Oxidation Behavior of Hf-Modified Aluminide Coatings on Inconel-718 at 1050°C

Authors

  • Yongqing Wang SIFCO Minneapolis, Turbine Component Services, 2430 North Winnetka Avenue, Minneapolis, MN, 55427, USA
  • Marc Suneson SIFCO Minneapolis, Turbine Component Services, 2430 North Winnetka Avenue, Minneapolis, MN, 55427, USA
  • James L. Smialek NASA Glenn Research Center, Cleveland, OH 44135, USA

DOI:

https://doi.org/10.6000/2369-3355.2014.01.01.4

Keywords:

Hafnium, aluminide coatings, oxidation testing, Inconel 718, vapor phase process

Abstract

Simple β-NiAl, Hf-modified β-NiAl, Pt-diffused, Pt-modified β-(Ni,Pt)Al + ξ-PtAl2, and Hf-Pt-modified β-(Ni,Pt)Al were cyclic oxidation tested at 1050°C in air on Inconel-718 substrates for up to 4370h. The Pt-diffused specimen failed most quickly, < 100 h, while the simple β-NiAl aluminide maintained a positive weight change for ~1300 h. The Pt-modified aluminides clearly improved the cyclic oxidation behavior of both simple and Hf-modified aluminides, sustaining a zero weight change only after 3600 and 4000 h, respectively. The Hf additions did not immediately appear to produce as strong an improvement as expected, however, they were more highly ranked when normalized by coating thickness. They also decreased surface rumpling, important for TBC durability. Hf-rich NiAl grain boundaries, formed during coating processing, resulted in HfO2 particles in the scales and oxide pegs at the metal interface, all suggesting some level of over-doping. The high sulfur content of the substrate influenced spalling to bare metal and re-healing to less protective Ni(Al,Cr)2O4 spinel-type and (Ti,Cr,Nb)O2 rutile scales. The evolution of these surface features have been documented over 100 to 4370 h of exposure. The coating aluminum content near failure was ~2-3 wt. %.

References

Hindam H, Whittle DP. Microstructure, adhesion and growth kinetics of protective scales on metals and alloys. Oxid Met 1982; 18 (5-6): 245-284. http://dx.doi.org/10.1007/BF00656571 DOI: https://doi.org/10.1007/BF00656571

Miller RA. Oxidation-based model for thermal barrier coating life. J Am Ceram Soc 1984; 67 (8) 517-521. http://dx.doi.org/10.1111/j.1151-2916.1984.tb19162.x DOI: https://doi.org/10.1111/j.1151-2916.1984.tb19162.x

DeMasi-Marcin JT, Sheffler KD, Bose S. Mechanisms of degradation and failure in a plasma-deposited thermal barrier coating. J Eng Gas Turbine Power 1990; 112 (4): 521-526. http://dx.doi.org/10.1115/1.2906198 DOI: https://doi.org/10.1115/1.2906198

Cocking JL, Richards PG, Johnston GR. Comparative durability of six coating systems on first-stage gas turbine blades in the engines of a long-range maritime patrol aircraft. Surf Coat Technol 1988; 36:37-47. http://dx.doi.org/10.1016/0257-8972(88)90134-X DOI: https://doi.org/10.1016/0257-8972(88)90134-X

Krishna GR, Das DK, Singh V, Joshi SV. Role of Pt content in the microstructural development and oxidation performance of Pt–aluminide coatings produced using a high-activity aluminizing process. Mater Sci Eng A 1988; 251: 40-47. http://dx.doi.org/10.1016/S0921-5093(98)00655-8 DOI: https://doi.org/10.1016/S0921-5093(98)00655-8

Fisher G, Chan WY, Datta PK, Burnell-Gray JS. Noble metal aluminide coatings for gas turbines. Platinum Met Rev 1999; 43(2): 59-61. DOI: https://doi.org/10.1595/003214099X4325961

Zhang Y, Haynes JA, Lee WY, Wright IG, Pint BA, Cooley KM, Liaw PK. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings. Metall Mater Trans A 2001; 32: 1727-1741. http://dx.doi.org/10.1007/s11661-001-0150-6 DOI: https://doi.org/10.1007/s11661-001-0150-6

Haynes JA, Pint BA, Zhang Y, Wright IG. The effect of Pt content on γ–γ′ NiPtAl coatings. Surf Coat Technol 2008; 203 (5-7): 413-416. http://dx.doi.org/10.1016/j.surfcoat.2008.08.063 DOI: https://doi.org/10.1016/j.surfcoat.2008.08.063

Reed RC, Wu RT, Hook MS, Rae CMF, Wing RG. On oxidation behaviour of platinum aluminide coated nickel based superalloy CMSX-4. Mater Sci Technol 2009; 25 (2): 276-286. http://dx.doi.org/10.1179/174328408X361481 DOI: https://doi.org/10.1179/174328408X361481

Warnes BM, Punola DC. Clean diffusion coatings by chemical vapor deposition. Surf Coat Technol 1997; 94-95: 1-6. http://dx.doi.org/10.1016/S0257-8972(97)00467-2 DOI: https://doi.org/10.1016/S0257-8972(97)00467-2

Hou PY. Segregation phenomena at thermally grown Al2O3/alloy interfaces. Annu Rev Mater Res 2008; 38: 275-298. http://dx.doi.org/10.1146/annurev.matsci.38.060407.130323 DOI: https://doi.org/10.1146/annurev.matsci.38.060407.130323

Gheno T, Monceau D, Oquab D, Cadoret Y. Characterization of sulfur distribution in Ni-based superalloy and thermal barrier coatings after high temperature oxidation: A SIMS analysis. Oxid Met 2010; 73 (1-2): 95-113. http://dx.doi.org/10.1007/s11085-009-9164-z DOI: https://doi.org/10.1007/s11085-009-9164-z

Gleeson B, Wang W, Hayashi S, Sordelet D. Effects of platinum on the interdiffusion and oxidation behavior of Ni-Al-based alloys. Mater Sci Forum 2004; 461-464: 213-222. http://dx.doi.org/10.4028/www.scientific.net/MSF.461-464.213 DOI: https://doi.org/10.4028/www.scientific.net/MSF.461-464.213

Copland E. Thermodynamic effect of platinum addition to β-NiAl: An initial investigation. NASA/CR-2005-213330, NASA, Cleveland, OH, 2005, pp1-28.

Gleeson B, Mu N, Hayashi S. Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni-Al-Pt systems. J Mater Sci 2009; 44 (7): 1704-1710. http://dx.doi.org/10.1007/s10853-009-3251-z DOI: https://doi.org/10.1007/s10853-009-3251-z

Zhang Y, Haynes JA, Pint BA, Wright IG, Lee WY. Martensitic transformation in CVD NiAl and (Ni,Pt)Al bond coatings, Surf Coat Technol 2003; 163 –164: 19-24. DOI: https://doi.org/10.1016/S0257-8972(02)00585-6

Chen MW, Ott RT, Hufnagel TC, Wright PK, Hemker KJ. Microstructural evolution of platinum modified nickel aluminide bond coat during thermal cycling. Surf Coat Technol 2003; 163 –164: 25-30. DOI: https://doi.org/10.1016/S0257-8972(02)00591-1

Tolpygo VK, Clarke DR. Surface rumpling of a (Ni,Pt)Al bond coat induced by cyclic oxidation. Acta Mater 2000; 48: 3283-3293. http://dx.doi.org/10.1016/S1359-6454(00)00156-7 DOI: https://doi.org/10.1016/S1359-6454(00)00156-7

Mumm DR, Evans AG, Spitsberg IT. Characterization of a cyclic displacement instability for a thermally growth oxide in a thermal barrier system. Acta Mater 2001; 49: 2329-2340. http://dx.doi.org/10.1016/S1359-6454(01)00071-4 DOI: https://doi.org/10.1016/S1359-6454(01)00071-4

Stringer J, Allam M, Whittle DP. The high temperature oxidation of Co-Cr-Al alloys containing yttrium or hafnium additions. Thin Solid Films 1977; 45:377-384. http://dx.doi.org/10.1016/0040-6090(77)90273-5 DOI: https://doi.org/10.1016/0040-6090(77)90273-5

Allam IM, Whittle DP, Stringer J. The oxidation behavior of CoCrAI systems containing active element additions. Oxid Met 1978; 12 (1) 35-66. http://dx.doi.org/10.1007/BF00609974 DOI: https://doi.org/10.1007/BF00609974

Allam IM, Whittle DP, Stringer J. Improvements in oxidation resistance by dispersed oxide addition: Al2O3-forming alloys. Oxid Met 1979; 13 (4) 381-401. http://dx.doi.org/10.1007/BF00609306 DOI: https://doi.org/10.1007/BF00609306

Pendse R, Stringer J. The influence of alloy microstructure on the oxide peg morphologies in a Co-10% Cr-11%Al alloy with and without reactive element additions. Oxid Met 1985; 23 (1-2): 1-16. http://dx.doi.org/10.1007/BF01095804 DOI: https://doi.org/10.1007/BF01095804

Khanna AS, Wasserfuhr C, Quadakkers WJ, Nickel H. Addition of yttrium, cerium and hafnium to combat the deleterious effect of sulphur impurity during oxidation of a Ni---Cr---Al alloy. Mater Sci Eng A 1989; 120: 185-191. http://dx.doi.org/10.1016/0921-5093(89)90738-7 DOI: https://doi.org/10.1016/0921-5093(89)90738-7

Pint PA, Wright IG, Lee WY, Zhang Y, Prüßner K, Alexander KB. Substrate and bond coat compositions: factors affecting alumina scale adhesion. Mater Sci Eng A 1998; 245: 201-211. http://dx.doi.org/10.1016/S0921-5093(97)00851-4 DOI: https://doi.org/10.1016/S0921-5093(97)00851-4

Pint BA, Haynes JA, More KL, Wright IG, Leyens C. Compositional effects on aluminide oxidation performance: objectives for improved bond coats. In: Pollock TM, Kissinger RD, Bowman RR, Green KA, McLean M, Olson S, Schirra JJ, editors. Superalloys 2000, TMS (7th Minerals, Metals & Materials Society); 2000: p. 629-638. DOI: https://doi.org/10.7449/2000/Superalloys_2000_629_638

Leyens C, Pint BA, Wright IG. Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals. Surf Coat Technol 2000; 133-134: 15-22. http://dx.doi.org/10.1016/S0257-8972(00)00878-1 DOI: https://doi.org/10.1016/S0257-8972(00)00878-1

Haynes JA, Pint PA, More KL, Zhang Y, Wright IG. Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings. Oxid Met 2002; 58 (5-6): 513-544. http://dx.doi.org/10.1023/A:1020525123056 DOI: https://doi.org/10.1023/A:1020525123056

Pint BA, More KL, Wright IG. Effect of quaternary additions on the oxidation behavior of Hf-doped NiAl. Oxid Met 2003; 59 (3-4): 257-283. http://dx.doi.org/10.1023/A:1023087926788 DOI: https://doi.org/10.1023/A:1023087926788

Pint BA. The role of chemical composition on the oxidation performance of aluminide coatings. Surf Coat Technol 2004; 188–189: 71-78. http://dx.doi.org/10.1016/j.surfcoat.2004.08.007 DOI: https://doi.org/10.1016/j.surfcoat.2004.08.007

Pint BA, Haynes JA, Besmann TM. Effect of Hf and Y alloy additions on aluminide coating performance. Surf Coat Technol 2010; 204: 3287-3293. http://dx.doi.org/10.1016/j.surfcoat.2010.03.040 DOI: https://doi.org/10.1016/j.surfcoat.2010.03.040

Izumi T, Mu N, Zhang L, Gleeson B. Effects of targeted γ-Ni+γ′-Ni3Al-based coating compositions on oxidation behavior. Surf Coat Technol 2007; 202: 628-631. http://dx.doi.org/10.1016/j.surfcoat.2007.08.014 DOI: https://doi.org/10.1016/j.surfcoat.2007.08.014

Pint BA. Optimization of reactive-element additions to improve oxidation performance of alumina-forming alloys. J Am Ceram Soc 2003; 86 (4): 686-695. http://dx.doi.org/10.1111/j.1151-2916.2003.tb03358.x DOI: https://doi.org/10.1111/j.1151-2916.2003.tb03358.x

Pint BA, Schneibel JH. The effect of carbon and reactive element dopants on oxidation lifetime of FeAl. Scripta Mater 2005; 52:1199-1204. http://dx.doi.org/10.1016/j.scriptamat.2005.03.008 DOI: https://doi.org/10.1016/j.scriptamat.2005.03.008

Gupta DK, Duvall DS. A silicon and hafnium modified plasma sprayed MCrAlY coating for single crystal superalloys. In: Gell M, Kortovich CS, Bricknell RH, Kent WB, Radavich JF, editors. Superalloys 1984, TMS, Warrendale, PA;1984: p. 711-720. http://dx.doi.org/10.7449/1984/Superalloys_1984_711_720 DOI: https://doi.org/10.7449/1984/Superalloys_1984_711_720

Whittle DP, Stringer J. Improvement in properties: additives in oxidation resistance. Phil. Trans. R. Soc. Lond. A 1980; 295: 309-329. http://dx.doi.org/10.1098/rsta.1980.0124 DOI: https://doi.org/10.1098/rsta.1980.0124

Meier GH. Research on oxidation and embrittlement of intermetallic compounds in the U.S. Mater Corros 1996; 47: 595-618. DOI: https://doi.org/10.1002/maco.19960471104

Stringer J. The reactive element effect in high-temperature corrosion. Mater Sci Eng A 1989; 120-121: 129-137. http://dx.doi.org/10.1016/0921-5093(89)90730-2 DOI: https://doi.org/10.1016/0921-5093(89)90730-2

Pint BA. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met 1996; 45 (1-2): 1-37. http://dx.doi.org/10.1007/BF01046818 DOI: https://doi.org/10.1007/BF01046818

Smialek JL, Lowell CE. Effects of diffusion on aluminum depletion and degradation of NiAI coatings. J Electrochem Soc 1974; 121 (6): 800-805. http://dx.doi.org/10.1149/1.2401922 DOI: https://doi.org/10.1149/1.2401922

Zhang Y, Stacy JP, Pint BA, Haynes JA, Hazel BT, Nagaraj BA. Interdiffusion behavior of Pt-diffused γ+γ′ coatings on Ni-based superalloys. Surf Coat Technol 2008; 203: 417-421. http://dx.doi.org/10.1016/j.surfcoat.2008.08.053 DOI: https://doi.org/10.1016/j.surfcoat.2008.08.053

Tolpygo VK, Murphy KS, Clarke DR. Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings. Acta Mater 2008; 56: 489-499. http://dx.doi.org/10.1016/j.actamat.2007.10.006 DOI: https://doi.org/10.1016/j.actamat.2007.10.006

Muamba JMN, Streiff R, Boone DH. L'Influence du Hafnium du Substrat sur la R6sistance a l'Oxydation des Rev6tements d'Aluminiures sur les Superalliages Base Nickel* (oxidation of Hf modified substrate). Mater Sci Eng 1987; 88: 111-121. http://dx.doi.org/10.1016/0025-5416(87)90074-7 DOI: https://doi.org/10.1016/0025-5416(87)90074-7

Streiff R, Muamba JMN. Mechanisms of the hafnium effect in high-temperature oxidation of aluminide coatings. JOM 1988; 40 (11): 104.

Warnes BM. Reactive element modified chemical vapor deposition low activity platinum aluminide coatings. Surf Coat Technol 2001; 146-147: 7-12. http://dx.doi.org/10.1016/S0257-8972(01)01363-9 DOI: https://doi.org/10.1016/S0257-8972(01)01363-9

Kim GY, He LM, Meyer JD, Quintero A, Haynes JA, Lee WY. Mechanisms of Hf dopant incorporation during the early stage of chemical vapor deposition aluminide coating growth under continuous doping conditions. Metall Mater Trans A 2004; 35:3581-3593. http://dx.doi.org/10.1007/s11661-004-0194-5 DOI: https://doi.org/10.1007/s11661-004-0194-5

Haynes JA, Zhang Y, Cooley KM, Walker L, Reeves KS, Pint BA. High-temperature diffusion barriers for protective coatings. Surf Coat Technol 2004; 188–189: 153-157. http://dx.doi.org/10.1016/j.surfcoat.2004.08.066 DOI: https://doi.org/10.1016/j.surfcoat.2004.08.066

Ford S, Kartono R, Young R. Oxidation resistance of Pt-modified γ/γ′ Ni-Al at 1150 °C. Surf Coat Technol 2010; 204: 2051-2054. http://dx.doi.org/10.1016/j.surfcoat.2009.08.027 DOI: https://doi.org/10.1016/j.surfcoat.2009.08.027

Murphy KS, inventor; Howmet Corporation, assignee. Pt-Al-Hf/Zr Coating and Method. U.S. Patent Application, 2010/0297471 A1, Nov. 25, 2010.

Hazel B, Rigney J, Gorman M, Boutwell B, Darolia R. Development of improved bond coat for enhanced turbine durability. In: Reed RC, Green KA, Caron P, Gabb TP, Fahrmann MG, Huron ES, Woodard SA, editors. Superalloys 2008, TMS, Champion, PA; 2008: p.753-760. http://dx.doi.org/10.7449/2008/Superalloys_2008_753_760 DOI: https://doi.org/10.7449/2008/Superalloys_2008_753_760

Wang YQ, Suneson M, Sayre G. Synthesis of Hf-modified aluminide coatings on Ni-base superalloys. Surf Coat Technol 2011; 206: 1218-1228. http://dx.doi.org/10.1016/j.surfcoat.2011.08.031 DOI: https://doi.org/10.1016/j.surfcoat.2011.08.031

Wang YQ, Sayre G. Factors affecting the microstructure of platinum-modified aluminide coatings during a vapor phase aluminizing process. Surf Coat Technol 2009; 203: 1264-1272. http://dx.doi.org/10.1016/j.surfcoat.2008.10.031 DOI: https://doi.org/10.1016/j.surfcoat.2008.10.031

Zhang Y, Wang YQ. Effect of Hf additions on aluminide coatings and oxidation performance, unpublished research experimental data – partial data were included in Wang YQ’s Ph.D. Dissertation, 2006.

Smialek JL. Effect of sulfur removal on AI2O3 scale adhesion. Metall Trans A 1991; 22: 739-752. http://dx.doi.org/10.1007/BF02670297 DOI: https://doi.org/10.1007/BF02670297

Meier GH, Pettit FS, Smialek JL. The effects of reactive element additions and sulfur removal on the adherence of alumina to Ni- and Fe-base alloys. Mater Corros 1995; 46: 232-240. http://dx.doi.org/10.1002/maco.19950460407 DOI: https://doi.org/10.1002/maco.19950460407

Pieraggi B. Calculations of parabolic reaction rate constants. Oxid Met 1987; 27 (3-4): 177-185. http://dx.doi.org/10.1007/BF00667057 DOI: https://doi.org/10.1007/BF00667057

Rybicki GC, Smialek JL. Effect of the θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl + Zr. Oxid Met 1989; 31 (3-4): 275-304. http://dx.doi.org/10.1007/BF00846690 DOI: https://doi.org/10.1007/BF00846690

Graham HC, Davis HH. Oxidation/vaporization kinetics of Cr2O3. J Am Ceram Soc 1971; 54: 89-93. http://dx.doi.org/10.1111/j.1151-2916.1971.tb12225.x DOI: https://doi.org/10.1111/j.1151-2916.1971.tb12225.x

Tedmon CS, Jr. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys. J Electrochem Soc 1966; 113 (8): 766-768. http://dx.doi.org/10.1149/1.2424115 DOI: https://doi.org/10.1149/1.2424115

Pint BA. Progress in understanding the reactive element effect since the Whittle and Stringer literature review. In: Tortorelli PF, Wright IG, Hou PY, editors. Proc. John Stringer Symposium on High Temperature Corrosion. ASM International, Materials Park, OH, 2003:p. 9–19.

Ribaudo C, Sircar S, Mazumder J. Laser-clad Ni70Al20Cr7Hf3 alloys with extended solid solution of Hf: Part II. Oxidation behavior. Metall Mater Trans A 1989; 20: 2489-2497. http://dx.doi.org/10.1007/BF02666684 DOI: https://doi.org/10.1007/BF02666684

Grabke HJ. Segregation and oxidation. Materiali In Tehnologije 2006;40: 39-47.

Hindam H, Whittle DP. Peg formation by short-circuit diffusion in AI2O3 scales containing oxide dispersions. J Electrochem Soc 1982; 129 (5): 1147-1149. http://dx.doi.org/10.1149/1.2124044 DOI: https://doi.org/10.1149/1.2124044

Lee WY, Zhang Y, Wright IG, Pint BA, Liaw PK. Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition. Metall Mater Trans A 1998; 29: 833-841. http://dx.doi.org/10.1007/s11661-998-0274-z DOI: https://doi.org/10.1007/s11661-998-0274-z

Mialek JL, Garg A. A compendium of scale surface microstructures: Ni(Pt)Al coatings oxidized at 1150°C for 2000 1-hr cycles. NASA/TM—2010-216091, NASA, Washington, D.C., Feb.5, 2010.

Göbel M, Rahmel A, Schütze M. The isothermal-oxidation behavior of several nickel-base single-crystal superalloys with and without coatings. Oxid Met 1993; 39 (3-4): 231-261. http://dx.doi.org/10.1007/BF00665614 DOI: https://doi.org/10.1007/BF00665614

Tolpygo VK, Clarke DR. On the rumpling mechanism in nickel-aluminide coatings Part I: an experimental assessment. Acta Mater 2004; 52: 5115-5127. http://dx.doi.org/10.1016/j.actamat.2004.07.023 DOI: https://doi.org/10.1016/j.actamat.2004.07.019

Tolpygo VK, Clarke DR. On the rumpling mechanism in nickel-aluminide coatings Part II: characterization of surface undulations and bond coat swelling. Acta Mater 2004; 52: 5129-5141. http://dx.doi.org/10.1016/j.actamat.2004.07.023 DOI: https://doi.org/10.1016/S1359-6454(04)00432-X

Tolpygo VK, Clarke DR. Rumpling of CVD (Ni,Pt)Al diffusion coatings under intermediate temperature cycling. Surf Coat Technol 2009; 203: 3278-3285. http://dx.doi.org/10.1016/j.surfcoat.2009.04.016 DOI: https://doi.org/10.1016/j.surfcoat.2009.04.016

Locci IE, Dickerson R, Bowman R, Whittenberger JD, Nathal MV, Darolia R. Microstructure and mechanical properties of cast, homogenized and aged NiAl single crystal containing Hf. In Baker I, Darolia R, Whittenberger JD, Yoo MH, editors. High-Temperature Ordered Intermetallic Alloys V; Mater. Res. Soc. Symp. Proc. 288; Pittsburgh, PA 1993; 288: 685-690. DOI: https://doi.org/10.1557/PROC-288-685

Noebe R, Bowman R. Review of the physical and mechanical properties and potential applications of the compound NiAl. International Mater Rev 1993; 38: 193-232. http://dx.doi.org/10.1179/imr.1993.38.4.193 DOI: https://doi.org/10.1179/095066093790326276

Downloads

Published

2014-06-24

How to Cite

Wang, Y., Suneson, M., & Smialek, J. L. (2014). Oxidation Behavior of Hf-Modified Aluminide Coatings on Inconel-718 at 1050°C. Journal of Coating Science and Technology, 1(1), 25–45. https://doi.org/10.6000/2369-3355.2014.01.01.4

Issue

Section

Articles