported in channel assignment [139], radio labeling 
[140,141,142], and computer networks [97]. Refer to 
[1,5,9,143] for comprehensive surveys. In [38] a natural 
IP formulation for the special case of the graph labeling 
problem is presented. Several generalizations of GL 
have been presented, [144,145]. These models can be 
considered as special cases of the T-coloring problem 
[47,48,146]. To present an IP formulation of the GL 
feasibility problem, we first define a complete graph 

G’=(V’,E’) with 
   
V ' = {0,1,…,

mk
}

 
and E’ as set of edges 

between all pairs   u ',v ' V ' . For each pair   u ',v ' V ' , 

let w
{u ',v '}

=| u ' v ' | . In graph G, for every pair   u,v V  

with a distance 2 apart, we add a dummy edge. Denote 

the set of dummy edges by E
D

. An IP formulation of 

the feasibility of GL is now stated in the following. In 
that, the assignment is between the nodes of two 

graphs, G = (V ,E E
D
)
 
and G’=(V’,E’). Feasible and 

infeasible assignments are similar to the graph coloring 
problem that appear above. 

(a1), and 
  
x

uu '
+ x

vv '
1 , and 

  
x

uv '
+ x

vu '
1 , for   {u,v} E , 

and {u ',v '} E ' , 
  
w

{u ',v '}
< m , 

x
uu '
+ x

vv '
1 , and x

uv '
+ x

vu '
1 , for {u,v} E

D
, and 

  {u ',v '} E ' , 
  
w

{u ',v '}
< k , 

  
x

uu '
+ x

vu '
1 , for 

  
{u,v} E E

D
, and   u ' V ' . 

The formulation can be extended to GL 

optimization. Let 
 mk

 be an upper bound to 

 mk
number . Now, an IP formulation of the problem 

can be stated as follows. 

  Min , The above feasible conditions, 
  
u ' x

uu '
, 

for   u V ,u ' V ' , and 0 . 

Here, the last set of inequalities combined with the 
minimization of the objective function ensure that the 

optimal value of  will be equal to 
 mk

number . Next, 

we discuss the metric labeling problem (MLP), which 
has applications in different areas of engineering, 
especially in pattern analysis, [147-152]. An IP 
formulation for special cases was presented in [29,30], 
and in [150,151] approximation results were presented. 
Our IP formulation is more general than theirs. 

Metric Labeling Problem (MLP): 

Input: Undirected graph G=(V,E) with a possible 

self-loop for each node, and weight 
 
w

e  
for each  e E . 

A set of labels V’ with a metric distance function 

  D :V ' V ' R , and a cost function, c, assigning a cost 

of c(u,u’) when two nodes u V  and u ' V '  are 
assigned to each other.  

Output: Find an assignment, 
  f :V V ' , to 

minimize P2 (or P4). 

In many applications, we have 
  
f (u) L

u   
for a given 

subset 
  
L

u
V ' . In general, we have 

   
V ' = L

uu V

. If 

label   u ' V ' is assigned to node  u V , it incurs a cost 
of c(u,u’), and if two labels   u ',v ' V '  (possibly 

' 'u v= )are assigned to end points of an edge 

  {u,v} E , it incurs a cost of 

d({u,v},{u ',v '}) = w
{u ,v}
D(u ',v ') . Define a graph 

G’=(V’,E’) where   {u ',v '} E '
 
iff   D(u ',v ') 0 . Originally 

the MLP was defined for D(.,.) as a metric function [28]. 
Our formulation does not assume that. We look for a 

function 
  f :V V '

 
to minimize P2 (or P4). An IP 

formulation that minimizes the objective function P2 
can be stated as follows. 

  

Min  c(u,u ')x
uu 'u ' L

u
u V

+
1

2
w

{u ,v}
D(u ',v ') y

{u ,v}{u ',v '}v ' L
v

N [u ']u ' L
u

v N ( u )u V
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s.t. (g), and 
  

x
uu 'u ' L

u

= 1 , for  u V . 

An IP formulation of the problem that minimizes the 
objective function P4 can be stated as follows. Our 
formulation differs from those in the literature and is 
more general. 

Min K,   s.t. (g), and 
  

x
uu 'u ' L

u

= 1 , for  u V , 

c(u,u ')x
uu 'u:u ' L

u

+
1

2
w
{u ,v}
D(u ',v ')y

{u ,v}{u ',v '}v ' L
u
N [u ']v N (u )u:u ' L

u

K

, for 

  u ' V ' . 

A special case of the above formulation under the 
task assignment in distributed computing systems 
(TADCS) is discussed in [49] in which a graph 
matching formulation for the problem is presented and 
in which is also some discussion of an integer 
programming formulation. In the TSDCS, we have a set 
of tasks, V, and a set of processors, V’. A task graph 
G=(V,E) represents the set of tasks and their 
communication links shown by the edges of the graph. 
A processor graph G’=(V’,E’) represents the set of 
processors and their communication links shown by the 
edges of the graph. The problem is to find an 

assignment function 
  f :V V '

 
that assigns the tasks 

to the processors. If task  u V  is assigned to an 
eligible processor   u ' V ' , the processing time is 
c(u,u’). If two tasks   u,v V need to communicate (i.e., 

if there is an edge   {u,v} E ), they can be assigned to 

one processor; in that case, there is no communication 
time between them. Two tasks can also be assigned to 
two different processors if a communication link is 
possible between them (i.e., if there is an edge 

  {u ',v '} E ' ). In that case, there is a communication 

time between two tasks measured by d({u,v},{f(u),f(v)}). 
The problem with the objective P2 asks for an 

assignment 
  f :V V '

 
to minimize the total times 

(e.g., [50-53]). In a problem with objective P4, we want 
to minimize the completion time of the last task 
completed, i.e., load of the processor with the 
maximum processing and communication times [49]. 
Other graph optimization problems related to the MLP 
with objective function P2 are Graph Embeddings in d-
Dimensions, Linear arrangement with d-dimensional 
cost, and Minimizing Storage-Time Product. The above 
formulations can be modified for these problems. 
However, Even, Naor, Rao, and Schieber in [28] 
presented indirect IP formulations for each case. 

In the next section, we present some variations of 
graph crossing optimization. We first discuss the 
Golomb Ruler problem (GR) which has a variety of  
 

applications including crystallography, radio-astronomy, 
and telecommunication [10,153,154,155]. 

5.4. Graph Crossing Optimization 

A GR with n marks is defined as a set of n integers, 

called marks, 0 = a
1
< a

2
,…,< a

n
, such that the 

differences 
 
a

j
a

i
, 

  1 i < j n
 

are all distinct and 

nonzero. The optimal GR with n marks is a GR with the 

smallest value of a
n
, referred to as the length of the 

ruler. The complexity of the problem is still open,[10]. 
Many good heuristics for large problems are available, 
[156]. Upper bounds are discussed in [10], and several 
IP formulations are proposed in [10,40]. We propose a 
new formulation here. 

Golomb Ruler (GR): 

Input: Two nonnegative integer numbers n and K 
with  n K . 

Output: Is there a set of n integers 

   
{a

1
,…, a

n
} {0,1,…, K}

 
where 

   
0 = a

1
< a

2
,…,< a

n
, such 

that the differences 
 
a

j
a

i
, 

  1 i < j n
 

are all 

distinct? 

Input: A nonnegative integer n. 

Output: A set of n integers 
   
0 = a

1
< a

2
,…,< a

n
, such 

that the differences 
 
a

j
a

i
, 
  1 i < j n

 
are all distinct, 

and 
 
a

n
 is smallest. 

Let V={1,…,n} be a set of n integers placed linearly 
on a line from the smallest to the largest. Similarly, let 
V’={0,1,…,K} be a set of K+1 integers placed linearly 
from the smallest to the largest on a parallel line to the 
first line. Define a directed graph G=(V,A) where 

A={(i,j):i<j, for i,j=1,…,n} with weight w
a
= 1

 
for  a A , 

and define a directed graph G’=(V’,A’) where 

A’={(i,j):i<j, for i,j=0,1,…,K} with weight
'
1

a
w =  for each 

  a ' A ' . Consider an assignment 
  f :V V ' , such that 

each element of V is assigned to one element from V’ 
and one element of V’ may be assigned to one element 
of V (the assignment between nodes  u V  and   u ' V '  
is called an alignment). We look for an assignment 

  f :V V ' , where no two alignments cross, and such 

that f(u)-f(v)for all   (u,v) A
 
are distinct. Each element 

 u V  receives an integer number 
  
a

u
= f (u)

 
where 

  
a

u
< a

u+1   
for u=1,…,n-1 and differences between these 

integers are distinct. If we force the smallest element in 
V to be assigned to the first element in V’, then we 
have the desired result for the GR feasibility problem. 
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Below, we state an IP formulation of the feasibility 

problem.  

(a1),(b2),(g), 
  
x

uv '
+ x

vu '
1,  1 u < v n , and 

  1 u ' < v ' K , 

  
y

( u ,v )( u ',v ')( u ',v ') A ',v ' u '=k( u ,v ) A
1 , for k=1,…,K, and 

  
x

11
= 1 . 

Here, we used directed graphs to formulate the 
problem, however, it is easy to modify the formulation 
for undirected graphs. In the GR optimization problem, 

it is assumed that an upper boundK for value of 
 
a

n  
is 

given (e.g., a large enough number). When an element 
fromV’ is assigned to the largest element of V, it carries 

the length of Golomb Ruler, i.e., 
 
a

n
, that is minimized. 

The objective function is in the form of P1. 

Min K*, (a1),(b2),(g), 
  
x

uv '
+ x

vu '
1,  1 u < v n , and 

1 u ' < v ' n ' , 

y
(u ,v )(u ',v ')(u ',v ') A ',v ' u '=k(u ,v ) A

1 , for k=1,…,K,  

  
u ' x

nu '
K * , for   u ' V ' , and 

  
x

11
= 1 . 

Next, Contact Map Problem (CMP), with 
applications in computational biology, is discussed 
(refer to [41,31,91], for recent results). We are given 
two undirected graphs G=(V,E) and G’=(V’,E’) where 
for each set V and V’, a pre-specified ordering is given. 
Each set of vertices with their order represents a DNA. 
An edge in graph G (or G’) represents a contact if two 
end vertices are “close enough”, measured by a 
distance measure, with each other. Assume that the 
vertices of each graph are lined up in the given order 
on two straight lines parallel to each other. We look for 
the assignment between the vertices of the two graphs. 
An assignment between a vertex  u V  and a vertex 

  u ' V '  is called an alignment. If the end points of an 

edge   {u,v} E
 
are assigned to end points of an edge 

  {u ',v '} E ' , it is called a shared contact. A feasible 

assignment is obtained when no two alignments cross. 
The objective is to find a feasible assignment between 
the vertices of two graphs with the maximum number of 

shared contacts. 

Contact Map Problem (CMP): 

Input: Two undirected graphs G=(V,E) with |V|=n, 
and G’=(V’,E’) with |V’|=n’, and pre-specified ordering 
for the elements of V, and the elements of V’. 

Output: An assignment 
  f :V V '

 
with the 

maximum number of shared contacts where no two 
alignments are crossed. 

The DNA similarity problem was first introduced in 
graph theoretic format in [94]. It was shown that the 
objective of CMP is to find the largest subgraph 
isomorphism between two graphs while preserving the 
pre-assigned sequence structure of the nodes in each 
graph and avoiding cross alignment. Using the 
formulas in LCS (discussed earlier), we can formulate 

the problem as follows. In G, let 
  
w

e
= 1

 
for  e E , and 

in G’, let w
e '
= 1  for e ' E ' . If two edges   {u,v} E  and 

  {u ',v '} E '
 
with u<v and u’<v’ are feasibly assigned 

together, then we must have 
  
x

uu '
x

vv '
= 1. In that, we 

have 
  
w

e
w

e '
x

uu '
x

vv '
= 1 . Now using LCS results that we 

discussed earlier an IP formulation of the problem can 

be stated as follows [41]: 

Max   y
{u ,v}{(u ',v '}{u ,v} E ,{u ',v '} E '

, s.t. (b1),(b2), x
uv '
+ x

vu '
1 , 

for 1 u v n  and 1 u ' v ' n ' , 

  
y

{u ,v}{( u ',v '}
x

uu '
, 

  
y

{u ,v}{( u ',v '}
x

vv '
, for {u,v} E  and 

  {u ',v '} E ' . 

6. CONCLUSION AND REMARKS 

In this paper, we introduced general graph 

optimization approaches. The general problems include 

a wide range of graph theoretic problems. Natural 

integer programming formulations for the general 

problems, as well as variety of specific matching 

problems, were presented. Some of these formulations 

are new and some are alternative to existing ones. 

Relationship between the general approaches and the 

quadratic assignment problem were pointed out. 

Further study should concentrate on applications of the 

IP formulations in practice. Often real problems have 

extra constraints that needed to be included in the 

formulations we presented here. Since these problems 

are NP-hard and in practice problems are very-large-

scale thus heuristics and meta-heuristics should be 

designed in connection with formulations presented 

here as solution procedures. Another line of research 

may be use of the formulations presented here to 

develop lower or upper bounds in algorithmic 

development for specific problems.  
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