Chiral Polyurea with L-Lysinyl Residue Aimed for Optical Resolution

Authors

  • Makoto Hatanaka Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
  • Yuki Nishioka Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
  • Masakazu Yoshikawa Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan

DOI:

https://doi.org/10.6000/1929-6037.2013.02.02.1

Keywords:

Chiral Separation, Membrane, Molecular Imprinting, Optical Resolution, Polyurea

Abstract

Novel polyurea was synthesized from lysinyl residue, L-lysine-4-nitroanilide (L-Lys-4-NA) and 1,4-phenylene diisocyanate (1,4-PDI). The polyurea thus prepared gave durable self-standing membranes. The polyurea was converted into molecular recognition materials by using Z-D-Glu or Z-L-Glu as a print molecule. The Z-D-Glu molecularly imprinted membrane adsorbed the D-isomer of Glu in preference to the corresponding L-isomer and vice versa. Even though the polyurea consisted of L-lysinyl residue, both Z-D-Glu and Z-L-Glu worked as print molecules to construct molecular (chiral) recognition sites in the membrane. Those two types of molecularly imprinted membrane show chiral separation abilities, adopting a concentration gradient or an applied potential difference as a driving force for membrane transport.

References

Maier NM, Franco P, Lindner W. Separation of enantiomers: needs, challenges, perspectives. J Chromato A 2001; 906: 3-33. http://dx.doi.org/10.1016/S0021-9673(00)00532-X DOI: https://doi.org/10.1016/S0021-9673(00)00532-X

Afonso CAM, Crespo JG. Recent Advances in Chiral Resolution through Membrane-Based Approaches. Angew Chem Int Ed 2004; 43: 5293-5. http://dx.doi.org/10.1002/anie.200460037 DOI: https://doi.org/10.1002/anie.200460037

Maier NM, Lindner W. Chiral recognition applications of molecularly imprinted polymers: a critical review. Anal Bioanal Chem 2007; 389: 377-97. http://dx.doi.org/10.1007/s00216-007-1427-4 DOI: https://doi.org/10.1007/s00216-007-1427-4

Xie R, Chu L-Y, Deng J-G. Membranes and membrane processes for chiral resolution. Chem Soc Rev; 2008; 37: 1243-63. http://dx.doi.org/10.1039/b713350b DOI: https://doi.org/10.1039/b713350b

Higuchi A, Tamai. M, Ko, Y-A, Tagawa Y, Wu Y-H, Freeman BD, Bing J-T, Chang Y, Ling Q-D. Polymeric Membranes for Chiral Separation of Pharmaceuticals and Chemicals. Polym Rev 2010; 50: 113-43. http://dx.doi.org/10.1080/15583721003698853 DOI: https://doi.org/10.1080/15583721003698853

Yoshikawa M, Izumi J, Kitao T, Sakamoto S. Molecularly Imprinted Polymeric Membranes Containing DIDE Derivatives for Optical Resolution of Amino Acids. Macromolecules 1996; 29: 8197-203. http://dx.doi.org/10.1021/ma951716v DOI: https://doi.org/10.1021/ma951716v

Kondo Y, Yoshikawa M, Okushita H. Molecularly imprinted polyamide membranes for chital recognition. Polym Bull 2000; 44 517-24. DOI: https://doi.org/10.1007/s002890070073

Yoshikawa M, Izumi J. Chiral Recognition Sites Converted from Tetrapeptide Derivatives Adopting Racemates as Print Molecules. Macromol Biosci 2003; 3: 487-98. http://dx.doi.org/10.1002/mabi.200350016 DOI: https://doi.org/10.1002/mabi.200350016

Yoshikawa M, Nakai K, Matsumoto H, Tanioka, Guiver MD, Robertson GP. Molecularly Imprinted Nanofiber Membranes from Carboxylated Polysulfone by Electrospray Deposition. Macromol Rapid Commun 2007; 28: 2100-5. http://dx.doi.org/10.1002/marc.200700359 DOI: https://doi.org/10.1002/marc.200700359

Sueyoshi Y, Fukushima C, Yoshikawa M. Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membr Sci 2010; 357: 90-7. http://dx.doi.org/10.1016/j.memsci.2010.04.005 DOI: https://doi.org/10.1016/j.memsci.2010.04.005

Yoshikawa M, Tanioka A, Matsumoto H. Molecularly imprinted nanofiber membranes. Curr Opin Chem Eng 2011; 1: 18-26. DOI: https://doi.org/10.1016/j.coche.2011.07.003

Sueyoshi Y, Utsunomiya A, Yoshikawa M, Robertson GP, Guiver MD. Chiral separation with molecularly imprinted polysulfone-aldehyde derivatized nanofiber membranes. J Membr Sci 2012; 401-402: 89-96. http://dx.doi.org/10.1016/j.memsci.2012.01.033 DOI: https://doi.org/10.1016/j.memsci.2012.01.033

Ikeuchi Y, Nakagawa M, Yoshikawa M, Yoshida H, Sakurai S. Chiral polyamides consisting of N-α-benzoyl-L-glutamic acid as a diacid component. J Polym Sci: Part A: Polym Chem 2009; 47: 2530-8. http://dx.doi.org/10.1002/pola.23335 DOI: https://doi.org/10.1002/pola.23335

Nakagawa M, Ikeuchi Y, Yoshikawa M, Yoshida H, Sakurai S. Optical resolution of racemic amino acid derivatives with chiral polyamides bearing glutamyl residue as a diacid component. J Appl Polym Sci 2012; 123: 857-65. http://dx.doi.org/10.1002/app.34524 DOI: https://doi.org/10.1002/app.34524

Mizushima H, Yoshikawa M, Robertson GP, Guiver MD. Optical Resolution Membranes from Polysulfones Bearing Alanine Derivatives as Chiral Selectors. Macromol Mater Eng 2011; 296: 562-67. http://dx.doi.org/10.1002/mame.201000396 DOI: https://doi.org/10.1002/mame.201000396

Mizushima H, Yoshikawa M, Li NW, Robertson GP, Guiver MD. Electrospun nanofiber membranes from polysulfones with chiral selector aimed for optical resolution. Eur Polym J 2012; 48: 1717-25. http://dx.doi.org/10.1016/j.eurpolymj.2012.07.003 DOI: https://doi.org/10.1016/j.eurpolymj.2012.07.003

Isezaki J, Yoshikawa M, Li NW, Robertson GP, Guiver MD. Polysulfones with Phenylalanine Derivatives as Chiral

Selectors – Membranes for Chiral Separation. J Membr Sep Technol 2012; 1: 1-8. http://dx.doi.org/10.6000/1929-6037.2012.01.01.1 DOI: https://doi.org/10.6000/1929-6037.2012.01.01.1

Hatanaka M, Nishioka Y, Yoshikawa M. Polyurea With L-Lysinyl Residues as Components: Application to Membrane Separation of Enantiomers. Macromol Chem Phys 2011; 212: 1351-9. http://dx.doi.org/10.1002/macp.201100054 DOI: https://doi.org/10.1002/macp.201100054

Hatanaka M, Nishioka Y, Yoshikawa M. Polyurea Bearing L-Lysinyl Residue as a Chiral Building Block and Its Application to Optical Resolution. J Mater Sci Res 2012; 1 (4): 114-22. http://dx.doi.org/10.5539/jmsr.v1n4p114 DOI: https://doi.org/10.5539/jmsr.v1n4p114

Hatanaka M, Nishioka Y, Yoshikawa M. Chiral separation with polyurea membrane consisting of L-lysinyl residue: Proposal of facile method for prediction of permselectivity. J Appl Polym Sci 2013; 128: 123-31. http://dx.doi.org/10.1002/app.38141 DOI: https://doi.org/10.1002/app.38141

Yeganeh H, Tamami B, Ghazi I. A novel direct method for preparation of aromatic polyimides via microwave-assisted polycondensation of aromatic dianhydrides and diisocyanates. Eur Polym J 2004; 40: 2059-64. http://dx.doi.org/10.1016/j.eurpolymj.2004.05.022 DOI: https://doi.org/10.1016/j.eurpolymj.2004.05.022

Riddick JA, Bunger WB, Sakano TL. Organic solvents. 4th edition, New York: Wiley; 1986.

Silverstein RM, Webster FX. Spectrometric Identification of Organic Compounds. 6th ed. New York: Wiley; 1998.

Stevens MP. Polymer Chemistry. 2nd ed. New York: Wiley; 1990.

Feldman D, Barbalata A. Synthetic polymers. London: Chapman & Hall; 1996.

Walton DJ, Lorimer JP. Polymer. Oxford] Oxford University Press; 2000.

Piletsky SA, Panasyuk TL, Piletskaya EV, Nicbolls LA, Ulbricht M. Receptor and transport properties of imprinted polymer membranes – a review. J Membr Sci 1999; 157: 263-78. http://dx.doi.org/10.1016/S0376-7388(99)00007-1 DOI: https://doi.org/10.1016/S0376-7388(99)00007-1

Haupt K, Mosbach K. Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chem Rev 2000; 100: 2495-504. http://dx.doi.org/10.1021/cr990099w DOI: https://doi.org/10.1021/cr990099w

Sellergren B, Ed., Moleculraly imprinted polymers, Man-made mimics of antibodies and their applications in analytical chemistry. Amsterdam; Elsevier: 2001.

Wulff G. Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chem Rev 2002; 102: 1-28. http://dx.doi.org/10.1021/cr980039a DOI: https://doi.org/10.1021/cr980039a

Ulbricht M. Membrane separations using molecularly imprinted polymers. J Chromato B 2004; 804: 113-25. http://dx.doi.org/10.1016/j.jchromb.2004.02.007 DOI: https://doi.org/10.1016/j.jchromb.2004.02.007

Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, Whitcombe MJ. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recog 2006; 19: 106-80. http://dx.doi.org/10.1002/jmr.760 DOI: https://doi.org/10.1002/jmr.760

Yoshikawa M. Molecularly imprinted polymeric membranes. Bioseparation 2001; 10: 277-86. DOI: https://doi.org/10.1023/A:1021537602663

Yoshikawa M, Izumi J, Ooi T, Kitao T, Guiver MD, Robertson GP. Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique. Polym Bull 1998; 40: 517-24. http://link.springer.com/content/pdf/10.1007%2Fs002890050285 DOI: https://doi.org/10.1007/s002890050285

Kakuchi T, Takaoka Yokota T. Polymeric Chiral Crown Ethers VI. Optical Resolution of α-Amino Acid by Polymers Incorporating 1,3;4,6-Di-O-benzylidene-D-mannitol Residues. Polym J 1990; 22: 199-205. http://dx.doi.org/10.1295/polymj.22.199 DOI: https://doi.org/10.1295/polymj.22.199

Masawaki T, Sasai M, Tone S. Optical Resolution of an Amino Acid by an Enantio Selective Ultrafiltration Membrane. J Chem Eng Jpn 1992; 25: 33-39. http://dx.doi.org/10.1252/jcej.25.33 DOI: https://doi.org/10.1252/jcej.25.33

Aoki T, Tomizawa S, Oikawa E. Enantioselective permeation through poly{γ-[3(pentamethyldisiloxyanyl)propyl]-L-glutamate} membranes. J Membr Sci 1995; 99: 117-25. DOI: https://doi.org/10.1016/0376-7388(94)00199-9

Tone S, Masawaki T, Eguchi K. The optical resolution of amino acids by plasma polymerized terpene membranes. J Membr Sci 1996; 118: 31-40. http://dx.doi.org/10.1016/0376-7388(96)00071-3 DOI: https://doi.org/10.1016/0376-7388(96)00071-3

Downloads

Published

2013-05-31

How to Cite

Hatanaka, M., Nishioka, Y., & Yoshikawa, M. (2013). Chiral Polyurea with L-Lysinyl Residue Aimed for Optical Resolution. Journal of Membrane and Separation Technology, 2(2), 109–119. https://doi.org/10.6000/1929-6037.2013.02.02.1

Issue

Section

Articles