Bioactive Compounds of Acai (Euterpe oleracea) and the Effect of their Consumption on Oxidative Stress Markers

Authors

  • Romel Guzmán Institute of Food Science and Technology (ICTA), Faculty of Sciences, Central University of Venezuela (UCV), Caracas, Venezuela
  • Ricardo Aponte Institute of Food Science and Technology (ICTA), Faculty of Sciences, Central University of Venezuela (UCV), Caracas, Venezuela
  • Mary Lares School of Nutrition and Dietetics, Faculty of Medicine, UCV and Department of Endocrinology and Metabolic Diseases, Military Hospital “Dr. Carlos Arvelo”, Caracas, Venezuela

DOI:

https://doi.org/10.6000/1929-5634.2021.10.01

Keywords:

Açaí, bioactive compounds, antioxidant capacity, oxidative stress, intervention study.

Abstract

Açaí fruit (Euterpe oleracea Martius) is highly perishable, so it sought to apply conservation techniques that make its commercialization more bearable such as dehydration by the tray. This thermal technique that significantly inactivates harmful enzymes and microorganisms prolongs their shelf life but has the disadvantage that it decreases the proportion of bioactive components and its antioxidant power. The present work aims to estimate the content and antioxidant activity of the bioactive compounds of açaí powder supplied in hydroxypropyl methylcellulose (HPMC) vegetable capsules. For this purpose, total polyphenols were determined by the Folin-Ciocalteau test, total anthocyanin’s by the differential pH test, and the antioxidant capacity in vitro DPPH method (using Trolox and Vitamin C equivalent). Also, the effect of consumption of four daily capsules on a healthy population (10 people) between the ages of 33-65 years old evaluated through a 10-day intervention study in which the following biomarkers in blood assessed: glycemia, triglycerides, total cholesterol, HDL, LDL, and 8-isoprostane. The açaí powder showed a total polyphenol content of 962.7±22.2 mg EAG/100g, total anthocyanin’s up to 938.5±19.1 mg C3GE/100g, the antioxidant capacity of 643±24.32 µmol TE/100g and 14.07±0.45 g VCE/100g. In the intervention study, no significant differences were observed between before and after the different biochemical markers except for 8-isoprostane, suggesting that the consumption of dehydrated açaí caused effects benefices in the population tested.

References

Strudwick J, Sobel GL. Uses of Euterpe oleracea Mart. in the Amazon estuary, Brazil. Adv Econ Bot 1988; 6: 225-253

Brondizio ES, Siqueira AD. From extractivists to forest farmers: changing concepts of agricultural intensification and peasantry in the Amazon estuary. Res Econ Anthropology 1997; 18: 233-79.

Schauss A, Jensen G, Wu X. Açaí (Euterpe oleracea). An Amazonian Palm Fruit with Broad Antioxidant and Anti-inflammatory Activities. In: Qian M and Rimando A, editors. Flavor and Health Benefits of Small Fruits. Washington, DC: J Am Chem Soc 2010; 213-223. https://doi.org/10.1021/bk-2010-1035.ch013

Haslam E. Che faro senza polifenoli? in: Gross G, Hemingway R, YoshidaTakashi, editors. Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. New York. Kluwer Academic / Plenum Publishers 1999; p. 17-20. https://doi.org/10.1007/978-1-4615-4139-4

Martinez N, Del Mar Camacho M, Martinez JJ. Los compuestos bioactivos de las frutas y sus efectos en la salud. Act Diet 2008;12: 64-8. https://doi.org/10.1016/S1138-0322(08)75623-2

Jensen G, Wu X, Patterson K, Barnes J, Carter S, Scherwitz L, Beaman R, Endres J, Schauss A. In vitro and in vivo Antioxidant and Anti-inflammatory Capacities of an Antioxidant-Rich Fruit and Berry Juice Blend. Results of a Pilot and Randomized, Double-Blinded, Placebo-Controlled, Crossover Study. J Agric Food Chem 2008; 56: 8326–8333. https://doi.org/10.1021/jf8016157

Mena P, Dominguez-Perles R, Girones-Vilaplana A, Baenas N, Garcia-Viguera C, Villano D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life 2014; 66, 745–758. https://doi.org/10.1002/iub.1332

De Souza MO, Silva M, Silva ME, Oliveira R, Pedrosa ML. Diet supplementation with açaí (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition 2010; 26: 804 10. https://doi.org/10.1016/j.nut.2009.09.007

Feio C, Izar M, Ihara S, Kasmas S, Martins C, Feio M, Maués L, Borges N, Moreno R, Póvoa R, Fonseca F. Euterpe oleracea (açai) modifies sterol metabolism and attenuates experimentally-induced atherosclerosis. J Atheroscler Thromb 2012; 19: 237–245. https://doi.org/10.5551/jat.11205

Udani J, Singh B, Singh V, Barrett M: Effects of Açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study. Nutr J 2011; 10: 42-45. https://doi.org/10.1186/1475-2891-10-45

Pala D, Barbosa PO, Silva CT, De Souza MO, Freitas FR, Volp AC, Maranhão RC, De Freitas RN. Açaí (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein, and redox metabolism: a prospective study in women. Clin Nutr 2018; 37: 618-623. https://doi.org/10.1016/j.clnu.2017.02.001

Rogez H, Akwie SN, Moura FG, Larondelle Y. Kinetic modeling of anthocyanin degradation and microorganism growth during postharvest storage of açaí fruits (Euterpe oleracea). J Food Sci 2012; 77: C13001306. https://doi.org/10.1111/j.1750-3841.2012.02996.x

A.O.A.C (Official Methods of Analysis). Official Methods of Analysis. Vol.I.17th ed. Association of Analytical Washington. DC. USA 2000.

United States Pharmacopeia and National Formulary. USP 38-NF 33. Rockville, MD: United States Pharmacopeial Convention. 2013.

United States Pharmacopeia and National Formulary. USP 32-NF 27. Rockville, MD: United States Pharmacopeial Convention 2012.

Singleton VL, Rossi J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic 1965; 16: 144-158.

Giusti M, Wrolstad R. Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry 2001; F1.2.1-F1.2.13. https://doi.org/10.1002/0471142913.faf0102s00

Brand-Williams W, Cuvelier M E, Berset C. Use of free radical method to evaluate antioxidant activity. Lebensm.-Wiss. Technol 1995; 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Sánchez-Moreno C. Compuestos polifenólicos: estructura y classificación: presencia en alimentos y consumo: biodisponibilidad y metabolismo. Alimentaria: Revista de tecnología e higiene de los alimentos 2002; 329: 19–28.

Dae-Ok K, Lee KW, Hyong JL, Chang Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 2002; 50: 3713-7. https://doi.org/10.1021/jf020071c

World Medical Association. Declaration of Helsinki, 1st (Tokyo) amendment. 1975.

Cameron N, Hiernaux J, Jarman S, Marshall W, Tanner J, Whitehouse R. Anthropometry. In Practical Human Biology, J.S. Weiner, and J.A. Lourie, editors. London: Academic Press 1981, p. 27-52

Statistical Package for the Social Sciences (SPSS) Categories 13.0. Meulman JJ and Heiser WJ SPSS. Inc. Web site at http://www.spss.com or contact. SPSS Inc. Chicago. Illinois; 2012. USA

Moura RS, Ferreira TS, Lopes AA, Pires KM, Nesi R, Resende AC, Souza P J, Da Silva AJ, Valenca S. Effects of Euterpe oleracea Mart. (açaí) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine 2012; 19: 262–269. https://doi.org/10.1016/j.phymed.2011.11.004

Melo PS, Mabe CM, Gonçalves RH, Oliveira De J, Prado A, Matias S. Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds. Ind Crop Prod 2021; 161: 113204. https://doi.org/10.1016/j.indcrop.2020.113204

Franco LB, Zambiazi RC, Vieira CJ. Biocompounds and physical properties of açaí pulp dried by different methods. LWT - Food Sci Technol 2018; 335-340. https://doi.org/10.1016/j.lwt.2018.08.058

Schauss A, Wu X, Prior RL, Ou B, Patel D, Huang D, Kababick JP. Phytochemical and nutrient composition of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (açaí). J Agric Food Chem 2006; 54: 8598- 8603. https://doi.org/10.1021/jf060976g

Nascimento RJS, Couri S, Antoniassi R, Freitas SP. Composição em ácidos graxos do óleo da polpa de açaí extraído com enzimas e com hexano. Revista Brasileira de Fruticultura 2008; 30: 498–502. https://doi.org/10.1590/S0100-29452008000200040

Santos EHF, Figueiredo A, Donzeli VP. Aspectos físico-químicos e microbiológicos de polpas de frutas comercializadas em Petrolina (PE) e Juazeiro (BA). Braz J Food Technol 2016; 19 e2015089. https://doi.org/10.1590/1981-6723.8915

De Faria C, Modolo R, Moreno H. Plasma 8-Isoprostane as a Biomarker and Applications to Cardiovascular Disease. Biomarkers in Cardiovascular 2016; 467-488. https://doi.org/10.1007/978-94-007-7678-4_31

Rossetto R, Maciel GM, Rampazzo V, Charles I. Acai pulp and seeds as emerging sources of phenolic compounds for enrichment of residual yeasts (Saccharomyces cerevisiae) through biosorption process. LWT 2020; 128: 109447. https://doi.org/10.1016/j.lwt.2020.109447

Lee J. Anthocyanins of açai products in the United States. NFS Journal 2019; 14-15: 14-21. https://doi.org/10.1016/j.nfs.2019.05.001

Pacheco-Palencia LA, Duncan ChE, Talcot StT. Phytochemical composition and thermal stability of two commercial açaí species, Euterpe oleracea and Euterpe precatoria. Food Chem 2009; 115: 1199-1205. https://doi.org/10.1016/j.foodchem.2009.01.034

Vera V, Hillebrand S, Montilla E, Bobbio F, Winterhalter P. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and açaí (Euterpe oleracea Mart.) by HPLC-PDA-MS/MS. J Food Compos Anal 2008; 21:291-299. https://doi.org/10.1016/j.jfca.2008.01.001

Gallori S, Bilia AR, Bergonzi MC, Barbosa WLR, Vincieri FF. Polyphenolic constituents of anthocyanins from the açaí fruit (Euterpe oleracea) Mart Cienc Technol Aliment 2004; 20: 388–390.

Schauss A, Wu X, Prior RL, Ou B, Huang D, Owens J, Agarwal A, Jensen GS, Hart AN, Shanbrom E. Antioxidant capacity and other bioactivities of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (açaí). J Agric Food Chem 2006; 54: 8604-8610. https://doi.org/10.1021/jf0609779

Pozo-Insfran DD, Brenes CH, Talcoot ST. Phytochemical composition and pigment stability of açaí (Euterpe oleracea Mart.). J Agric Food Chem 2004; 52, 1539–1545. https://doi.org/10.1021/jf035189n

Pozo-Insfran DD, Percival SS, Talcott ST. Açaí (Euterpe oleracea Mart.) polyphenolics in their glycoside and aglycone forms induce apoptosis of HL-60 leukemia cells. J Agric Food Chem 2006; 54: 1222–1229. https://doi.org/10.1021/jf052132n

Lichtenthaler R, Rodrigues RB, Maia JG, Papagiannopoulos M, Fabricius H, Marx F. Total oxidant scavenging capacities of Euterpe oleracea Mart. (Açaí) fruits. Int J Food Sci Nutr 2005; 56:5364. https://doi.org/10.1080/09637480500082082

Carvalho J, Greggi L, Ferro A, Castania J, Vera de R V, Zerlotti A, Pires ML. Evaluation of the genotoxic and antigenotoxic effects after acute and subacute treatments with açaí pulp (Euterpe oleracea Mart) on mice using erythrocytes micronucleus test and the comet assay. Mutat Res 2010; 695: 22–28. https://doi.org/10.1016/j.mrgentox.2009.10.009

Kang J, Thakali K, Xie C, Kondo M, Tong Y, Ou B, Jensen G, Medina M, Schauss A, Wu X. Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea Mart. Food Chem 2012; 133: 6717. https://doi.org/10.1016/j.foodchem.2012.01.048

Medina MB. Simple and rapid method for the analysis of phenolic compounds in beverages and grains. J Agric Food Chem 2011; 59: 1565-1571. https://doi.org/10.1021/jf103711c

Aymoto H N, Genovese MI, Lajolo FM. Antioxidant Activity of Dietary Fruits, Vegetables, and Commercial Frozen Fruit Pulps. J Agric Food Chem 2005; 53: 2928-2935. https://doi.org/10.1021/jf047894h

Dasgupta A, Klein K. Fruit Fruits, Vegetables, and Nuts: Good Sources of Antioxidants. In: Elsevier Inc, editors. Antioxidants in Food, Vitamins and Supplements: Prevention and Treatment of Disease. USA 2014; 12: 209-232. https://doi.org/10.1016/C2012-0-02831-1

Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Investig 2005; 115: 1111-1119. https://doi.org/10.1172/JCI25102

Grattagliano I, Palmieri V, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic síndrome: a unifying hypothesis. J Nutr Biochem 2008; 19: 491-504. https://doi.org/10.1016/j.jnutbio.2007.06.011

Alessio H. Lipid peroxidation in healthy and diseased models: influence of different types of exercise. In: Handbook of Oxidants and Antioxidants in Exercise. (Sen C.K, Packer L and Hänninen O. ed.) Elsevier Science, Armsterdam, 2000; 115-127. https://doi.org/10.1016/B978-044482650-3/50005-5

Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Thorpe SR. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol Dial Transplant 1996; 11: 48-53. https://doi.org/10.1093/ndt/11.supp5.48

Sevanian A, Hochstein P. Mechanisms and consequences of lipid peroxidation in biological systems. Annu Rev Nutr 1985; 5: 365-390. https://doi.org/10.1146/annurev.nu.05.070185.002053

Downloads

Published

2021-03-17

How to Cite

Guzmán, R. ., Aponte, R. ., & Lares, M. . (2021). Bioactive Compounds of Acai (Euterpe oleracea) and the Effect of their Consumption on Oxidative Stress Markers. Journal of Nutritional Therapeutics, 10, 1–9. https://doi.org/10.6000/1929-5634.2021.10.01

Issue

Section

Articles