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Abstract: The paper exploits the fact that every information system generates a family of equivalence relations in the set 
of considered objects, and the corresponding family of partitions of this set, and that this family is a lattice with certain 
properties. It describes the internal structure of any lattice with such properties and shows that such a lattice is 
generated by an information system.  

Keywords: Object, attribute, information system, information lattice, coarsening, diamond, region. 

1. INTRODUCTION 

In this paper abstract lattices with the properties of 
lattices of equivalence relations generated by 
information systems are defined and studied. 

The information systems considered in the sequel 
are supposed to be given in the form proposed in [1] 
and [2], i.e., in the form of a structure S = (U,A) , where 
U  is a nonempty set of objects called the universe, 
and A  is a nonempty, set of primitive attributes, where 
every primitive attribute a ! A  is a total function 
a :U !Va  from U  to a set Va  of possible values of a , 
called the domain of a . Every such a system with a 
finite set of objects and a finite set of attributes can be 
represented as a table with rows corresponding to 
objects and columns corresponding to attributes. 

1.1. Example (after [2]). The structure S = (U,A)  
with U = {a,b, c,d, e}  and A = {t, x, y, z} , where t , x , 
y , z  are functions from U  to {0,1, 2, ...}  such that 

t(a) = 0 , t(b) = t(c) = t(e) = 1 , t(d) = 2 , 

x(a) = x(d) = x(e) = 1 , x(b) = 2 , x(c) = 0 , 

y(a) = 2 , y(b) = y(d) = y(e) = 0 , y(c) = 1 , 

z(a) = z(c) = 0 , z(b) = z(e) = 2 , z(d) = 1  

is an information system. It can be represented by a 
table as in Figure 1.  

With each attribute of S  the equivalence relation is 
associated which says that some objects have the 
same values of this attribute. By taking into account the 
greatest lower bounds and the least upper bounds of  
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such equivalence relations, and the equivalence 
relations contained between the considered 
equivalence relations, we obtain a lattice of 
equivalence relations or, equivalently, the 
corresponding lattice of partitions of the universe of 
objects into disjoint classes of equivalent elements. 
Thus we come to a lattice of partitions of the universe 
U  with the operations corresponding to the operations 
in the lattice of all equivalences in U . So, finally we 
can represent the considered information system by 
this lattice, call such a lattice an information lattice, and 
write it as CS = (CS ,!S ) , where CS  is the set of 
possible partitions of the universe of objects and !S  is 
the relation to be coarser. Objects can be defined as 
elements of one-element members of the finest 
partition ! . Attributes can be defined as generators of 
CS . 

 

Figure 1: A table representing S. 

1.2. Example. For the information system S  in 
Example 1.1, the corresponding information lattice 
CS = (CS ,!S )  is depicted in Figure 2, where 

!= {{a},{b},{c},{d},{e}} , u = {{a},{b},{c},{d, e}} , 

v = {{a},{c},{b, e},{d}} , t = {{a},{b, c, e},{e}} , 

x = {{a,d, e},{b},{c}} , y = {{a},{b,d, e},{c}} , 

z = {{a, c},{b, e},{d}} , p = {{a,b,d, e},{c}} , 
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q = {{a, c},{b,d, e}} , s = {{a,b, c, e},{d}} , 
= {{a,b, c,d, e}} .  

Attributes of an information system may depend on 
each other or they may be related in some ways. 
Consequently, it is natural to seek for the most 
influential attributes and to eliminate the irrelevant 
attributes. 

 
Figure 2: 

In this paper we try to go further dealing not only 
with the given attributes but also trying to exploite the 
lattice structure to find some more natural attributes. In 
some cases it may allow us to considerably reduce the 
number of attributes that is essential for data 
representation, i.e., to reduce the dimension of 
representation. The problem of dimensionality 
reduction is important in many applications (cf. [3, 4] 
and related papers). In particular, it is important in 
applications with a relatively small number of objects 
and a large number of attributes. 

2. INFORMATION LATTICES 

As we have said, every information system 
generates an information lattice C = (C,!) . Elements 
of the underlying set C  represent partitions of the 
considered universe of objects, every pair (c, !c )  of 
partitions such that c! "c  represents a coarsening of 
c  to !c , and coarsenings t! x  and t! y  are 
regarded to be parallel independent if the diagram 
(x! t" y, x" z! y)  is a diamond in the sense that t  
is the greatest lower bound of x  and y  and z  is the 
least upper bound of x  and y . Moreover, C  enjoys 
the following properties. 

2.1. Proposition. In any lattice C = (C,!)  
generated by an information system the following 
conditions are satisfied:  

(A1). If x! "z ! z  and (x! t" y, x" z! y)  is a 
diamond then there exists !t  such that 
t! "t ! y  and (x! t" #t , x" z! #t )  and 
( !z " !t # y, !z # z" y)  are diamonds.  

(A2). If t! "t ! y  and (x! t" y, x" z! y)  is a 
diamond then there exists !z  such that 
x! "z ! z  and (x! t" #t , x" z! #t )  and 
( !z " !t # y, !z # z" y)  are diamonds.  

Prof outline. For any partitions x  and y  of the 
universe, the partition x y  consists of maximal 
subsets of the universe with the property that their 
elements are equivalent with respect to the transitive 
closure of the union of the equivalence relations 
corresponding to x  and y . The existence of such 
maximal subsets of the universe follows from the fact 
that every chain of subsets of the universe is contained 
in its own union.  

In this paper we are interested not only in 
information lattices of information systems, but in 
arbitrary lattices that enjoy only the relatively weak 
properties (A1) and (A2). 

What has been said can be reflected in the following 
definition. 

2.2. Definition. An abstract information lattice, or 
briefly an information lattice, is a complete lattice 
C = (C,!)  that enjoys the properties (A1) and (A2) of 
Proposition 2.1.  

2.3. Example. The structure C = (C,!)  with C = CS  
and !=!S  as in Example 1.2 is an information lattice.  

Let C = (C,!)  be an abstract information lattice. 
Elements of C  are called partitions. If (c, !c )  is a pair of 
elements of C  such that c! "c  then it represents a 
coarsening of the partition c  to a partition !c . Diagrams 
(x! t" y, x" z! y)  such that t  is the greatest lower 
bound x y  of x  and y  and z  is the least upper 
bound x y  of x  and y  are called diamonds. Given a 
diamond D = (x! t" y, x" z! y) , elements t, x, y, z  
are called nodes of D  and coarsenings t! x , t! y , 
x! z , y! z  are called sides of D . 

2.4. Example. The following diagrams in Figure 1.2 
are diamonds of the information lattice in Example 1.2. 
The diagrams which consist of diamonds of this lattice 
with a common side are also its diamonds.  

(u!"# v,u# y! v) , (x! u" y, x" p! y) , 

(y! v" z, y" q! z) , (z! v" t, z" s! t) , 
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(x!"# z, x# ! z) , (p! y" q, p" ! q) , 

(q! z" s,q" y! s) .  

 The following proposition follows from the definition 
of information lattice. 

2.5. Proposition. For every c ! C  the restriction of 
C  to the set c! = {d " C :d# c}  is an information 
lattice (written also as c! ).  

3. INDEPENDENCE AND EQUIVALENCE OF 
COARSENINGS 

The concept of a diamond can be used to define 
independence and equivalence of coarsenings of an 
information lattice. 

The equivalence of coarsenings t! x  and t! y  is 
the basis of the present paper. It is represented by the 
fact that the diagram (x! t" y, x" z! y)  is a 
diamond in the sense that t  is the greatest lower 
bound of x  and y  and z  is the least upper bound of x  
and y . 

3.1. Definition. If (v! u" w, v" #u ! w)  is a 
diamond in an information lattice C = (C,!)  then the 
coarsenings u! v  and u! w  are said to be parallel 
independent, and the coarsenings u! v  and v! "u , 
as well as the coarsenings u! w  and w! "u , are said 
to be sequential independent (cf. [5]).  

3.2. Definition. By the natural equivalence of 
coarsenings in an information lattice C = (C,!)  we 
mean the least equivalence relation !  between 
coarsenings such that u! v " w! #u  whenever in this 
information lattice there exists a diamond 
(v! u" w, v" #u ! w) .  

3.3. Examples. Consider the information lattice C  
in example 2.3. In this lattice the coarsenings !" u  
and v! y  are equivalent, and the coarsenings u! y  
and !" v  are equivalent.  

4. REGIONS OF INFORMATION LATTICES 

The existence in information lattices of the natural 
equivalence of coarsenings makes it possible to adapt 
and exploit the concept of a region similar to that 
introduced in [6]. 

4.1. Definition. By a region of an information lattice 
C = (C,!)  we mean a nonempty subset r  of the set of 
elements of C  such that: 

 

u ! r  and v ! r  and w! "u # u! v  implies w ! r  and 
!u " r , 

u ! r  and v ! r  and w! "u # u! v  implies w ! r  and 
!u " r .  

4.2. Example. In the information lattice C  in 
example 2.3 the sets {!, v, z, t, s} , {u, x, y, p,q, } , are 
regions, and the sets {!,u, v, y, z,q} , {t, x, p, s, }  are 
regions.  

From the definition of a region we obtain the 
following propositions. 

4.3. Proposition. If C = (C,!)  is an information 
lattice, r  is a region of C , and (v! u" w, v" #u ! w)  
is a diamond in C , then v ! r  implies that u ! r  or 
!u " r .  

4.4. Proposition. The set of all members of C  is a 
region of C .  

4.5. Proposition. If p  and q  are disjoint regions of 
C  then p! q  is a region of C .  

4.6. Proposition. If p  and q  are different regions 
of C  such that p ! q  then q ! p  is a region of C .  

Let r  be a region of C  and let x  be an element of 
r . Given a chain (ri : i ! I )  of regions of C  that are 
contained in r  and contain and element x , for 

 !r = !(ri : i " I )  and a coarsening c! d  such that 
c ! "r  and d ! "r , there exists i0 ! I  such that c ! ri  
and d ! ri  for i > i0 . Consequently, for every 
coarsening !c " !d  such that !c " !d # c" d  we have 
!c " ri  and !d " ri  for i > i0 , and thus !c " !r  and 
!d " !r . Similarly, for c! d  such that c ! "r  and d ! "r  

and for !c " !d # c" d . So, !r  is a region. 
Consequently, in the set of regions that are contained 
in r  and contain x  there exists a minimal region. 
Hence we obtain the following results. 

4.7. Proposition. Every region of C  contains a 
minimal region.  

4.8. Proposition. Every element of C  belongs to a 
minimal region.  

4.9. Proposition. If a member s  of C  does not 
belong to a region r  then there exists a minimal region 
!r  such that r! "r =#  and s ! "r .  

4.10. Proposition. Every region of C  can be 
represented as a disjoint union of minimal regions.  
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Proof. Let m  be the disjoint union of a family M  of 
minimal regions of C . Then m  is a region of C  and if 
it does not cover C  then C !m  is a region of C  and 
the family M  can be extended by a minimal region of 
C  that contains a given element of C !m  as in the text 
preceding Proposition 4.7. Consequently, a family of 
disjoint minimal regions of C  can be defined such that 
its union covers C .  

4.11. Example. In the information lattice C  in 
example 2.3 we have the following decompositions of 
the set of members into disjoint union of minimal 
regions (see Figure 3): A = {{!, v, z, t, s},{u, x, y, p,q, }} , 

B = {{!,u, v, y, z,q},{t, x, p, s, }} , 
G = {{!,u, x},{v, y, z, t, p,q, s, }} .  

4.12. Proposition. For every element c  of C  and 
for every region r  of C  the subset 
r | c = {d ! r :d" c}  of r  is either empty or it is a 
region of c! . #  

A proof follows from the fact that every diamond in 
c!  is a diamond in C . 

5. MINIMAL REGIONS OF INFORMATION LATTICES 

We shall prove that every abstract information 
lattices are information lattices generated by an 
information system. 

Given an information lattice C = (C,!) , we can 
assign to C  a labelled partially ordered set E = (E,!, l)  
and an information system S = (U,A) . This can be 
done as follows. 

Let RC  denote the set of minimal regions of C . Let 
DC  denote the set of decompositions of the set of 
elements of C  into disjoint unions of minimal regions, 
every decomposition defined as a set d  of mutually 
disjoint minimal regions from RC  such that  !d = C . 

The underlying set E  of E  is defined as the set EC  
of pairs (d, r)  consisting of a decomposition d ! DC  
and of a minimal region r ! d . 

The labelling l  of E  can be defined as  l : (d, r)! r . 

 

 
Figure 3:  
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The universe U  of S  can be defined as the set of 
maximal antichains of E . 

The set A  of attributes of S  can be defined as the 
set of mappings a  such that  a :m! r  for every 
maximal antichain of E  that contains (d, r) . 

We start from the partial order of E . 

The partial order !  can be introduced as follows. 

Let  be the following relation in RC . 

5.1. Definition. Given x, y ! RC , we write x y  iff 
for every v ! y  there exists u ! x  such that u! v , for 
every u ! x  there exists v ! y  such that u! v , and 
the following conditions are satisfied: 

(1) t ! x  iff w ! y , for every diamond 
(u! t" w,u" v! w)  with u ! x  and v ! y ,  

(2) !t " x  iff !w " y , for every diamond 
( !t " u# v, !t # !w " v)  with u ! x  and v ! y . 
#   

5.2. Proposition. The relation  is a partial order 
on RC .  

For a proof it suffices to notice that the relation  follows 
the partial order in C . 

The partial order !  can be defined as the least 
partial order !C  in E  such that (d, r) !C ( "d , "r )  if r !r  
and r ! "r  or if d = !d  and r = !r . 

The properties of the partially ordered set E  are 
consequences of the following observations. 

First, the properties of information lattices imply an 
important property of minimal regions. 

5.3. Proposition. Every minimal region r  is convex 
in the sense that w ! r  for every w  such that 
u! w! v  for some u ! r  and v ! r .  

Proof. Suppose that r  is a region of C  and 
a c b  for a,b ! r  and c ! r . Define r!  to be the 
set of u ! r  such that u c  or !u c  for some !u  that 
can be connected with u  by a side of a bicartesian 
square with the nodes of the opposite side not in r . 
Define r+  to be the set of u ! r  such that c u  or 
c !u  for some !u  that can be connected with u  by a 
side of a bicartesian square with the nodes of the 
opposite side not in r . There is no bicartesian square 
with a side connecting some u ! r  and v ! r  such that 
u c v  and with the nodes of the opposite side not 
in r  because by (A1) and (A2) it would imply c ! r . By 

(A1) and (A2) there are no bicartesian squares with 
sides connecting some !u  with u ! r  and v ! r  such 
that u c v  and with the nodes of the opposite sides 
not in r . Consequently, the sets r!  and r+  are disjoint. 
On the other hand, r  is a minimal region of C  and 
thus r ! r" # r+ . Moreover, there is no bicartesian 
square connecting an element of r!  with an element of 
r+  and with the nodes of the opposite side not in r . 
Consequently, r  cannot be a minimal region of C  as 
supposed.  

Second, minimal regions wich are not disjoint are 
incomparable with respect to the partial order . 

5.4. Proposition. If minimal regions x, y ! RC  are 
not disjoint and different then neither x y  nor y x .  

Proof. Suppose that x  and y  are different minimal 
regions of RC  such that x! y " # . Then x ! y  and 
y ! x  are nonempty and there exist u ! x " y , 
v ! y " x , and w, z ! x" y  such that u  and w  are 
adjacent nodes of a diamond U , z  and v  are adjacent 
nodes of a diamond V , and the nodes of the diamond 
W = (w! w z! z,w! w z! z)  are in x! y . 

Consider the case in which w = u !u  for some !u  
not in x  and z = v !v  for some !v  not in y . Then 
!u " y , !v " x , and the condition (1) is not satisfied for 
z! v  and the diamond (v! z" #v , v" v !v " !v ) . 
Consequently, x y  does not hold. 

Similarly, in the other possible cases we come to 
the conclusion that neither x y  nor y x .  

Third, in some information lattices all disjoint 
minimal regions are comparable with respect to the 
partial order . 

5.5. Proposition. If minimal regions x, y ! RC  are 
disjoint then either x y  or y x .  

Proof. It is impossible that u  and v  are 
incomparable for all u ! x  and v ! y  since one of the 
regions x  or y  contains u !v  or u !v . 

Suppose that u v  for u ! x  and v ! y . As x  and 
y  are disjoint and convex, it suffices to prove that 
every element of y  has a predecessor in x . Consider 
w ! y . If v w  then u w . If w v  then !u w  for 

 !u = u w  and by considering the bicartesian square 
(u! "u # w,u# "w ! w)  we obtain that !w " y  
because y  is convex. Hence !u " x . If w  and v  are 
incomparable then either v w ! y  and we may 
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replace w  by v w  and proceed as in the previous 
case, or v w ! y  and we may replace v  by 
v w ! y  and proceed as in the previous case. On the 

other hand,  u v  for u ! x  and v ! y  excludes !v !u  
for !u " x  and !v " y  since x  and y  are convex. 
Hence x y . 

Similarly, in the case v u  we obtain y x .  

One of the consequences of these observations is 
the following proposition. 

5.6. Proposition. For every d ! DC  the subset 
{d}! {r " RC : r " d}  of EC  is a maximal chain.  

A proof follows from the fact that for every maximal 
c ! C  the restrictions r | c  of r  from d  form a 
decomposition of R

c!
 into a disjoint union of minimal 

regions (see proposition 4.12). 

5.7. Proposition. For every c ! C , the subset 
Xc = {(d, r) :! EC : c ! r}  of EC  is a maximal antichain 
of EC .  

A proof follows from the fact that no minimal regions 
in Xc  are disjoint and from the fact that c  belongs to 
one minimal region of every decomposition d ! DC . 

These results can be summarized in the following 
theorem. 

5.8. Theorem. Given an information lattice 
C = (C,!) , the corresponding labelled partially ordered 
set is EC = (EC ,!C , lC ) . 

Each subset Xc = {(d, r) :! EC : c ! r}  of EC  is a 
maximal antichain of EC . 

Each subset {d}! {r " RC : r " d}  of EC  is a 
maximal chain of EC .  

Each maximal antichain of EC  can be interpreted as 
an object. Each decomposition d ! DC  can be 
interpreted as an attribute. Each minimal region r ! d  

can be interpreted as the value of the attribute d  for 
the object (d, r) . Thus we obtain the following result. 

5.9. Theorem. The labelled partially ordered set EC  
defines the information system SC , where SC = (UC ,AC )  
with UC  is the set of maximal antichains of EC , and AC  
is the set of functions a  such that  a :m! r  for every a 
maximal antichain of EC  that contains (d, r) .  

5.10. Example. For the information lattice C  in 
example 2.3 the labelled partially ordered set EC  is 
EC = (EC ,!C , lC )  with 

EC = {(A, {!, v, z, t, s}), (A, {u, x, y, p,q, }),  

(B, {!,u, v, y, z,q}), (B, {t, x, p, s, }),  

(G, {!,u, x}), (G, {v, y, z, t, p,q, s, })},  

(A, {!, v, z, t, s}) "C (A, {u, x, y, p,q, }),  

(B, {!,u, v, y, z,q}) "C (B, {t, x, p, s, }),  

(G, {!,u, x}) "C (G, {v, y, z, t, p,q, s, }),  

lC (A, r) = r  for r ! {{", v, z, t, s},{u, x, y, p,q, }},  

lC (B, r) = r  for r ! {{",u, v, y, z,q},{t, x, p, s, }},  

lC (G, r) = r  for r ! {{",u, x},{v, y, z, t, p,q, s, }},  

UC  is the set of maximal antichains of EC , 

AC  is the set of functions like m0 , where 

 m0 : !x ! {", v, z, t, s}  and  m0 : !!x ! {", v,u, y, z,q}  and 

 m0 : !!!x ! {",u, x}  for the maximal antichain that 
consists of the minimal elements !x , !!x , !!!x  of EC , and 
so on (see Figure 4).  

6. CONCLUDING REMARKS 

We have shown how an information system can be 
regarded as a set of generators of an algebraic system 
called an information lattice, and how elements of the 

 
Figure 4: 



Lattices Generated by Information Systems Journal of Advances in Management Sciences & Information Systems, 2018, Volume 4      7 

latter can be regarded as maximal antichains of a 
labelled partially ordered set which represents a 
reduced information system. 

The process of generating information lattices from 
information systems is relatively simple. It only requires 
computing the greatest lower bounds and the least 
upper bounds of partitions of the considered universe. 
Besides, intermadiate results can be exploited to 
execute it according to a strategy. For example, the 
greatest lower bound of partitions which are similar is 
similar to these partitions, and the greatest lower bound 
of partitions which are completely independent consists 
of intersections of the pairs of members of the 
argument partitions, and this can be used to control the 
choice of partitions to be combined in order to generate 
the information lattice corresponding to the given 
information system. 

Moreover, the process of generating the information 
lattice can be combined with the process of finding the  
 

regions of this lattice and constructing a reduced 
information system and its information lattice. 

Consequently, the paper contributes with a way of 
transforming an information system into another, 
usually less dimensional information system. 
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