Capacitive Deionization for Selective Extraction of Lithium from Aqueous Solutions
DOI:
https://doi.org/10.6000/1929-6037.2015.04.03.2Keywords:
Capacitive electrode, lithium selective membrane, lithium recovery, pore-filled membranesAbstract
The paper deals with extraction of lithium by means of two capacitive deionization systems: one composed of lithium selective electrode and second with electrode wrapped with Li-selective membrane. In the case of the first system, hybrid electrodes where obtained by mixing λ-MnO2sorbent with activated carbon .The best Li-capacity was determined for electrode with 20 wt.-% of manganese oxide. For larger amounts of λ-MnO2 the electrode capacity decreased significantly. The second system was composed of carbon electrodes wrapped with ion-exchange membranes. The lithium selective membranes were synthesized by plasma induced interpolymerization of (meth)acrylic monomersinpores of Celgard 2400 support. Two functional monomers, poly(di(ethylene glycol)methyl ether methacrylate) and poly(glycidylmethacylate modified with hydroxymethyl-12-crown-4) were copolymerized with acrylic acid. It was found that the extraction of lithium chloride was the best for membrane caring copolymers of acrylic acid and glycidyl methacrylate modified with crown ether, andit was better than for membranes with sole poly(acrylic acid).
References
Liu Y, Nie Ch, Liu X, Xu X, Sun Z, Pan L. Review on carbon-based composite materials for capacitive deionization. RSC Adv 2015; 5: 15205-15225. http://dx.doi.org/10.1039/C4RA14447C DOI: https://doi.org/10.1039/C4RA14447C
Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM. Review on the science and technology of water, desalination by capacitive deionization. Prog Mater Sci 2013; 58: 1388-1442. http://dx.doi.org/10.1016/j.pmatsci.2013.03.005 DOI: https://doi.org/10.1016/j.pmatsci.2013.03.005
Porada S, Weinstein L, Dash R, van der Wal A, Bryjak M, Gogotsi Y, Biesheuvel PM. Water desalination using capacitive deionization with microporous carbon electrodes. ACS Appl Mater Interfaces 2012; 4: 1194-1199. http://dx.doi.org/10.1021/am201683j DOI: https://doi.org/10.1021/am201683j
Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison JS, Keesman KJ, Kaskel S, Biesheuvel PM, Presser V. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ Sci 2013; 6: 3700-3712. http://dx.doi.org/10.1039/c3ee42209g DOI: https://doi.org/10.1039/c3ee42209g
Anderson MA, Cudero AL, Palma J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim Acta 2010; 55: 3845-3856. http://dx.doi.org/10.1016/j.electacta.2010.02.012 DOI: https://doi.org/10.1016/j.electacta.2010.02.012
Oren Y. Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review). Desalination 2008; 228: 10-29. http://dx.doi.org/10.1016/j.desal.2007.08.005 DOI: https://doi.org/10.1016/j.desal.2007.08.005
Ryu T, Lee DH, Ryu JC, Shin J, Chung KS, Kim YH. Lithium recovery system using electrostatic field assistance. Hydrometallurgy 2015; 151: 78-83. http://dx.doi.org/10.1016/j.hydromet.2014.11.005 DOI: https://doi.org/10.1016/j.hydromet.2014.11.005
Ryu T, Ryu JC, Shin J, Lee DH, Kim YH, Chung KS. Recovery of lithium by an electrostatic field-assisted desorption process. Ind Eng Chem Res 2013; 52: 13738-13742. http://dx.doi.org/10.1021/ie401977s DOI: https://doi.org/10.1021/ie401977s
Kim S, Lee J, Kang JS, Jo K, Kim S, Sung YE, Yoon J. Lithium recovery from brine using a MnO2/activated carbon hybrid supercapacitor system. Chemosphere 2015; 125: 50-56. http://dx.doi.org/10.1016/j.chemosphere.2015.01.024 DOI: https://doi.org/10.1016/j.chemosphere.2015.01.024
Prior T, Wager PA, Stamp A, Widmer R, Giurco D. Sustainable governance of scarce metals: The case of lithium. Sci Total Environ 2013; 461-462: 785-791. http://dx.doi.org/10.1016/j.scitotenv.2013.05.042 DOI: https://doi.org/10.1016/j.scitotenv.2013.05.042
Gruber PW, Medina PA, Keoleian GA, Kesler SE, Everson MP, Wallington TJ. Global lithium availability: A constraint for electric vehicles? J Ind Ecol 2011; 15: 760-774. http://dx.doi.org/10.1111/j.1530-9290.2011.00359.x DOI: https://doi.org/10.1111/j.1530-9290.2011.00359.x
Vikstrom H, Davidsson S, Hook M. Lithium availability and future production outlooks. Appl Energy 2013; 110: 252-266. http://dx.doi.org/10.1016/j.apenergy.2013.04.005 DOI: https://doi.org/10.1016/j.apenergy.2013.04.005
Ma LW, Chen BZ, Chen Y, Shi XC. Preparation, characterization and adsorptive properties of foam-type lithium adsorbent. Micropor Mesopor Mater 2011; 142: 147-153. http://dx.doi.org/10.1016/j.micromeso.2010.11.028 DOI: https://doi.org/10.1016/j.micromeso.2010.11.028
Miyai Y, Ooi K, Katoh S. Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on MgMn2O4. Sep Sci Technol 1988; 23: 179-191. http://dx.doi.org/10.1080/01496398808057641 DOI: https://doi.org/10.1080/01496398808057641
Wang L, Ma W, Liu R, Li HY, Meng CG. Correlation between Li+ adsorptioncapacity and the preparation conditions of spinel lithium manganese precursor. Solid State Ionics 2006; 177: 1421-1428. http://dx.doi.org/10.1016/j.ssi.2006.07.019 DOI: https://doi.org/10.1016/j.ssi.2006.07.019
Park J, Sato H, Nishihama S, Yoshizuka K. Lithium recovery from geothermal water by combined adsorption methods. Solvent Extr Ion Exch 2012; 30: 398-404. http://dx.doi.org/10.1080/07366299.2012.687165 DOI: https://doi.org/10.1080/07366299.2012.687165
Kim JS, Kim CS, Shin HS, Rhim JW. Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI). Macromol Res 2015; 23: 360-366. http://dx.doi.org/10.1007/s13233-015-3049-6 DOI: https://doi.org/10.1007/s13233-015-3049-6
Kim YJ, Choi JH. Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Res 2012; 46: 6033-6039. http://dx.doi.org/10.1016/j.watres.2012.08.031 DOI: https://doi.org/10.1016/j.watres.2012.08.031
Smolińska-Kempisty K, Bryjak M, Wolska J, Kujawski W. pH-sensitive membranes for lithium separation. Mater Chem Phys 2014; 148: 548-553. http://dx.doi.org/10.1016/j.matchemphys.2014.08.003 DOI: https://doi.org/10.1016/j.matchemphys.2014.08.003
Smolińska-Kempisty K, Bryjak M. Stimuli response polypropylene membranes as selective separators for alkaline ions. Desalination 2012; 300: 64-69. http://dx.doi.org/10.1016/j.desal.2012.06.006 DOI: https://doi.org/10.1016/j.desal.2012.06.006
Kuraray Chemical Co., Web page: Available from: http://www.kuraraychemical.com/products/sc/capacitor.htm
Park J, Sato H, Nishihama S, Yoshizuka K. Separation and recovery of lithium from geothermal water by sequential adsorption process with MnO2and TiO2. Ion Exch Lett 2012; 5: 1-5.
Borsod Chem LTD. Web page, Available from: http://www.borsodchem-pvc.comdefault.aspx
Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ Sci 2015; 8: 2296-2319. http://dx.doi.org/10.1039/C5EE00519A DOI: https://doi.org/10.1039/C5EE00519A
Bryjak M, Smolinska-Kempisty K, Kujawski J. Separation of lithium by membrane enhanced capacitive deionization, Proceedings of Intl Conference on Ion Exchange, Okinawa 9-12 November 2014.
Omosebi A, Gao X, Landon J, Liu K. Asymmetric electrode configuration for enhanced membrane capacitive deionization. ACS Appl Mater Interfaces 2014; 6: 12640-12649. http://dx.doi.org/10.1021/am5026209 DOI: https://doi.org/10.1021/am5026209
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .