Intestinal Microbiota and Lymphoma

Mitsuko L. Yamamoto, Aya Westbrook and Robert H. Schiestl*

Department of Pathology, Environmental Health and Radiation Oncology, UCLA Schools of Medicine and Public Health, 10833 Le Conte Ave, Los Angeles, CA 90095, USA

Abstract: The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT) lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma.

bacteria

and

Keywords: Lymphoma, intestinal microbiota, cancer, bacteria.

INTRODUCTION

Lymphocytes play a key role in responding to microbial colonization by initiating an immune response leading to tolerance or activation. The majority of immunologically active cells belong to the mucosalassociated immune system and are constantly receiving signals from dendritic cells or other APCs which are sampling the intestines. Dysregulation can lead to inflammation-related diseases such as colitis and cancer, as reviewed in this issue. Tissues closely associated with bacterial exposure have been most easily identified as being affected by microbes such as colon cancer and gastric cancers ([1] and in current issue) however intestinal health can alter extragastrointestinal tissues, having a systemic effect [2,3]. Animal models have played an essential role in understanding the importance of the gut microbiome in immune development and composition [4]. Animal models have also played a key role in solidifying the relationship between the microbiome and health and disease [5]. Techniques to manipulate animal gut composition have been studied and refined for over 50 years and continue to play an important role in clarifying this symbiotic and sometimes pathogenic relationship [6].

MICROBIOTA AND LYMPHOMA IN ANIMAL MODELS

There are two major ways that animal models have an advantage in studying the relationship between gut Historical Data Indicating that Gut Microbes may Affect Mouse Phenotypes such as Cancer and Lifespan

microbes and cancer. First, the mouse gut microbiome can be altered to be germ free, contain specific species

of bacteria (gnotobiotic), or to have what is commonly

called conventional microbiota, which is considered

"normal" and generally unmonitored in genetically

similar animals. Changing the microbiome allows us to

study cause and effect relationship between the

demonstrated the role of microbiota in inflammation,

metabolism, and obesity [5,7,8]. Gnotobiotic models

have helped to determine both causative species and

mechanisms of colorectal cancer [9,10]. Second,

animal models have been used to determine how

genes may affect or be affected by different bacteria.

These models can help us determine genetic

susceptibility or resistance to different diseases

depending on microbial exposure. For example

polymorphisms in Dectin1 can influence susceptibility

to colitis [11]. Alternatively, genetic models can help us

determine which genes or pathways may be important

in disease development or protection [12]. For

example, Rag2^{-/-} mice can develop H. hepaticus-

induced cancer, however immune competent mice are

protected due to a regulatory response leading to

decreased inflammation [13]. Combining both a defined

gut microbiota and genetic models can also give us important insights into mechanisms of gut-microbe

Germfree

animals

have

bodv.

While inbred mouse strains have helped to decrease variability among and within experiments,

E-ISSN: 1929-5634/16 © 2016 Lifescience Global

interactions.

^{*}Address correspondence to this author at the Department of Pathology, Environmental Health and Radiation Oncology, UCLA Schools of Medicine and Public Health, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Tel: 310-267-2087; Fax: 310-267-2578; E-mail: RSchiestl@mednet.ucla.edu

over time even these carefully maintained strains may acquire differences. Changes in phenotypes of research animals have been noted as early as 1966 in various fields from radiation to toxicology [14-18]. Internal factors such as genetic drift or spontaneous mutations can play a role in varying phenotypes of research animals [19,20]. Many environmental factors have also been postulated to contribute to changes in rodents including housing conditions, diet, and sterility [15,17,21].

Significant changes in lifespan or tumor incidence may have important consequences on experimental results. For example, over an 11 year period, percent survival of male F344 rats at 106 weeks decreased from 85.3% in experiments starting in 1971 to 62.5% in experiments starting in 1980-1981 [16]. In addition, leukaemia incidence increased from 9.4% to 20.1% in male rats in experiments starting in 1972-1973 and 1980-1981, respectively [16]. Experiments using 3 Gy x-rays to induce myeloid leukemia show that 32.3% of mice developed the disease in 1956 while only 12.8% developed myeloid leukemia in 1964 [17]. While different environmental factors have been attributed to these changes, it is well known that animal husbandry protocols have also become more stringent, affecting animal microbial composition and health [22]. More recently, our lab has shown that in different vivariums, with different SPF conditions, isogenic mice have altered lifespans and lymphoma latency periods [18,23]. This correlates to distinct microbiome profiles as determined by 16S rRNA lengths. Therefore it is likely that the microbiome has at least a partial influence on animal health, including carcinogenesis.

Animal Models of MALT Lymphoma

Mucosal-associated lymphoid tissue (MALT) lymphomas are thought to originate in the marginal zone and are strongly associated with the presence of Helicobacter [24, 25]. Approximately 90% of MALT lymphomas are associated with Helicobacter infection [26]. Elimination of Helicobacter leads to complete remission in approximately 80% of all cases [27]. While the association of H. pylori and MALT lymphoma was discovered in humans, the causative effect of Helicobacter in MALT lymphoma development, according to the Koch's Postulate, was demonstrated in animal models. A model of bacteria-induced MALT was first shown in mice by infection with H. felis, a close relative to H. pylori. 22 weeks post-infection, 25% of infected mice had lymphoepithelial lesions while none of the non-infected animals did [28]. An H. pylori infection was first established in gerbils and showed an increase in gastritis and intestinal metaplasia [29]. Since then, H. pylori infections have been established in mouse models and have been used to examine mechanism by assessing transcription profiling [30] and disease progression and regression [31].

H. helmanii, found in both human and mice, also lead to MALT lymphoma which is preceded by inflammation and high endothelial venule-like vesicles, which are associated with lymphocyte recruitment and present in other chronic inflammatory conditions such as rheumatoid arthritis, and colitis [32]. The animal models of *H helmanii*-induced lymphoma, however, seem to have varying results and may also involve host and bacterial factors [33]. The use of better defined bacteria, however, may improve consistency and development of MALT lymphoma for future studies [34].

Other bacteria such as Campylobacter jejuni, Borrelia bergdorferi, and Chlamidia psitacci may also play a role in lymphoma development, however these associations have only been shown in humans thus far [35]. Streptococcus bovis has been associated with hematopoietic malignancy in humans [36]. Therefore, animal models may provide valuable insight into microbe-associated lymphoma etiology, progression, and treatment.

Animal Models of Lymphoma and Effects of the Microbiome

Animal models of cancer can also be useful in demonstrating a link between the microbiome and carcinogenesis. Cancer is a disease that is generally thought to occur in a multi-step process beginning with initiation, promotion, and finally progression. As the disease progresses, cells acquire "hallmarks of cancer" which include sustained proliferation, resistance to cell death, and metastasis [37]. Using animal cancer models such as p53-deficient mice, allows researchers to bypass some steps required for overt cancer saving time and animal numbers. ApcMin/+ mice, which spontaneously develop intestinal polyps, have been used to demonstrate that infection with Citrobacter rodentium or enterotoxin producing Bacterioides fragilis can promote colon cancer [38,39]. A chemically induced model of liver cancer also showed that H. hepaticus infection promotes liver tumorigenesis [40].

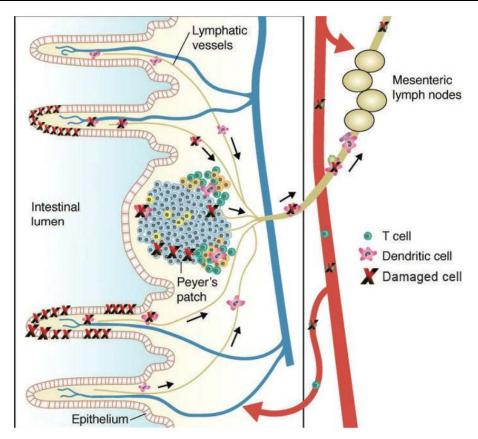
Our lab has shown that mice deficient in the Ataxia telangiectasia mutated gene (Atm-/- mice), which display genetic instability and spontaneously develop a high incidence of thymic lymphoma [41,42], are sensitive to changes in microbial content [23]. We found that as Atm^{-/-} mice moved to more sterile conditions, they began to live longer and have a decreased lymphoma penetrance [18,23]. Conversely, when they were moved to standard SPF conditions, their lifespan and lymphoma latency decreased. To test the effects of the gut microbiota more directly, we rederived mice into a restricted microbiota facility [43] and "conventionalized" mice by inoculating them with fecal samples from conventional SPF mice. Again, the "conventionalized" mice had shorter lifespans than the mice with a restricted microbiota [23]. These results indicated that microbes in the restricted, sterile facility had a protective effect in Atm-/- mice and/or the conventional microbiota had a more pathogenic effect. One microbe that was highly enriched in the restricted microbiome was Lactobacillus johnsonii. Inoculation with L. johnsonii in Atm - mice decreased measures of DNA damage, oxidative stress, and inflammation [23]. These results indicate that the gut microbiota can impact lymphomagenesis in Atm^{-/-} mice. Other lymphoma or cancer models may also contribute to the growing body of evidence linking the microbiome to carcinogenesis.

MECHANISM OF MICROBIOTA-INDUCED LYMPHOMAGENESIS AS EVIDENCED IN ANIMAL MODELS

While there is not a plethora of animal models linking the microbiome to lymphoma development, there is a large amount of data indicating plausible mechanisms of microbiota-induced lymphomagenesis in animal models (for references see below). Since the intestinal microbiota has been shown to influence the immune system directly and indirectly ([44,45] and in the current issue), there are several ways that the intestinal microbiota may affect lymphomagenesis in mice. Many of these mechanisms have been identified and shown in animal models (for references see below).

Microbiota can Directly Initiate Lymphomagenesis

Species of gut bacteria may directly cause the promotion or neutralization of mutagens and oxidative stress [46-54] leading to DNA damage and subsequent cancer or protection [55]. Faecal water samples from mice treated with pre- and probiotics showed different degrees of genotoxicity which correlated with tumorigenesis [56]. Bacteria can also directly interact


with immune cells causing oxidative bursts [57] or necrosis [57], and with epithelial cells causing increased production of reactive oxygen species and inhibition of NF-kB [58]. Oxidative stress can then lead to DNA damage and carcinogenesis [59-61]. H. Pylori and C. Jejuni have both been shown to increase oxidative stress [53,54]. Finally, bacteria can act as an antigen and stimulate chronic proliferation of immune cells. H. pylori is thought to cause lymphoma because of constant stimulation of antigen presentation leading to B cell expansion [31,62]. In humans, this is evident in the overrepresentation of certain V genes [35,63]. While the lymphocytes and microbes are generally separated by the epithelial barrier, bacteria, antigens, or metabolites cross the mucosal barrier through dendritic cells or M cells which are constantly sampling the lumen [64].

In addition to causing damage, bacteria can also help to neutralize mutagens and oxidative stress ([65], reviewed in [66]). The mutagens MNNG and DMH have been shown to be neutralized in rat colons by lactic acid bacteria.

Microbiota can Alter Immune Parameters to Affect Lymphomagenesis

Species, or populations of gut bacteria may cause a change in immune response or immune parameters and affect lymphocytes. Intestinal immune cells are constantly sampling luminal content and deciding whether to elicit or suppress an immune response [44]. Animal studies have shown that both single species of bacteria as well as different bacterial compositions can have large impacts on immune parameters. For example, studies using germ-free mice established that intestinal microbiota are essential for normal immune system development [67-69]. Since lymphoma itself is a shift in immune cell types, it is not surprising that microbes may influence lymphomagenesis.

Several animal studies have shown that either a mixture of bacteria or single species may significantly affect immune cell population and activity [43,70-74]. For example, inoculation with segmented filamentous bacteria caused a change in T cell activity eliciting a range of responses including increases in IL-10, IL-17, and IFN-y [73]. In addition, inoculation of *Sphingomonas yanoikuyae* caused a systemic change in immune cell populations [43]. *Bacterioides fragilis* can induce a Th17 response in mice which was then shown to be required for tumorigenesis [39]. Bacteria can also directly alter inflammation-related pathways.

Figure 1: Possible model for lymphoma induction by intestinal inflammation. Tissue atrophy from persistent inflammation results in genotoxicity to surface epithelial cells as well as to infiltrating leukocytes. Damaged resident leukocytes may then migrate into the peripheral circulation through the lymph nodes, or circulating activated effector cells may cause genotoxicity to proximal circulating leukocytes through oxidative burst. These damaged cells can develop into lymphomas.

Inoculation with common human commensal bacterium $B.\ thetaiotaomicron,\ B.\ longum,\ or\ both\ resulted\ in\ an increase\ in\ Tnf\alpha-\ and\ Ifn\gamma-associated\ pathways\ [75].$ These studies indicate that gut microbes can affect the immune system which may impact lymphoma development.

Alternatively, distinct compositions of intestinal microbiota can differentially alter immune parameters [43,70,71] which may protect mice against cancerous cells. Mice with a restricted microbiota have increased cytotoxic T cells which leads to decreased levels of marginal zone B cells [70], invariant NKT (INKT) cells [71], and plasmacytic dendritic cells compared to mice with conventional microbiota [43]. Moreover, Wei et al. suggest that the activity of adoptively transferred cytotoxic CD8+ T cells can be increased if recipient mice are inoculated with donor microbial antigens [70]. It has also been shown that germ-free colorectal cancer rat models mount different responses to cancer induction compared to conventional mice including increased B cells, NK cells and cytotoxic lymphocytes [76].

Conversely, some bacteria and bacterial products may have a beneficial effect. For example, lactic acid bacteria and specific recognition of Lactobacilli may protect against carcinogenesis [77,78]. *Lactobacillus johnsonii* in rat intestines has been shown to have a positive effect on oxidative stress and inflammation and prolongs the development of diabetes [79,80]. Lactic acid bacteria can also modify the immune system to prevent cancer in mouse tumor models [81-83] (reviewed in [66,84]). In addition, butyrate, a shortchain fatty acid produced by bacterial fermentation of fiber on Treg cell specification and expansion [85,86].

Whether microbes influence immune cells directly, indirectly, or a combination of both, increased lymphocyte proliferation can lead to a higher chance of aberrant DNA replication [87,88], particularly in some B lymphocytes which are innately vulnerable to genetic instability [89,90] and activation [91]. Oxidative stress caused by intestinal microbiota either directly [92] or indirectly through the immune system [93], can also affect carcinogenesis. Therefore, the microbiota can affect several pathways associated with lymphomagenesis [94,95].

CONCLUSION

While there is evidence that the microbiome affects lymphomagenesis, particularly MALT lymphomas, there is a wide gap of knowledge to which animal models could provide valuable answers. Namely, which bacteria or bacterial products can cause, protect against, or increase risk of lymphoma development? With the exception of breast cancer, liver cancer, and lymphoma, systemic effects of intestinal bacteria on cancer have not been studied. Lymphomas are of particular interest because they circulate through the gastro-intestinal system as well as the rest of the body. The fact that more lymphomas are becoming associated with bacterial infections [96-98] and that antibiotic therapy can be effective [96,98] underscores the need for more studies involving microbes and lymphoma.

There is overwhelming evidence that some intestinal bacteria are health beneficial like the *Lactobacilli* whereas some others are health detrimental like some of the *Helicobacteraceae*. It will be very important to determine the roles as health beneficial and detrimental of most intestinal bacteria and whether there are synergisms or antagonisms between them. Then one can design certain probiotics containing the health beneficial and certain antibiotics against the health detrimental bacteria.

REFERENCES

- [1] Compare D, Nardone G. Contribution of gut microbiota to colonic and extracolonic cancer development. Dig Dis 2011; 29(6): 554-561. http://dx.doi.org/10.1159/000332967
- [2] Westbrook AM, Wei B, Braun J, Schiestl RH. Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 2009; 69(11): 4827-4834. http://dx.doi.org/10.1158/0008-5472.CAN-08-4416
- [3] Westbrook AM, Wei B, Braun J, Schiestl RH. Intestinal inflammation induces genotoxicity to extraintestinal tissues and cell types in mice. Int J Cancer 2011; 129(8): 1815-1825. http://dx.doi.org/10.1002/ijc.26146
- [4] Umesaki Y, Setoyama H. Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect 2000; 2(11): 1343-1351. http://dx.doi.org/10.1016/S1286-4579(00)01288-0
- [5] Tlaskalova-Hogenova H, Stepankova R, Kozakova H, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 2011; 8(2): 110-120. http://dx.doi.org/10.1038/cmi.2010.67
- [6] Faith JJ, Rey FE, O'Donnell D, et al. Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 2010; 4(9): 1094-1098. http://dx.doi.org/10.1038/ismej.2010.110

- [7] Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004; 101(44): 15718-15723. http://dx.doi.org/10.1073/pnas.0407076101
- [8] Yi P, Li L. The germfree murine animal: an important animal model for research on the relationship between gut microbiota and the host. Vet Microbiol 2012; 157(1-2): 1-7. http://dx.doi.org/10.1016/j.vetmic.2011.10.024
- [9] Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis 2014; 35(2): 249-255. http://dx.doi.org/10.1093/carcin/bgt392
- [10] Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012; 338(6103): 120-123. http://dx.doi.org/10.1126/science.1224820
- [11] Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012; 336(6086): 1314-1317. http://dx.doi.org/10.1126/science.1221789
- [12] Chassaing B, Aitken JD, Gewirtz AT, Vijay-Kumar M. Gut microbiota drives metabolic disease in immunologically altered mice. Adv Immunol 2012; 116: 93-112. http://dx.doi.org/10.1016/B978-0-12-394300-2.00003-X
- [13] Erdman SE, Poutahidis T, Tomczak M, et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol 2003; 162(2): 691-702. http://dx.doi.org/10.1016/S0002-9440(10)63863-1
- [14] Haseman JK, Hailey JR, Morris RW. Spontaneous neoplasm incidences in Fischer 344 rats and B6C3F1 mice in two-year carcinogenicity studies: a National Toxicology Program update. Toxicol Pathol 1998; 26(3): 428-441. http://dx.doi.org/10.1177/019262339802600318
- [15] Haseman JK, Huff JE, Rao GN, Eustis SL. Sources of variability in rodent carcinogenicity studies. Fundam Appl Toxicol 1989; 12(4): 793-804. http://dx.doi.org/10.1016/0272-0590(89)90011-0
- [16] Rao GN, Haseman JK, Grumbein S, Crawford DD, Eustis SL. Growth, body weight, survival, and tumor trends in F344/N rats during an eleven-year period. Toxicol Pathol 1990; 18(1 Pt 1): 61-70. http://dx.doi.org/10.1177/019262339001800109
- [17] Walburg HE, Jr., Cosgrove GE, Upton AC. Influence of microbial environment on development of myeloid leukemia in x-irradiated RFM mice. Int J Cancer 1968; 3(1): 150-154. http://dx.doi.org/10.1002/ijc.2910030118
- [18] Reliene R, Schiestl RH. Differences in animal housing facilities and diet may affect study outcomes-a plea for inclusion of such information in publications. DNA Repair (Amst) 2006; 5(6): 651-653. http://dx.doi.org/10.1016/j.dnarep.2006.02.001
- [19] Fanning SL, Appel MY, Berger SA, Korngold R, Friedman TM. The immunological impact of genetic drift in the B10.BR congenic inbred mouse strain. J Immunol 2009; 183(7): 4261-4272. http://dx.doi.org/10.4049/jimmunol.0900971
- [20] Stevens JC, Banks GT, Festing MF, Fisher EM. Quiet mutations in inbred strains of mice. Trends Mol Med 2007; 13(12): 512-519. http://dx.doi.org/10.1016/j.molmed.2007.10.001
- [21] Rao GN, Crockett PW. Effect of diet and housing on growth, body weight, survival and tumor incidences of B6C3F1 mice in chronic studies. Toxicol Pathol 2003; 31(2): 243-250. http://dx.doi.org/10.1080/01926230390183742
- [22] Bleich A, Hansen AK. Time to include the gut microbiota in the hygienic standardisation of laboratory rodents. Comp Immunol Microbiol Infect Dis 2012; 35(2): 81-92. http://dx.doi.org/10.1016/j.cimid.2011.12.006

- [23] Yamamoto ML, Maier I, Dang AT, et al. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res 2013; 73(14): 4222-4232. http://dx.doi.org/10.1158/0008-5472.CAN-13-0022
- [24] Saito Y, Suzuki H, Tsugawa H, et al. Overexpression of miR-142-5p and miR-155 in gastric mucosa-associated lymphoid tissue (MALT) lymphoma resistant to Helicobacter pylori eradication. PLoS One 2012; 7(11): e47396. http://dx.doi.org/10.1371/journal.pone.0047396
- [25] Isaacson PG, Du MQ. MALT lymphoma: from morphology to molecules. Nat Rev Cancer 2004; 4(8): 644-653. http://dx.doi.org/10.1038/nrc1409
- [26] Wotherspoon AC, Ortiz-Hidalgo C, Falzon MR, Isaacson PG. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991; 338(8776): 1175-1176. http://dx.doi.org/10.1016/0140-6736(91)92035-Z
- [27] Bayerdorffer E, Neubauer A, Rudolph B, et al. Regression of primary gastric lymphoma of mucosa-associated lymphoid tissue type after cure of Helicobacter pylori infection. MALT Lymphoma Study Group. Lancet 1995; 345(8965): 1591-1594. http://dx.doi.org/10.1016/S0140-6736(95)90113-2
- [28] Enno A, O'Rourke JL, Howlett CR, Jack A, Dixon MF, Lee A. MALToma-like lesions in the murine gastric mucosa after long-term infection with Helicobacter felis. A mouse model of Helicobacter pylori-induced gastric lymphoma. Am J Pathol 1995; 147(1): 217-222.
- [29] Hirayama F, Takagi S, Kusuhara H, Iwao E, Yokoyama Y, Ikeda Y. Induction of gastric ulcer and intestinal metaplasia in mongolian gerbils infected with Helicobacter pylori. J Gastroenterol 1996; 31(5): 755-757. http://dx.doi.org/10.1007/BF02347631
- [30] Mueller A, O'Rourke J, Grimm J, et al. Distinct gene expression profiles characterize the histopathological stages of disease in Helicobacter-induced mucosa-associated lymphoid tissue lymphoma. Proc Natl Acad Sci U S A 2003; 100(3): 1292-1297. http://dx.doi.org/10.1073/pnas.242741699
- [31] O'Rourke JL. Gene expression profiling in Helicobacterinduced MALT lymphoma with reference to antigen drive and protective immunization. J Gastroenterol Hepatol 2008; 23(Suppl 2): S151-156. http://dx.doi.org/10.1111/j.1440-1746.2008.05553.x
- [32] Suzuki A, Kobayashi M, Matsuda K, et al. Induction of high endothelial venule-like vessels expressing GlcNAc6ST-1-mediated L-selectin ligand carbohydrate and mucosal addressin cell adhesion molecule 1 (MAdCAM-1) in a mouse model of "Candidatus Helicobacter heilmannii"-induced gastritis and gastric mucosa-associated lymphoid tissue (MALT) lymphoma. Helicobacter 2010; 15(6): 538-548. http://dx.doi.org/10.1111/j.1523-5378.2010.00801.x
- [33] O'Rourke JL, Dixon MF, Jack A, Enno A, Lee A. Gastric B-cell mucosa-associated lymphoid tissue (MALT) lymphoma in an animal model of 'Helicobacter heilmannii' infection. J Pathol 2004; 203(4): 896-903. http://dx.doi.org/10.1002/path.1593
- [34] Nakamura M, Murayama SY, Serizawa H, et al. "Candidatus Helicobacter heilmannii" from a cynomolgus monkey induces gastric mucosa-associated lymphoid tissue lymphomas in C57BL/6 mice. Infect Immun 2007; 75(3): 1214-1222. http://dx.doi.org/10.1128/IAI.01459-06
- [35] Suarez F, Lortholary O, Hermine O, Lecuit M. Infectionassociated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 2006; 107(8): 3034-3044. http://dx.doi.org/10.1182/blood-2005-09-3679

- [36] Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg 2004; 139(7): 760-765. http://dx.doi.org/10.1001/archsurg.139.7.760
- [37] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70. http://dx.doi.org/10.1016/S0092-8674(00)81683-9
- [38] Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB. Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis 2001; 184(2): 227-230. http://dx.doi.org/10.1086/321998
- [39] Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 2009; 15(9): 1016-1022. http://dx.doi.org/10.1038/nm.2015
- [40] Diwan BA, Ward JM, Ramljak D, Anderson LM. Promotion by Helicobacter hepaticus-induced hepatitis of hepatic tumors initiated by N-nitrosodimethylamine in male A/JCr mice. Toxicol Pathol 1997; 25(6): 597-605. http://dx.doi.org/10.1177/019262339702500610
- [41] Barlow C, Hirotsune S, Paylor R, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996; 86(1): 159-171. http://dx.doi.org/10.1016/S0092-8674(00)80086-0
- [42] Reliene R, Schiestl RH. Antioxidant N-acetyl cysteine reduces incidence and multiplicity of lymphoma in Atm deficient mice. DNA Repair (Amst) 2006; 5(7): 852-859. http://dx.doi.org/10.1016/j.dnarep.2006.05.003
- [43] Fujiwara D, Wei B, Presley LL, et al. Systemic control of plasmacytoid dendritic cells by CD8+ T cells and commensal microbiota. J Immunol 2008; 180(9): 5843-5852. http://dx.doi.org/10.4049/jimmunol.180.9.5843
- [44] Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8(6): 411-420. http://dx.doi.org/10.1038/nri2316
- [45] MacDonald TT, Gordon JN. Bacterial regulation of intestinal immune responses. Gastroenterol Clin North Am 2005; 34(3): 401-412, vii-viii. http://dx.doi.org/10.1016/j.qtc.2005.05.012
- [46] Reddy BS, Mangat S, Weisburger JH, Wynder EL. Effect of high-risk diets for colon carcinogenesis on intestinal mucosal and bacterial beta-glucuronidase activity in F344 rats. Cancer Res 1977; 37(10): 3533-3536.
- [47] Takada H, Hirooka T, Hiramatsu Y, Yamamoto M. Effect of beta-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Res 1982; 42(1): 331-334.
- [48] Knasmuller S, Steinkellner H, Hirschl AM, Rabot S, Nobis EC, Kassie F. Impact of bacteria in dairy products and of the intestinal microflora on the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Mutat Res 2001; 480-481: 129-138. http://dx.doi.org/10.1016/S0027-5107(01)00176-2
- [49] Kassie F, Rabot S, Kundi M, Chabicovsky M, Qin HM, Knasmuller S. Intestinal microflora plays a crucial role in the genotoxicity of the cooked food mutagen 2-amino-3methylimidazo [4,5-f]quinoline. Carcinogenesis 2001; 22(10): 1721-1725. http://dx.doi.org/10.1093/carcin/22.10.1721
- [50] Hayatsu H, Hayatsu T. Suppressing effect of Lactobacillus casei administration on the urinary mutagenicity arising from ingestion of fried ground beef in the human. Cancer Lett 1993; 73(2-3): 173-179. http://dx.doi.org/10.1016/0304-3835(93)90261-7
- [51] Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M. Antioxidative probiotic fermented goats' milk

- decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 2003; 90(2): 449-456. http://dx.doi.org/10.1079/BJN2003896
- [52] Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease. J Clin Invest 2004; 113(3): 321-333. http://dx.doi.org/10.1172/JCl20925
- [53] Arabski M, Klupinska G, Chojnacki J, et al. DNA damage and repair in Helicobacter pylori-infected gastric mucosa cells. Mutat Res 2005; 570(1): 129-135. http://dx.doi.org/10.1016/j.mrfmmm.2004.10.006
- [54] Smoot DT, Elliott TB, Verspaget HW, et al. Influence of Helicobacter pylori on reactive oxygen-induced gastric epithelial cell injury. Carcinogenesis 2000; 21(11): 2091-2095. http://dx.doi.org/10.1093/carcin/21.11.2091
- [55] Parsonnet J. Bacterial infection as a cause of cancer. Environ Health Perspect 1995; 103(Suppl 8): 263-268. http://dx.doi.org/10.1289/ehp.95103s8263
- [56] Klinder A, Forster A, Caderni G, Femia AP, Pool-Zobel BL. Fecal water genotoxicity is predictive of tumor-preventive activities by inulin-like oligofructoses, probiotics (Lactobacillus rhamnosus and Bifidobacterium lactis), and their synbiotic combination. Nutr Cancer 2004; 49(2): 144-155. http://dx.doi.org/10.1207/s15327914nc4902_5
- [57] Vieira JM, Seabra SH, Vallim DC, et al. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays. Biochem Biophys Res Commun 2009; 387(4): 627-632. http://dx.doi.org/10.1016/j.bbrc.2009.05.124
- [58] Kumar A, Wu H, Collier-Hyams LS, et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J 2007; 26(21): 4457-4466. http://dx.doi.org/10.1038/sj.emboj.7601867
- [59] Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A 1993; 90(17): 7915-7922. http://dx.doi.org/10.1073/pnas.90.17.7915
- [60] Cerutti P, Ghosh R, Oya Y, Amstad P. The role of the cellular antioxidant defense in oxidant carcinogenesis. Environ Health Perspect 1994; 102 Suppl 10: 123-129. http://dx.doi.org/10.1289/ehp.94102s10123
- [61] Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-867. http://dx.doi.org/10.1038/nature01322
- [62] Banks PM. Gastrointestinal lymphoproliferative disorders. Histopathology 2007; 50(1): 42-54. http://dx.doi.org/10.1111/j.1365-2559.2006.02571.x
- [63] Bende RJ, Aarts WM, Riedl RG, de Jong D, Pals ST, van Noesel CJ. Among B cell non-Hodgkin's lymphomas, MALT lymphomas express a unique antibody repertoire with frequent rheumatoid factor reactivity. J Exp Med 2005; 201(8): 1229-1241. http://dx.doi.org/10.1084/jem.20050068
- [64] Shanahan F. Nutrient tasting and signaling mechanisms in the gut V. Mechanisms of immunologic sensation of intestinal contents. Am J Physiol Gastrointest Liver Physiol 2000; 278(2): G191-196.
- [65] Arimochi H, Kinouchi T, Kataoka K, Kuwahara T, Ohnishi Y. Effect of intestinal bacteria on formation of azoxymethaneinduced aberrant crypt foci in the rat colon. Biochem Biophys Res Commun 1997; 238(3): 753-757. http://dx.doi.org/10.1006/bbrc.1997.7384
- [66] Hirayama K, Rafter J. The role of probiotic bacteria in cancer prevention. Microbes Infect 2000; 2(6): 681-686. http://dx.doi.org/10.1016/S1286-4579(00)00357-9

- [67] Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr 1999; 69(5): 1046S-1051S.
- [68] Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22: 283-307. http://dx.doi.org/10.1146/annurev.nutr.22.011602.092259
- [69] Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science 2001; 292(5519): 1115-1118. http://dx.doi.org/10.1126/science.1058709
- [70] Wei B, Su TT, Dalwadi H, et al. Resident enteric microbiota and CD8+ T cells shape the abundance of marginal zone B cells. Eur J Immunol 2008; 38(12): 3411-3425. http://dx.doi.org/10.1002/eji.200838432
- [71] Wei B, Wingender G, Fujiwara D, et al. Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol. 2010; 184(3): 1218-1226. http://dx.doi.org/10.4049/jimmunol.0902620
- [72] Huang T, Wei B, Velazquez P, Borneman J, Braun J. Commensal microbiota alter the abundance and TCR responsiveness of splenic naive CD4+ T lymphocytes. Clin Immunol 2005; 117(3): 221-230. http://dx.doi.org/10.1016/j.clim.2005.09.012
- [73] Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009; 31(4): 677-689. http://dx.doi.org/10.1016/j.immuni.2009.08.020
- [74] Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 2005; 122(1): 107-118. http://dx.doi.org/10.1016/j.cell.2005.05.007
- [75] Sonnenburg JL, Chen CT, Gordon JI. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 2006; 4(12): e413. http://dx.doi.org/10.1371/journal.pbio.0040413
- [76] Vannucci L, Stepankova R, Kozakova H, Fiserova A, Rossmann P, Tlaskalova-Hogenova H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int J Oncol 2008; 32(3): 609-617. http://dx.doi.org/10.3892/ijo.32.3.609
- [77] Ishikawa H, Akedo I, Otani T, et al. Randomized trial of dietary fiber and Lactobacillus casei administration for prevention of colorectal tumors. Int J Cancer 2005; 116(5): 762-767. http://dx.doi.org/10.1002/ijc.21115
- [78] Kim JE, Kim JY, Lee KW, Lee HJ. Cancer chemopreventive effects of lactic acid bacteria. J Microbiol Biotechnol 2007; 17(8): 1227-1235.
- [79] Kingma SD, Li N, Sun F, Valladares RB, Neu J, Lorca GL. Lactobacillus johnsonii N6.2 stimulates the innate immune response through Toll-like receptor 9 in Caco-2 cells and increases intestinal crypt Paneth cell number in biobreeding diabetes-prone rats. J Nutr 2011; 141(6): 1023-1028. http://dx.doi.org/10.3945/in.110.135517
- [80] Valladares R, Sankar D, Li N, et al. Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One 5(5): e10507. http://dx.doi.org/10.1371/journal.pone.0010507
- [81] Matsuzaki T. Immunomodulation by treatment with Lactobacillus casei strain Shirota. Int J Food Microbiol 1998; 41(2): 133-140. http://dx.doi.org/10.1016/S0168-1605(98)00046-4
- [82] Kato I, Endo K, Yokokura T. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor

- resection in mice. Int J Immunopharmacol 1994; 16(1): 29-36. http://dx.doi.org/10.1016/0192-0561(94)90116-3
- [83] Kato I, Yokokura T, Mutai M. Macrophage activation by Lactobacillus casei in mice. Microbiol Immunol 1983; 27(7): 611-618.
 - http://dx.doi.org/10.1111/j.1348-0421.1983.tb00622.x
- [84] Rafter J. Probiotics and colon cancer. Best Pract Res Clin Gastroenterol 2003; 17(5): 849-859. http://dx.doi.org/10.1016/S1521-6918(03)00056-8
- [85] Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341(6145): 569-573. http://dx.doi.org/10.1126/science.1241165
- [86] Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504(7480): 451-455. http://dx.doi.org/10.1038/nature12726
- [87] Ames BN, Gold LS. Too many rodent carcinogens: mitogenesis increases mutagenesis. Science 1990; 249(4972): 970-971. http://dx.doi.org/10.1126/science.2136249
- [88] Cohen SM, Ellwein LB. Cell proliferation in carcinogenesis. Science 1990; 249(4972): 1007-1011. http://dx.doi.org/10.1126/science.2204108
- [89] Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol 2002; 2(12): 920-932. http://dx.doi.org/10.1038/nri953
- [90] Pasqualucci L, Neumeister P, Goossens T, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001; 412(6844): 341-346. http://dx.doi.org/10.1038/35085588

- [91] Oliver AM, Martin F, Kearney JF. IgMhighCD21high lymphocytes enriched in the splenic marginal zone generate effector cells more rapidly than the bulk of follicular B cells. J Immunol 1999; 162(12): 7198-7207.
- [92] Kullisaar T, Zilmer M, Mikelsaar M, et al. Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 2002; 72(3): 215-224. http://dx.doi.org/10.1016/S0168-1605(01)00674-2
- [93] Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 2007; 121(11): 2381-2386. http://dx.doi.org/10.1002/ijc.23192
- [94] Epeldegui M, Widney DP, Martinez-Maza O. Pathogenesis of AIDS lymphoma: role of oncogenic viruses and B cell activation-associated molecular lesions. Curr Opin Oncol 2006; 18(5): 444-448. http://dx.doi.org/10.1097/01.cco.0000239882.23839.e5
- [95] Illes A, Varoczy L, Papp G, et al. Aspects of B-cell non-Hodgkin's lymphoma development: a transition from immune-reactivity to malignancy. Scand J Immunol 2009; 69(5): 387-400. http://dx.doi.org/10.1111/j.1365-3083.2009.02237.x
- [96] Al-Saleem T, Al-Mondhiry H. Immunoproliferative small intestinal disease (IPSID): a model for mature B-cell neoplasms. Blood 2005; 105(6): 2274-2280. http://dx.doi.org/10.1182/blood-2004-07-2755
- [97] Lecuit M, Abachin E, Martin A, et al. Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med 2004; 350(3): 239-248. http://dx.doi.org/10.1056/NEJMoa031887
- [98] Ferreri AJ, Guidoboni M, Ponzoni M, et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst 2004; 96(8): 586-594. http://dx.doi.org/10.1093/jnci/djh102

Received on 29-03-2016 Accepted on 07-06-2016 Published on 25-07-2016