Removal of Metal Ions from Aqueous Solutions by Complexation –Ultrafiltration Hybrid Process: A Bibliographical Overview

Authors

  • Scheherazade Mimoune Ecole Préparatoire Sciences and Technics, BP474, Place des Martyrs, Algiers, Algeria
  • Rafik Eddine Belazzougui Ecole Préparatoire Sciences and Technics, BP474, Place des Martyrs, Algiers, Algeria
  • Ahmed Benaboura Laboratory of Macromolecular and Thioorganic Macromolecular Synthesis, Faculty of Chemistry, USTHB, BP32 El Alia 16111, Algiers, Algeria

DOI:

https://doi.org/10.6000/1929-6037.2014.03.03.4

Keywords:

Ultrafiltration, complexation, hydrosoluble polymers, metal ions, macromolecular complex.

Abstract

Water pollution by metal ions contaminants is a worldwide alarming problem. Clean and safe water is becoming in the same time an increasing scare resource. Thus, to keep this fundamental resource available and suitable for use, water treatment methods are investigated by means of numerous research studies since the purification of water and its re-use and, in a larger scale, the environmental protection will be essential henceforth in any strategy of development.

Membrane processes, in general, and ultrafiltration, in particular, develop, without stopping, since the beginning of the sixties to meet the vital need for environmental safety which justifies the policies of durable development adopted today all over the world. Thanks to its growing, ultrafiltration becomes an irreplaceable weapon in the control of pollution. It is classified as a soft and clean technology since it needs low energy consumption and ensures a notable reduction in pollution production during the treatment step.

Ultrafiltration is a pressure driven membrane process with the ability to separate molecules in solution on the basis of size. A microporous ultfafiltration membrane retains species with molecular weight higher than its cut off, while small molecules as solvents and microsolutes can pass freely through it. Thus, metal ions aren’t rejected by ultrafiters. However, ultrafiltration can be used to remove metal ions from aqueous solutions by coupling the process with complexation. Indeed, the complexation of metal ions using water soluble polymers as substrates is able to expand artificially the size of the metallic species so as to make possible their rejection by the microporous ultrafilters.

The complexation –ultrafiltration hybrid process was first suggested at the end of the sixties by A. S. Michaels. Since then, many studies have shown its effectiveness in the treatment of aqueous solutions containing metal ions.

This paper gives an overview of academic studies that illustrate and demonstrate the efficiency and the promising of the hybrid process in the purification of water from metal ions contaminants beforehand sequestered by adequate water –soluble macromolecular substrates.

References

Woodard F. Industrial Waste Treatment Handbook, Butterworth-Heinemann, Boston 2001.

Cheremisinoff NP. Handbook of Water and Wastewater Treatment Technologies, Butterworth-Heinemann, Boston 2002. DOI: https://doi.org/10.1016/B978-075067498-0/50014-0

Judd S, Jefferson B. Membranes for Industrial Wastewater Recovery and Re-use, Elsevier Ltd., Oxford 2003.

Water and Wastewater Treatment Technologies: Global Markets. Report Code: ENV008C November 2013.

Cheryan M. Ultrafiltration Handbook, Technomic Pub.Co., 1986.

Brun JP. Procédés de séparation par membranes, Masson eds., Paris 1989.

Ferry JD. Ultrafilter membranes and ultrafiltration. Chem Revs 18: 1936; 373-455. http://dx.doi.org/10.1021/cr60061a001 DOI: https://doi.org/10.1021/cr60061a001

Ducleaux J. Ultrafiltration, Leçons de Chimie Physique Appliquée à la Biologie, Hermann et Cie Ed., Paris 1946.

Strathmann H. Membrane separation processes J Memb Sci 1981; 9: 121-189. http://dx.doi.org/10.1016/S0376-7388(00)85121-2 DOI: https://doi.org/10.1016/S0376-7388(00)85121-2

Audinos R. Les Membranes Artificielles, PUF, Collection “Que Sais-Je ?”, n°2096, Paris 1983.

Michaels AS. New Separation Technique for the CPI. Chem Eng Prog 1968; 64: 31-43.

Michaels AS. Ultrafiltration in Advances in separation and purification, Perry ES, Ed., John Wiley & Sons, New York 1968.

Loeb S, Sourirajan S. Sea Water Demineralization by Means of an Osmotic Membrane, in Saline Water Conversion–II Adv Chem Ser 1962; 38: 117-132. http://dx.doi.org/10.1021/ba-1963-0038.ch009 DOI: https://doi.org/10.1021/ba-1963-0038.ch009

Baker RW. Membrane Technology and Applications, Second Edition, John Wiley & Sons Ltd, Chichester 2004. http://dx.doi.org/10.1002/0470020393 DOI: https://doi.org/10.1002/0470020393

Tabatabai A, Scamehorn JF, Christian SD. Economic feasibility study of polyelectrolyte-enhanced ultrafiltration (PEUF) for water softening J Membr Sci 1995; 100: 193-207. http://dx.doi.org/10.1016/0376-7388(94)00220-S DOI: https://doi.org/10.1016/0376-7388(94)00220-S

Korus I, Bodzek M, Loska K. Removal of zinc and nickel ions from aqueous solutions by means of the hybrid complexation–ultrafiltration process Separation & Purification Techn 1999; 17: 111-116. http://dx.doi.org/10.1016/S1383-5866(99)00033-7 DOI: https://doi.org/10.1016/S1383-5866(99)00033-7

Strathmann H. Selective removal of heavy metal ions from aqueous solutions by diafiltration of macromolecular complexes. Sep Sci Techn 1980; 15: 1135-1152. http://dx.doi.org/10.1080/01496398008076291 DOI: https://doi.org/10.1080/01496398008076291

Nguyen QT, Jyline Y, Neel J. Concentration of cupric and nickel ions by complexation-ultrafiltration. Synergic effect of succinic acid. Desalination 1981; 36: 277-283. http://dx.doi.org/10.1016/S0011-9164(00)88644-0 DOI: https://doi.org/10.1016/S0011-9164(00)88644-0

Rumeau M, Persin F, Sciers V, Persin M, Sarrazin J. Separation by coupling ultrafiltration and complexation of metallic species with industrial water soluble polymers. Application for removal or concentration of metallic cations. J Memb Sci 1992; 73: 313-322. http://dx.doi.org/10.1016/0376-7388(92)80138-A DOI: https://doi.org/10.1016/0376-7388(92)80138-A

Volchek K, Krentsel E, Zhilin Yu, Shtereva G, Dytnersky Yu. Polymer binding / ultrafiltration as a method for concentration and separation of metals. J Membr Sci 1993; 79: 253-272. http://dx.doi.org/10.1016/0376-7388(93)85120-L DOI: https://doi.org/10.1016/0376-7388(93)85120-L

Gillard RD. Coordination Compounds in Encyclopedia of Physical Science and Technology, Third Edition, Inorganique Chemistry, Academic Press, New York 2002. DOI: https://doi.org/10.1016/B0-12-227410-5/00147-2

Nguyen QT. ultrafiltration des solutions macromoléculaires. Procédé de fractionnement associant l’ultrafiltration, Doctorat thesis, Nancy 1980.

Juan R–S, Liang J–F. Equilibrium studies for the interaction of aqueous metal ions and polyacrylic acid by a batch ultrafiltration method. J Membr Sci 1993; 82: 163-174. http://dx.doi.org/10.1016/0376-7388(93)85102-3 DOI: https://doi.org/10.1016/0376-7388(93)85102-3

Juan R–S, Liang J–F. Removal of copper and zinc from aqueous sulfate solution with polyacrylic acid by a batch complexationultrafiltration process. J Membr Sci 1993; 82: 175-183. http://dx.doi.org/10.1016/0376-7388(93)85103-4 DOI: https://doi.org/10.1016/0376-7388(93)85103-4

Nguyen QT, Aptel P, Neel J. Application of ultrafiltration to the concentration and separation of solutes of low molecular weight. J Membr Sci 1980; 6: 71-82. http://dx.doi.org/10.1016/S0376-7388(00)82151-1 DOI: https://doi.org/10.1016/S0376-7388(00)82151-1

Aulas F, Rumeau M, Renaud M, Tyburce B. Application de l’ultrafiltration à la recuperation de cations métalliques en solution. Informations Chimie 1980; 204/205: 145-152.

Choe TB. Contribution à l’étude de la séparation par ultrafiltration de complexes ions-polyelectrolytes. Doctorat thesis, Toulouse 1984.

Buffle J, Staub C. Measurement of complexing properties of metal ions in natural conditions by ultrafiltration: measurement of equilibrium constants for complexation of zinc by synthetic and natural ligands. Anal Chem 1984; 56: 2837. http://dx.doi.org/10.1021/ac00278a047 DOI: https://doi.org/10.1021/ac00278a047

Nifant’eva TI, Shkinev VM, Spivakov BYa, Burba P. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 2. Evaluation of conditional stability constants by using ultrafiltration. Talanta 1999; 48: 257–267. http://dx.doi.org/10.1016/S0039-9140(98)00249-5 DOI: https://doi.org/10.1016/S0039-9140(98)00249-5

Gregor HP, Luttinger LB, Loebl EM. Metal-polyelectrolyte complexes: I. The Polyacrylic acid-copper complex. J Phys Chem 1955; 59: 34-39. http://dx.doi.org/10.1021/j150523a011 DOI: https://doi.org/10.1021/j150523a011

Kirsh YuE, Kovner VYa, Kokorin AI, Zamaraev KI, Chernyak VYa, Kabanov VA. Physico-chemical properties of the copper(II)-poly-4-vinylpyridine complexes. Euro Polymer J 1974; 10: 671-678. http://dx.doi.org/10.1016/0014-3057(74)90178-5 DOI: https://doi.org/10.1016/0014-3057(74)90178-5

Pshezhetskii VS, Polinskii AS. Special features of complex formation in the system Co2+-polyethylenimine. Polymer Science U.S.S.R. 1981; 23: 270-280. http://dx.doi.org/10.1016/0032-3950(81)90166-0 DOI: https://doi.org/10.1016/0032-3950(81)90166-0

Benegas JC, Cleven RFM, van den Hoop MAG. Potentiometric titration of poly(acrylic acid) in mixed counterion systems: Chemical binding of Cd ions. Anal Chim Acta 1998; 369: 109-114. http://dx.doi.org/10.1016/S0003-2670(98)00219-0 DOI: https://doi.org/10.1016/S0003-2670(98)00219-0

Pomogailo AD. Kinetics and Thermodynamics of formation of Macromolecular Metal Complexes and Their Structural Organization, in Metal Complexes and Metals in Macromolecules: Synthesis, Structure and Properties, Edited by Dieter Wöhrle and Anatolii D. Pomogailo, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2003. DOI: https://doi.org/10.1002/9783527610778.ch3

Hojo N, Shirai H, Hayashi S. Complex formation between poly(vinyl alcohol) and metallic ions in aqueous solution. J Polym Sci Symposium 1974; 47: 299-307. http://dx.doi.org/10.1002/polc.5070470135 DOI: https://doi.org/10.1002/polc.5070470135

Mimoune S, Belazzougui R–E, Amrani F. Ultrafiltration of aqueous solutions of PVA-Cu(II) macromolecular complex. Sep Sci Techn 2007; 42: 3697-3712. http://dx.doi.org/10.1080/01496390701710802 DOI: https://doi.org/10.1080/01496390701710802

Polinskii AS, Pshezhetskii VS, Kabanov VA. Characteristics of binding of metal ions with polymeric ligands. Polymer Science U.S.S.R. 1983; 25: 81-90. http://dx.doi.org/10.1016/0032-3950(83)90380-5 DOI: https://doi.org/10.1016/0032-3950(83)90380-5

Polinskii AS, Pshezhetskii VS, Kabanov VA. Features of the interaction of cu(ii) ions with poly-4-vinyl pyridine in an acid medium Polymer Science U.S.S.R. 1985; 27: 2577-2585. http://dx.doi.org/10.1016/0032-3950(85)90451-4 DOI: https://doi.org/10.1016/0032-3950(85)90451-4

Delcourt M-O, Bois N, Chouaib F. Équilibres chimiques en solution, de Boeck Université 2001.

Aulas F, Tyburce B, Rumeau M, Renaud M. Concentration de solutions métalliques par ultrafiltration: Effets de la complexation sur les performances du procédé. Entropie 1980; 91: 48-51.

Sarzanini C, Masse P, Mentasti E, Verdier A. Preconcentration of iron by complexation and ultrafiltration. Sep Sci Techn 1990; 25: 729-737. http://dx.doi.org/10.1080/01496399008050362 DOI: https://doi.org/10.1080/01496399008050362

Solpan D, Sahan M. Concentration and separation of metallic ions from aqueous solutions by using EC-PEG 4000 alloy membranes. J App Polym Sci 1993; 48: 2091-2093. http://dx.doi.org/10.1002/app.1993.070481203 DOI: https://doi.org/10.1002/app.1993.070481203

Ahmadi S, Batchelor B, Koseoglu SS. The diafiltration method for the study of the binding of macromolecules to heavy metals. J Membr Sci 1994; 89: 257-265. http://dx.doi.org/10.1016/0376-7388(94)80107-X DOI: https://doi.org/10.1016/0376-7388(94)80107-X

Kabsch-Korbutowicz M, Winnicki T. Application of modified polysulfone membranes to the treatment of water solutions containing humic substances and metal ions. Desalination 1996; 105: 41-49. http://dx.doi.org/10.1016/0011-9164(96)00056-2 DOI: https://doi.org/10.1016/0011-9164(96)00056-2

Rivas BL, Moreno-Villoslada I. Prediction of the retention values associated to the ultrafiltration of mixtures of metal ions and high molecular weight water-soluble polymers as a function of the initial ionic strength. J Membr Sci 2000; 178: 165-170. http://dx.doi.org/10.1016/S0376-7388(00)00491-9 DOI: https://doi.org/10.1016/S0376-7388(00)00491-9

Rivas BL, Moreno-Villoslada I. Polyelectrolyte behavior of three copolymers of 2-acrylamido-2-methyl-propanesulfonic acid and N-acryloyl-N_-methylpiperazine studied by ultrafiltration. J Membr Sci 2001; 187: 271-275. http://dx.doi.org/10.1016/S0376-7388(01)00354-4 DOI: https://doi.org/10.1016/S0376-7388(01)00354-4

Barron-Zambrano J, Laborie S, Viers Ph, Rakib M, Durand G. Mercury removal and recovery from aqueous solutions by

coupled complexation-ultrafiltration and electrolysis. J Memb Sci 2004; 229: 179-186. http://dx.doi.org/10.1016/j.memsci.2003.10.028 DOI: https://doi.org/10.1016/j.memsci.2003.10.028

Kryvoruchko A, Yurlova L, Kornilovich B. Purification of water containing heavy metals by chelating-enhanced ultrafiltration. Desalination 2002; 144: 243-248. http://dx.doi.org/10.1016/S0011-9164(02)00319-3 DOI: https://doi.org/10.1016/S0011-9164(02)00319-3

Canizares P, Perez A, Camarillo R. Recovery of heavy metals by means of ultrafiltration with water-soluble polymers: calculation of design parameters. Desalination 2002; 144: 279-285. http://dx.doi.org/10.1016/S0011-9164(02)00328-4 DOI: https://doi.org/10.1016/S0011-9164(02)00328-4

Mimoune S, Amrani F. Hydrodynamic study of metal complexes rejection by organic ultrafiltration membranes in Proceeding of the International COngress on Membranes and Membranes Processes, ICOM 2002, Toulouse, France 2002; p. 422.

Moreno-Villoslada I, Rivas BL. Metal ion enrichment of a water-soluble chelating polymer studied by ultrafiltration. J Memb Sci 2002; 208: 69-73. http://dx.doi.org/10.1016/S0376-7388(02)00176-X DOI: https://doi.org/10.1016/S0376-7388(02)00176-X

Qin J–J, Wai M–N, Oo M–H, Wong F–S. A feasibility study on the treatment and recycling of a wastewater from metal plating. J Memb Sci 2002; 208: 213-221. http://dx.doi.org/10.1016/S0376-7388(02)00263-6 DOI: https://doi.org/10.1016/S0376-7388(02)00263-6

Moreno-Villoslada I, Rivas BL. Retention of metal ions in ultrafiltration of mixtures of divalent metal ions and water-soluble polymers at constant ionic strength based on Freundlich and Langmuir isotherms. J Memb Sci 2003; 215: 195-202. http://dx.doi.org/10.1016/S0376-7388(02)00613-0 DOI: https://doi.org/10.1016/S0376-7388(02)00613-0

Llorens J, Pujolà M, Sabaté J. Separation of cadmium from aqueous streams by polymer enhanced ultrafiltration: a two-phase model for complexation binding. J Memb Sci 2004; 239: 173-181. http://dx.doi.org/10.1016/j.memsci.2004.02.034 DOI: https://doi.org/10.1016/j.memsci.2004.02.034

Mimoune S, Amrani F. Ultrafiltration of aqueous solutions of hydrosoluble macromolecular metallic ions complexes in Proceeding of the 40th International Symposium on Macromolecules, MACRO 2004, Paris, France 2004; p. 172.

Canizares P, De Lucas A, Perez A, Camarillo R. Effect of polymer nature and hydrodynamic conditions on a process of polymer enhanced ultrafiltration. J Memb Sci 2005; 253: 149-163. http://dx.doi.org/10.1016/j.memsci.2004.12.042 DOI: https://doi.org/10.1016/j.memsci.2004.12.042

Choo K–H, Lee H, Choi S–J. Iron and manganese removal and membrane fouling during UF in conjunction with prechlorination for drinking water treatment. J Memb Sci 2005; 267: 18-26. http://dx.doi.org/10.1016/j.memsci.2005.05.021 DOI: https://doi.org/10.1016/j.memsci.2005.05.021

Sabaté J, Pujolà M, Llorens J. Simulation of a continuous metal separation process by polymer enhanced ultrafiltration. J Memb Sci 2006; 268: 37-47. http://dx.doi.org/10.1016/j.memsci.2005.05.028 DOI: https://doi.org/10.1016/j.memsci.2005.05.028

Mimoune S, Amrani F. Experimental study of metal ions removal from aqueous solutions by complexation–ultrafiltration. J Memb Sci 2007; 298: 92-98. http://dx.doi.org/10.1016/j.memsci.2007.04.003 DOI: https://doi.org/10.1016/j.memsci.2007.04.003

Mimoune S, Belazzougui R–E, Amrani F. Purification of aqueous solutions of metal ions by ultrafiltration. Desalination 2007; 217: 251-259. http://dx.doi.org/10.1016/j.desal.2007.01.016 DOI: https://doi.org/10.1016/j.desal.2007.01.016

Chaufer B, Deratani A. Removal of metal ions by complexation–ultrafiltration using water-soluble macromolecules: perspective of application for wastewater treatment. Nuclear Chem Waste Man 1988; 8: 175-187. http://dx.doi.org/10.1016/0191-815X(88)90025-3 DOI: https://doi.org/10.1016/0191-815X(88)90025-3

Rakib M, Stambouli M, Desmares S, Durand G. Traitement par ultrafiltration des eaux préneutralisées de lavage de fumées d’une usine d’incinération de déchets industriels. Récents Progrès en Génie des Procédés 1991; 5(15): 25.

Durand G, Rakib M, Michelet I. Application of Ultrafiltration Assisted by Complexation to Treatment of Industrial Waste Waters, Hydrometallurgy ’94, Chapman & Hall, London 1994. DOI: https://doi.org/10.1007/978-94-011-1214-7_50

Geckeler KE, Volchek K. Removal of hazardous substances from water using ultrafiltration in conjunction with soluble polymers. Environ Sci Technol 1996; 30: 725. http://dx.doi.org/10.1021/es950326l DOI: https://doi.org/10.1021/es950326l

Vieira M, Tavares CR, Bergamasco R, Petrus JCC. Application of ultrafiltration-complexation process for metal removal from pulp and paper industry wastewater. J Memb Sci 2001; 194: 273–276. http://dx.doi.org/10.1016/S0376-7388(01)00525-7 DOI: https://doi.org/10.1016/S0376-7388(01)00525-7

Miretzky P, Fernandez Cirelli A. Hg(II) removal from water by chitosan and chitosan derivatives: A review. J Hazardous Mater 2009; 167(1-3): 10-23. http://dx.doi.org/10.1016/j.jhazmat.2009.01.060 DOI: https://doi.org/10.1016/j.jhazmat.2009.01.060

Lin C-F, Wu C-H, Lai H-T. Dissolved organic matter and arsenic removal with coupled chitosan/UF operation. Separation and Purification Technology 2008; 60: 292-298. http://dx.doi.org/10.1016/j.seppur.2007.09.002 DOI: https://doi.org/10.1016/j.seppur.2007.09.002

Maureira A, Rivas BL. Metal ions recovery with alginic acid coupled to ultrafiltration membrane. Eur Polym J 2009; 45: 573-581. http://dx.doi.org/10.1016/j.eurpolymj.2008.11.021 DOI: https://doi.org/10.1016/j.eurpolymj.2008.11.021

Benbrahim S, Taha S, Cabon J, Dorange G. Removal of divalent metallic cations: complexation by sodium alginate and ultrafiltration. Rev Sci Eau 1998; 4: 497-516.

Maketon W, Ogden KL. Synergistic effects of citric acid and polyethyleneimine to remove copper from aqueous solutions. Chemosphere 2009; 75(2): 206-211. http://dx.doi.org/10.1016/j.chemosphere.2008.12.005 DOI: https://doi.org/10.1016/j.chemosphere.2008.12.005

Molinari R, Poerio T, Argurio P. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation–ultrafiltration process. Chemosphere 2008; 70: 341-348. http://dx.doi.org/10.1016/j.chemosphere.2007.07.041 DOI: https://doi.org/10.1016/j.chemosphere.2007.07.041

Vijayalakshmi A, Lawrence Arockiasamy D, Nagendran A, Mohan D. Separation of proteins and toxic heavy metal ions from aqueous solution by CA/PC blend ultrafiltration membranes. Separation and Purification Technology 2008; 62: 32-38. http://dx.doi.org/10.1016/j.seppur.2007.12.019 DOI: https://doi.org/10.1016/j.seppur.2007.12.019

Nagendran A, Vijayalakshmi A, Lawrence Arockiasamy D, Shobana KH, Mohan D. Toxic metal ion separation by cellulose acetate/sulfonated poly(ether imide) blend membranes: Effect of polymer composition and additive. J Hazardous Mater 2008; 155: 477-485. http://dx.doi.org/10.1016/j.jhazmat.2007.11.088 DOI: https://doi.org/10.1016/j.jhazmat.2007.11.088

Waeles M, Tanguy V, Lespes G, Riso RD. Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters: An approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP). Estuarine, Coastal Shelf Sci 2008; 80: 538-544. http://dx.doi.org/10.1016/j.ecss.2008.09.010 DOI: https://doi.org/10.1016/j.ecss.2008.09.010

Llanos J, Pérez Á, Rodrigo MA, Cañizares P. Electrochemical regeneration of partially- ethoxylated polyethylenimine used in the polymer supported ultrafiltration of copper. J Hazard Mater 2009; 168(1): 25-30. http://dx.doi.org/10.1016/j.jhazmat.2009.01.123 DOI: https://doi.org/10.1016/j.jhazmat.2009.01.123

Chikhi M, Meniai A-H, Meterfi S, Khelfaoui A, Nedjar Z. Experimental and theoretical study of heavy metal complexation prior to elimination by ultrafiltration. Desalination 2008; 229: 342-347. http://dx.doi.org/10.1016/j.desal.2007.12.001 DOI: https://doi.org/10.1016/j.desal.2007.12.001

Schulte-Bockholt M, Schuster M. Removal enrichment and recovery of Ni(II), Zn(II) and phosphate from phosphation

rinsing waters with liquid-phase polymer-based retention technique. Separation Purification Technol2008; 63: 172-178. http://dx.doi.org/10.1016/j.seppur.2008.04.011 DOI: https://doi.org/10.1016/j.seppur.2008.04.011

Juang R-S, Chiou C-H. Ultrafiltration rejection of dissolved ions using various weakly basic water-soluble polymers. J Memb Sci 2000; 177: 207-214. http://dx.doi.org/10.1016/S0376-7388(00)00464-6 DOI: https://doi.org/10.1016/S0376-7388(00)00464-6

Aroua MK, Zuki FM, Sulaiman NM. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J Hazard Mater 2007; 147: 752-758. http://dx.doi.org/10.1016/j.jhazmat.2007.01.120 DOI: https://doi.org/10.1016/j.jhazmat.2007.01.120

Cañizares P, Pérez Á, Llanos J, Rubio G. Preliminary design and optimisation of a PEUF process for Cr(VI) removal. Desalination 2008; 223: 229-237. http://dx.doi.org/10.1016/j.desal.2007.01.214 DOI: https://doi.org/10.1016/j.desal.2007.01.214

Cañizares P, Pérez A, Camarillo R, Mazarro R. Simultaneous recovery of cadmium and lead from aqueous effluents by a semi-continuous laboratory-scale polymer enhanced ultrafiltration process. J Memb Sci 2000; 320: 520-527. http://dx.doi.org/10.1016/j.memsci.2008.04.043 DOI: https://doi.org/10.1016/j.memsci.2008.04.043

Cañizares P, Pérez A, Camarillo R, Linares JJ. A semi-continious laboratory-scale enhanced ultrafiltration process for the recovery of cadmium and lead from aqueous effluents. J Memb Sci 2004; 240: 197-209. http://dx.doi.org/10.1016/j.memsci.2004.04.021 DOI: https://doi.org/10.1016/j.memsci.2004.04.021

Sharma SK, Sanghi R. Advances in Water Treatment and Pollution Prevention, Springer Science+Business Media, Dordrecht 2012. DOI: https://doi.org/10.1007/978-94-007-4204-8

Zeng J, Ye H, Hu Z. Application of the hybrid complexation–ultrafiltration process for metal ion removal from aqueous solutions. J Hazard Mater 2009; 161: 1491-1498. http://dx.doi.org/10.1016/j.jhazmat.2008.04.123 DOI: https://doi.org/10.1016/j.jhazmat.2008.04.123

Burba P, Aster B, Nifant’eva T, Shkinev V, Spivakov BYa. Membrane filtration studies of aquatic humic substances and their metal species: a concise overview. Part 1. Analytical fractionation by means of sequential-stage ultrafiltration. Talanta 1998; 45: 977-988. http://dx.doi.org/10.1016/S0039-9140(97)00204-X DOI: https://doi.org/10.1016/S0039-9140(97)00204-X

Rocha JC, Sargentini E, Zara LF Jr, Rosa AH, dos Santos A, Burba P. Reduction of mercury(II) by tropical river humic substances (Rio Negro)* / Part II. Influence of structural features (molecular size, aromaticity, phenolic groups, organically bound sulfur). Talanta 2003; 61: 699-707. http://dx.doi.org/10.1016/S0039-9140(03)00351-5 DOI: https://doi.org/10.1016/S0039-9140(03)00351-5

Geckeler KE, Lange G, Eberhardt H, Bayer E. Preparation and application of water-soluble polymer–metal complexes. Pure Appl Chem 1980; 52: 1883. http://dx.doi.org/10.1351/pac198052071883 DOI: https://doi.org/10.1351/pac198052071883

Spivakov BYa, Geckeler K, Bayer E. Liquid-phase polymer-based retention – the separation of metals by ultrafiltration on polychelatogens. Nature 1985; 315: 313-315. http://dx.doi.org/10.1038/315313a0 DOI: https://doi.org/10.1038/315313a0

Geckeler KE. Synthesis and Properties of Hydrophilic Polymers I. Preparation and Metal Complexation of Poly(4-vinylpyridine-co-N-allylthiourea). Polym J 1993; 25: 115-122. http://dx.doi.org/10.1295/polymj.25.115 DOI: https://doi.org/10.1295/polymj.25.115

Rivas BL, Pereira ED, Villoslada IM. Water-soluble polymer–metal ion interactions. Prog Polym Sci 2003; 28(2): 173-208. http://dx.doi.org/10.1016/S0079-6700(02)00028-X DOI: https://doi.org/10.1016/S0079-6700(02)00028-X

Rivas BL, Pereira ED, Palencia M, Sanchez J. Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog Polym Sci 2011; 36(2): 294-322. http://dx.doi.org/10.1016/j.progpolymsci.2010.11.001 DOI: https://doi.org/10.1016/j.progpolymsci.2010.11.001

Ducleaux J. Ultrafiltration, Leçons de Chimie Physique Appliquée à la Biologie, Hermann et Cie Ed., Paris 1946.

Michaels AS. Fifteen years of ultrafiltration: problems and future promises of an adolescent technology, in Ultrafiltration membranes and applications, Polymer science and technology, A.R. Cooper (Ed.), volume 13, Plenum Press, New York 1980. DOI: https://doi.org/10.1007/978-1-4613-3162-9_1

Bechhold H. Kolloidstudien mit der Filterationesmethode. Z Physik Chem 1907; 60: 257-318. DOI: https://doi.org/10.1515/zpch-1907-6013

Mason EA. From pig bladders and cracked jars to polysulfones: an historical perspective on membrane transport. J Memb Sci 1991; 60: 125-145. http://dx.doi.org/10.1016/S0376-7388(00)81529-X DOI: https://doi.org/10.1016/S0376-7388(00)81529-X

Baker R. Membrane Technology in the Chemical Industry: Future Directions in Membrane Technology in the Chemical Industry, S. P. Nunes and K.-V. Peinemann (Eds.), Wiley-VCH, Weinheim 2001. DOI: https://doi.org/10.1002/3527600388.ch13

Carvalho WA, Vignado C, Fontana J. Ni(II) removal from aqueous effluents by silylated clays. J Hazard Mater 2008; 153: 1240-1247. http://dx.doi.org/10.1016/j.jhazmat.2007.09.083 DOI: https://doi.org/10.1016/j.jhazmat.2007.09.083

Malik AH, Khan ZM, Mahmood Q, Nasreen S, Bhatti ZA. Perspectives of low cost arsenic remediation of drinking water in Pakistan and other countries. J Hazard Mater 2009; 168(1): 1-12. http://dx.doi.org/10.1016/j.jhazmat.2009.02.031 DOI: https://doi.org/10.1016/j.jhazmat.2009.02.031

Downloads

Published

2014-08-29

How to Cite

Mimoune, S., Belazzougui, R. E., & Benaboura, A. (2014). Removal of Metal Ions from Aqueous Solutions by Complexation –Ultrafiltration Hybrid Process: A Bibliographical Overview. Journal of Membrane and Separation Technology, 3(3), 134–145. https://doi.org/10.6000/1929-6037.2014.03.03.4

Issue

Section

Articles