A Mini-Review on Lead Ion Removal Using Polymeric Nanocomposite Membranes from Aqueous Solutions
DOI:
https://doi.org/10.6000/1929-6037.2024.13.01Keywords:
Industrial effluent, Pb removal, Polymer membraneAbstract
The rapidly increasing global population and industrialisation are the main causes of the problem of water contamination. Issues with heavy metals are the main cause of this contamination. At least 20 metals are considered toxic and one of the most toxic is lead (Pb). Even though lead is being used in various industries, 86% of lead is remarkably used in battery industries, contributing to lead pollution. Water is utilised extensively during the battery-making process, particularly for washing battery parts for recycling. Hence, the process water becomes heavily contaminated, majorly with Pb compounds. Accordingly, treating Pb-containing effluent is mandatory for humanity and industrial survival. The conventional purification techniques were not sophisticated and resulted in waste and complex effluents harmful to the environment, demanding more advanced purification systems. A non-destructive separation, known as membrane separation, is a well-established technique for treating wastewater containing heavy metal ions and producing high-quality treated effluent. Polymeric membranes are of primary interest, as they can be easily modified and compatible with different materials like polymers and nanoadditives to improve membrane performance. The performance is primarily evaluated based on porosity, hydrophilicity, permeability, rejection capacity and anti-fouling nature. This study compiles research on polymer nanocomposite membranes for lead removal from the last five years.
References
Ikram M, Zhou P, Shah SAA, Liu GQ. Do environmental management systems help improve corporate sustainable development ? Evidence from manufacturing companies in Pakistan. J Clean Prod 2019; 226: 628-641. https://doi.org/10.1016/j.jclepro.2019.03.265 DOI: https://doi.org/10.1016/j.jclepro.2019.03.265
Reza M, Emami S, Amiri MK, et al. Removal efficiency optimization of Pb2+ in a nanofiltration process by MLP-ANN and RSM. Korean Journal of Chemical Engineering 2021; 38: 316-325. https://doi.org/10.1007/s11814-020-0698-8 DOI: https://doi.org/10.1007/s11814-020-0698-8
Keskin B, Zeytuncu-Gökoğlu B, Koyuncu I. Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere 2021; 279: 130604. https://doi.org/10.1016/j.chemosphere.2021.130604 DOI: https://doi.org/10.1016/j.chemosphere.2021.130604
World Health Organization. Brief guide to analytical methods for measuring lead in paint - 2nd edition. Geneva: World Health Organization; 2020. Licence: CC BY-NC-SA 3.0 IGO.
The Batteries (Management and Handling) Rules. Ministry Of Environment and Forests; New Delhi, the 16th May, 2001.
Zhang R, Wilson VL, Hou A, Meng G. Source of lead pollution , its influence on public. Int J Heal Anim Sci Food Saf 2015; 2: 18-31. https://doi.org/10.13130/2283-3927/4785
Mohammad Mostafa. Waste water treatment in Textile Industries- the concept and current removal technologies. J Biodivers Environ Sci 2015; 7: 501-525.
Assi MA, Hezmee MNM, Haron AW, et al. The detrimental effects of lead on human and animal health. Vet World 2016; 9: 660-671. https://doi.org/10.14202/vetworld.2016.660-671 DOI: https://doi.org/10.14202/vetworld.2016.660-671
Bashambu L, Singh R, Verma J. Metal/metal oxide nanocomposite membranes for water purification. Mater Today Proc 2020; 44: 538-545. https://doi.org/10.1016/j.matpr.2020.10.213 DOI: https://doi.org/10.1016/j.matpr.2020.10.213
Sukhadeorao Dongre R. Lead: Toxicological Profile, Pollution Aspects and Remedial Solutions. Lead Chem 2020; 150: 1-22. https://doi.org/10.5772/intechopen.93095 DOI: https://doi.org/10.5772/intechopen.93095
Gedam AH, Narnaware PK. Blended Composites of Chitosan : Adsorption Profile for Mitigation of Toxic Pb ( II ) Ions from Water. Chitin-Chitosan - Myriad Functionalities in Science and Technology 2018; 100-118. https://doi.org/10.5772/intechopen.74790 DOI: https://doi.org/10.5772/intechopen.74790
Dongre RS. Marine Polysaccharides in Medicine, Biological Activities and Application of Marine Polysaccharide 2017; 181-206. https://doi.org/10.5772/65786 DOI: https://doi.org/10.5772/65786
Abadin HG, Beth F, Pohl HR. Breast-Feeding Exposure of Infants To Cadmium, Lead, and Mercury: a Public Health Viewpoint. Toxicology and Industrial Health 2016; 13: 495-517. https://doi.org/10.1177/074823379701300403 DOI: https://doi.org/10.1177/074823379701300403
Vishwa Mohan. Across India, high levels of toxins in groundwater, Times of india 2018. http://timesofindia.indiatimes.com/articleshow/65204273.cms
Sarkka H, Bhatnagar A, Sillanpaa M. Recent developments of electro-oxidation in water treatment - A review. J Electroanal Chem 2015; 754: 46-56. https://doi.org/10.1016/j.jelechem.2015.06.016 DOI: https://doi.org/10.1016/j.jelechem.2015.06.016
Gohari B, Abu-Zahra N. Polyethersulfone Membranes Prepared with 3-Aminopropyl triethoxysilane Modified Alumina Nanoparticles for Cu(II) Removal from Water. ACS Omega 2018; 3: 10154-10162. https://doi.org/10.1021/acsomega.8b01024 DOI: https://doi.org/10.1021/acsomega.8b01024
Ghaemi N, Madaeni SS, Daraei P, et al. PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: Fabrication and performance optimization in dye removal by RSM. J Hazard Mater 2015; 298: 111-121. https://doi.org/10.1016/j.jhazmat.2015.05.018 DOI: https://doi.org/10.1016/j.jhazmat.2015.05.018
Lalmi A, Bouhidel K. Removal of lead from polluted waters using ion exchange resin with Ca(NO3)2 for elution Hydrometallurgy 2018; 178: 287-293. https://doi.org/10.1016/j.hydromet.2018.05.009 DOI: https://doi.org/10.1016/j.hydromet.2018.05.009
Somaye Alaedini PZ. The Phytoremediation Technique for Cleaning up Contaminated Soil By Amaranthus sp. J Environ Anal Toxicol 2014; 04: 02 https://doi.org/10.4172/2161-0525.1000208 DOI: https://doi.org/10.4172/2161-0525.1000208
Mokarizadeh H, Raisi A. Environmental Technology & Innovation Industrial wastewater treatment using PES UF membranes containing hydrophilic additives : Experimental and modeling of fouling mechanism. Environ Technol Innov 2021; 23: 101701. https://doi.org/10.1016/j.eti.2021.101701 DOI: https://doi.org/10.1016/j.eti.2021.101701
Kulkarni V V., Golder AK, Ghosh PK. Critical analysis and valorization potential of battery industry sludge: Speciation, risk assessment and metal recovery. Journal of Cleaner Production 2018; 171; 820-830. https://doi.org/10.1016/j.jclepro.2017.10.064 DOI: https://doi.org/10.1016/j.jclepro.2017.10.064
Mehdipour S, Vatanpour V, Kariminia H. Influence of ion interaction on lead removal by a polyamide nano filtration membrane. Desalination 2015; 362: 84-92. https://doi.org/10.1016/j.desal.2015.01.030 DOI: https://doi.org/10.1016/j.desal.2015.01.030
Rezaul M, Omer M, Alharth NH, Alharbi HF. () Ecotoxicology and Environmental Safety Composite nanofibers membranes of poly ( vinyl alcohol )/ chitosan for selective lead ( II ) and cadmium ( II ) ions removal from wastewater. Ecotoxicol Environ Saf 2019; 169: 479-486. https://doi.org/10.1016/j.ecoenv.2018.11.049 DOI: https://doi.org/10.1016/j.ecoenv.2018.11.049
Ray SS, Iroegbu AOC, Bordado JC. Polymer-Based Membranes and Composites for Safe, Potable, and Usable Water: A Survey of Recent Advances. Chem Africa 2020; 3: 593-608. https://doi.org/10.1007/s42250-020-00166-z DOI: https://doi.org/10.1007/s42250-020-00166-z
Zuo K, Wang K, DuChanois RM, et al. Selective membranes in water and wastewater treatment: Role of advanced materials. Mater Today 2021; 50: 516-532. https://doi.org/10.1016/j.mattod.2021.06.013 DOI: https://doi.org/10.1016/j.mattod.2021.06.013
Zirehpour A, Rahimpour A. Membranes for Wastewater Treatment. Nanostructured Polymer Membranes 2016; 159-207. https://doi.org/10.1002/9781118831823.ch4 DOI: https://doi.org/10.1002/9781118831823.ch4
Ulbricht M. Advanced functional polymer membranes. Polymer 2006; 47: 2217-2262. https://doi.org/10.1016/j.polymer.2006.01.084 DOI: https://doi.org/10.1016/j.polymer.2006.01.084
Susan LY, Ismail S, Ooi BS, Mustapa H. Surface morphology of pvdf membrane and its fouling phenomenon by crude oil emulsion. J Water Process Eng 2017; 15: 55-61. https://doi.org/10.1016/j.jwpe.2016.05.01329 DOI: https://doi.org/10.1016/j.jwpe.2016.05.013
Castro-Muñoz R, Gontarek E, Figoli A. Membranes for toxic- and heavy-metal removal. Curr Trends Futur Dev Membr Membr Environ Appl 2019; 125-149. https://doi.org/10.1016/B978-0-12-816778-6.00007-2 DOI: https://doi.org/10.1016/B978-0-12-816778-6.00007-2
Wenten IG, Khoiruddin K, Wardani AK, Widiasa IN. Synthetic polymer-based membranes for heavy metal removal. Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability 2020; 71: 101. https://doi.org/10.1016/b978-0-12-818485-1.00005-8 DOI: https://doi.org/10.1016/B978-0-12-818485-1.00005-8
Fard AK, McKay G, Buekenhoudt A, et al. Inorganic membranes: Preparation and application for water treatment and desalination. Materials (Basel) 2018; 11. https://doi.org/10.3390/ma11010074 DOI: https://doi.org/10.3390/ma11010074
Abbasi E, Milani M, Aval SF, et al. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev Microbiol 2016; 42: 173-180. https://doi.org/10.3109/1040841X.2014.912200 DOI: https://doi.org/10.3109/1040841X.2014.912200
Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: A review. Smart Mater Struct 2011; 20: 083001. https://doi.org/10.1088/0964-1726/20/8/083001 DOI: https://doi.org/10.1088/0964-1726/20/8/083001
Polyakov YS, Zydney AL. Ultrafiltration membrane performance: Effects of pore blockage/constriction. J Memb Sci 2013; 434: 106-120. https://doi.org/10.1016/j.memsci.2013.01.052 DOI: https://doi.org/10.1016/j.memsci.2013.01.052
Lalia BS, Kochkodan V, Hashaikeh R, Hilal N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013; 326: 77-95. https://doi.org/10.1016/j.desal.2013.06.016 DOI: https://doi.org/10.1016/j.desal.2013.06.016
Hirose M, Ito H, Kamiyama Y. Effect of skin layer surface structures on the flux behaviour of RO membranes. Journal of Membrane Science 1996; 121: 209-215. https://doi.org/10.1016/S0376-7388(96)00181-0 DOI: https://doi.org/10.1016/S0376-7388(96)00181-0
Lu X, Bian X, Shi L. Preparation and characterization of NF composite membrane. Journal of Membrane Science 2002; 210: 3-11. https://doi.org/10.1016/S0376-7388(02)00120-5 DOI: https://doi.org/10.1016/S0376-7388(02)00120-5
Ilyas RA, Sapuan SM, Harussani MM, et al. Polylactic acid (Pla) biocomposite: Processing, additive manufacturing and advanced applications. Polymers (Basel) 2021; 13: 1326. https://doi.org/10.3390/polym13081326 DOI: https://doi.org/10.3390/polym13081326
Poolachira S, Velmurugan S. Effect of solvents in the formation of PES-based asymmetric flatsheet membranes in phase inversion method: phase separationand rheological studies. Iranian Polymer Journal 2022. https://doi.org/10.1007/s13726-022-01131-y
Zhang X, Wang Y, Liu Y, et al. Applied Surface Science Preparation, performances of PVDF / ZnO hybrid membranes and their applications in the removal of copper ions. Appl Surf Sci 2014; 316: 333-340. https://doi.org/10.1016/j.apsusc.2014.08.004 DOI: https://doi.org/10.1016/j.apsusc.2014.08.004
Ullah S, Hashmi M, Hussain N, et al. Journal of Water Process Engineering Stabilized nano fi bers of polyvinyl alcohol ( PVA ) crosslinked by unique method for e ffi cient removal of heavy metal ions. J Water Process Eng 2020; 33: 101111. https://doi.org/10.1016/j.jwpe.2019.101111 DOI: https://doi.org/10.1016/j.jwpe.2019.101111
Yoo H, Kwak S. Surface functionalization of PTFE membranes with hyperbranched poly (amidoamine) for the removal of Cu2+ ions from aqueous solution. J Memb Sci 2013; 448: 125-134. https://doi.org/10.1016/j.memsci.2013.07.052 DOI: https://doi.org/10.1016/j.memsci.2013.07.052
Moradihamedani P, Abdullah AH. High-performance cellulose acetate/polysulfone blend ultrafiltration membranes for removal of heavy metals from water. Water Science & Technology 2017; 1-12. https://doi.org/10.2166/wst.2017.122 DOI: https://doi.org/10.2166/wst.2017.122
Poolachira S, Velmurugan S. Efficient removal of lead ions from aqueous solution by graphene oxide modified polyethersulfone adsorptive mixed matrix membrane. Environ Res 2022; 210: 112924. https://doi.org/10.1016/j.envres.2022.112924 DOI: https://doi.org/10.1016/j.envres.2022.112924
Poolachira S, Velmurugan S. Exfoliated hydrotalcite-modified polyethersulfone-based nanofiltration membranes for removal of lead from aqueous solutions. Environ Sci Pollut Res 2020; 27: 29725-29736. https://doi.org/10.1007/s11356-019-06715-5 DOI: https://doi.org/10.1007/s11356-019-06715-5
Poolachira S, Velmurugan S. Effect of solvents in the formation of PES-based asymmetric flat sheet membranes in phase inversion method: phase separation and rheological studies. Iran Polym J (English Ed.) 2023. https://doi.org/10.1007/s13726-022-01131-y DOI: https://doi.org/10.1007/s13726-022-01131-y
Pei X, Gan L, Tong Z, et al. Robust cellulose-based composite adsorption membrane for heavy metal removal. J Hazard Mater 2021; 406: 124746. https://doi.org/10.1016/j.jhazmat.2020.124746 DOI: https://doi.org/10.1016/j.jhazmat.2020.124746
Lavanya C, Balakrishna RG, Soontarapa K, Padaki MS. Fouling resistant functional blend membrane for removal of organic matter and heavy metal ions. J Environ Manage 2019; 232: 372-381. https://doi.org/10.1016/j.jenvman.2018.11.093 DOI: https://doi.org/10.1016/j.jenvman.2018.11.093
Otitoju TA, Ahmad AL, Ooi BS. Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending. RSC Adv 2018; 8: 22710-22728. https://doi.org/10.1039/c8ra03296c DOI: https://doi.org/10.1039/C8RA03296C
Shen L, Huang Z, Liu Y, et al. Polymeric Membranes Incorporated With ZnO Nanoparticles for Membrane Fouling Mitigation: A Brief Review. Front Chem 2020; 8: 1-9. https://doi.org/10.3389/fchem.2020.00224 DOI: https://doi.org/10.3389/fchem.2020.00224
Han MJ, Nam ST. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Memb Sci 2002; 202: 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9 DOI: https://doi.org/10.1016/S0376-7388(01)00718-9
Rezania H, Vatanpour V, Faghani S. Poly(itaconic acid)-assisted ultrafiltration of heavy metal ions’ removal from wastewater. Iran Polym J English Ed 2019; 28: 1069-1077. https://doi.org/10.1007/s13726-019-00767-7 DOI: https://doi.org/10.1007/s13726-019-00767-7
Shen L, Bian X, Lu X, et al. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination 2012; 293: 21-29. https://doi.org/10.1016/j.desal.2012.02.019 DOI: https://doi.org/10.1016/j.desal.2012.02.019
Lin J, Ye W, Zhong K, et al. Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment. Chem Eng Process Process Intensif 2016; 107: 194-205. https://doi.org/10.1016/j.cep.2015.03.011 DOI: https://doi.org/10.1016/j.cep.2015.03.011
Samari M, Zinadini S, Zinatizadeh AA, et al. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2 /MOF). Sep Purif Technol 2020; 117010. https://doi.org/10.1016/j.seppur.2020.117010 DOI: https://doi.org/10.1016/j.seppur.2020.117010
Kallem P, Ibrahim Y, Hasan SW, et al. Fabrication of novel polyethersulfone (PES) hybrid ultrafiltration membranes with superior permeability and antifouling properties using environmentally friendly sulfonated functionalized polydo-pamine nanofillers. Sep Purif Technol 2021; 261: 118311. https://doi.org/10.1016/j.seppur.2021.118311 DOI: https://doi.org/10.1016/j.seppur.2021.118311
Recillas S, García A, González E, et al. Use of CeO2 , TiO2 and Fe3O4 nanoparticles for the removal of lead from water Toxicity of nanoparticles and derived compounds. Desalination 2011; 277: 213-220. https://doi.org/10.1016/j.desal.2011.04.036 DOI: https://doi.org/10.1016/j.desal.2011.04.036
Ghaemi N, Zereshki S, Heidari S. Removal of lead ions from water using PES-based nanocomposite membrane incorporated with polyaniline modified GO nanoparticles: Performance optimization by central composite design. Process Saf Environ Prot 2017; 111: 475-490. https://doi.org/10.1016/j.psep.2017.08.011 DOI: https://doi.org/10.1016/j.psep.2017.08.011
Dong Q, Guo X, Huang X, et al. Selective removal of lead ions through capacitive deionization: Role of ion-exchange membrane. Chem Eng J 2019; 361: 1535-1542. https://doi.org/10.1016/j.cej.2018.10.208 DOI: https://doi.org/10.1016/j.cej.2018.10.208
Hajdu I, Bodnár M, Csikós Z, et al. Combined nano-membrane technology for removal of lead ions. J Memb Sci 2012; 409-410: 44-53. https://doi.org/10.1016/j.memsci.2012.03.011 DOI: https://doi.org/10.1016/j.memsci.2012.03.011
Alfalahy HN, Al-Jubouri SM. Preparation and application of polyethersulfone ultrafiltration membranincorporating NaX zeolite for lead ions removal from aqueous solutions. Desalin Water Treat 2022; 248: 149-162. https://doi.org/10.5004/dwt.2022.28072 DOI: https://doi.org/10.5004/dwt.2022.28072
Amiri S, Asghari A, Vatanpour V, Rajabi M. Fabrication of chitosan-aminopropylsilane graphene oxide nanocomposite hydrogel embedded PES membrane for improved filtration performance and lead separation. J Environ Manage 2021; 294: 112918. https://doi.org/10.1016/j.jenvman.2021.112918 DOI: https://doi.org/10.1016/j.jenvman.2021.112918
Bisheh MG, Ghorbani M, Peyravi M, Jahanshahi M. Static and dynamic filtration of nickel and lead ions by adsorptive membrane induced by POP via layer by layer technique. Chem Eng Res Des 2020; 153: 829-838. https://doi.org/10.1016/j.cherd.2019.11.033 DOI: https://doi.org/10.1016/j.cherd.2019.11.033
Bandehali S, Parvizian F, Moghadassi AR, Hosseini SM. Copper and lead ions removal from water by new PEI based NF membrane modified by functionalized POSS nanoparticles. J Polym Res 2019; 26. https://doi.org/10.1007/s10965-019-1865-7 DOI: https://doi.org/10.1007/s10965-019-1865-7
Berbar Y, Hammache ZE, Bensaadi S, et al. Effect of functionalized silica nanoparticles on sulfonated polyethersulfone ion exchange membrane for removal of lead and cadmium ions from aqueous solutions. J Water Process Eng 2019; 32: 100953. https://doi.org/10.1016/j.jwpe.2019.100953 DOI: https://doi.org/10.1016/j.jwpe.2019.100953
Hadi S, Mohammed AA, Al-Jubouri SM, et al. Experimental and theoretical analysis of lead Pb2+ and Cd2+ retention from a single salt using a hollow fiber PES membrane. Membranes (Basel) 2020; 10: 1-25. https://doi.org/10.3390/membranes10070136 DOI: https://doi.org/10.3390/membranes10070136
Koushkbaghi S, Zakialamdari A, Pishnamazi M, et al. Aminated-Fe3O4 nanoparticles filled chitosan/PVA/PES dual layers nanofibrous membrane for the removal of Cr(VI) and Pb(II) ions from aqueous solutions in adsorption and membrane processes. Chem Eng J 2018; 337: 169-182. https://doi.org/10.1016/j.cej.2017.12.075 DOI: https://doi.org/10.1016/j.cej.2017.12.075
N B Ghani Nr, Jami MS, Engliman NS, et al. Study of graphene oxide-polymer nanocomposite (gpn) adsorptive membrane for lead removal from wastewater. J Eng Sci Technol 2021; 16: 3620-3636
Nayak V, Jyothi MS, Balakrishna RG, et al. Novel modified poly vinyl chloride blend membranes for removal of heavy metals from mixed ion feed sample. J Hazard Mater 2017; 331: 289-299. https://doi.org/10.1016/j.jhazmat.2017.02.046 DOI: https://doi.org/10.1016/j.jhazmat.2017.02.046
Ravishankar H, Christy J, Jegatheesan V. Graphene oxide (GO)-blended polysulfone (PSf) ultrafiltration membranes for lead ion rejection. Membranes (Basel) 2018; 8. https://doi.org/10.3390/membranes8030077 DOI: https://doi.org/10.3390/membranes8030077
Manawi Y, Kochkodan V, Mahmoudi E, et al. Characterization and SeparationPerformance of a Novel Polyethersulfone Membrane Blended with Acacia Gum. Sci Rep 2017; 7: 1-12. https://doi.org/10.1038/s41598-017-14735-9 DOI: https://doi.org/10.1038/s41598-017-14735-9
Poolachira S, Velmurugan S. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent. Chinese Journal of Chemical Engineering 2023. https://doi.org/10.1016/j.cjche.2023.01.021 DOI: https://doi.org/10.1016/j.cjche.2023.01.021
Downloads
Published
How to Cite
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .