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Abstract: Plastic waste has become a significant global environmental issue, particularly in the context of food 
packaging. In the present study, active packaging films were fabricated by integrating chitosan-stabilized 
cinnamaldehyde Pickering emulsion (PE) and titanium dioxide particles (TNPs) into the semirefined carrageenan (SRC) 
matrix. The impact of cinnamaldehyde PE and TNPs on the physical and mechanical attributes of the SRC films was 
explored. The integration of TNPs (3%, w/v) and 0.5% cinnamaldehyde PE revealed promising mechanical properties, 
with 21.86 MPa tensile strength and 34.21% of elongation at break value. The inclusion of TNPs and cinnamaldehyde 
PE led to enhancements in the moisture content and water solubility of the SRC films. The thermal stability of the film 
was marginally increased with 0.5% cinnamaldehyde PE. Scanning electron microscopy (SEM) revealed a uniform 
distribution of active compounds in the SRC matrix. The study findings highlight the potential of cinnamaldehyde PE and 
TNPs in active food packaging films as eco-friendly alternatives to conventional petrochemical-derived plastics in food 
packaging. 

Keywords: Active food packaging, plastics waste, nanoparticle, pickering emulsion, cinnamaldehyde, titanium 
dioxide. 

1. INTRODUCTION 

Renewable polymers like polysaccharides, proteins, 
and lipids are being explored as eco-friendly packaging 
materials for food products, as a replacement for non-
degradable petrochemical-based alternatives [1,2]. 
Carrageenan-derived polysaccharides from red algae 
are abundant biopolymers with strong gel properties, 
used in packaging as film-forming material due to their 
superior mechanical properties and effective barrier 
against gases, lipids, and oils (Aga et al., 2021). 
Moreover, semirefined carrageenan (SRC) has a lower 
purity than other carrageenan products, with cellulose 
remaining from seaweed for enhanced binding and 
gelling properties at a lower cost [3]. Nonetheless, 
because of their hydrophilicity, most of the biopolymers 
are restricted in their application in food packaging due 
to the fact that the materials possess an affinity for 
water [4]. Utilizing carrageenan in conjunction with 
other biopolymers like cellulose nanofibril (CNF) 
improves the mechanical, barrier, and thermal 
properties of biopolymer packaging films [5]. Cellulose, 
comprised of the major substance in plant cell walls, is  
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abundant, cost-effective, and coupled with its 
outstanding capability to form packaging films [6,7].  

Nowadays, researchers have recently shown 
significant interest in incorporating nanofiller 
compounds to improve the functional properties of 
biopolymer-based packaging films, such as 
nanocellulose/gellan gum [8], gelatin/cellulose 
nanofiber/zinc oxide nanoparticles [9], chitosan/NiO 
nanoparticles [10], and cellulose nanofibrils/ZnO 
nanoparticles/Pickering emulsion-oregano essential oil 
[11]. In this scenario, titanium dioxide nanoparticles 
(TNPs) have received a lot of attention as a safe, cost-
effective, and stable metal oxide nanoparticle used as 
a functional filler for packaging films [12,13]. 
Furthermore, TNPs presents numerous advantages, 
including antibacterial properties, biocompatibility, 
photocatalytic activity, high refractive index, and 
ultraviolet absorption [12,14]. Packaging films 
incorporating various TNPs such as those made from 
sago starch [15], gelatin [16], chitosan [17], and 
hydroxypropyl methylcellulose [18], demonstrated 
enhanced antibacterial activities, tensile properties, and 
water vapor permeability.  

On the other hand, essential oils (EOs) have 
garnered significant attention as a potential substitute 
for food preservation because of their bacteriostatic 
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[19]. Cinnamaldehyde, found in natural EOs like 
cinnamon cassia, rose, and cinnamon bark has various 
pharmacological functions including antioxidant, 
antiviral, antibacterial, antifungal, anti-inflammatory, 
and anticancer [20]. Employing EOs that are potent 
with antibacterial and antioxidant compounds in food 
packaging materials can mitigate food safety risks 
related to oxidation [21,22]. Nevertheless, the utilization 
of EOs constrained by the active compound's high 
volatility, and the compatibility between EOs and matrix 
polymers is poor and susceptible to phase separation, 
leading to the deterioration of film’s properties [23,24]. 
Therefore, it is essential to choose suitable carriers for 
encapsulating EOs as an approach to safeguarding 
against the evaporation and oxidation of EOs. To 
address these limitations, a Pickering emulsion (PE) 
are utilized to enhance the dispersion of hydrophobic 
substances stabilized by solid particles such as 
chitosan, starch and zein [23]. The preparation of PE 
involves techniques such as, high shear 
homogenization and ultrasonication to create stable oil 
droplets [25]. The integration of PE, which contains EO 
stabilized by hydrophilic polymers, improves the 
biological performance of biodegradable packaging 
films [26].  

However, limited research exists on the impact of 
SRC incorporated with TNPs and cinnamaldehyde EO 
stabilized by PE on the physicochemical properties of 
active packaging films. Our previous study showed 
excellent mechanical properties on the film formulation 
with SRC/TNPs [27] and SRC/cellulose nanofibril 
(CNF) [28]. In this study, cinnamaldehyde PE was 
prepared by chitosan as a stabilizer. Then, SRC/CNF 
packaging films loaded with TNPs and varying 
concentration of cinnamaldehyde PE were developed. 
The resulting films will be analyzed for their structure 
morphology, mechanical, thermal, and physical 
properties. 

2. MATERIAL AND METHODS 

2.1. Materials 

Semirefined carrageenan was obtained by CV 
Simpul Agro Globalindo, Indonesia. Titanium dioxide 
(size: 20–25 nm, 99.7% purity), glacial acetic acid (99 
%), chitosan (medium molecular weight), 
cinnamaldehyde (natural, ≥95%) and glycerol were 
provided from Sigma-Aldrich, USA. Cellulose nanofibril 
was supplied from UPM Biomass Centre. Ultra-pure 
water was used to fabricate films and Pickering 
emulsion. 

2.2. Preparation of Cinnamaldehyde PE 

Cinnamaldehyde PE was prepared following a 
previously described method with minor modifications 
[29]. First, chitosan (2%, w/v) was dissolved in 10 
mg/mL glacial acetic acid solution using magnetic 
stirrer at 1500 rpm for 16 h. The chitosan nano-
suspension was prepared by ultrasonication (Q700 
Sonicator, Newtown) at an amplitude of 20 for 10 min 
while maintaining a constant temperature by immersing 
the suspension in cold water. Subsequently, 
cinnamaldehyde (1%, v/v) was blended into the 
chitosan nano-suspension and agitated using 
homogenizer (T25 UltraTurrax, IKA Werke GmbH & 
Co, Germany) at 10,000 rpm for a duration of 10 min. 
The sample was transferred to a transparent vial and 
stored at 4 °C prior to the analysis. The droplet size 
and the polydispersity index (PDI) of cinnamaldehyde 
Pickering emulsion was measured by Zetasizer Nano 
ZS (Malvern Instruments, UK) at room temperature.  

2.3. Preparation of SRC/Cinnamaldehyde PE Films 

The SRC/cinnamaldehyde PE films were fabricated 
by solution casting method with minor modifications 
[30]. Initially, SRC (2%, w/v) was added into ultra-pure 
water and subjected to continuous stirring at 80 °C for 
30 min. Glycerol (45%, v/v, based on SRC) was 
introduced as a plasticizer, and CNF (10%, v/v) was 
added as a reinforcing material [31] into the film-
forming solution. The TNPs (3%, w/v) were initially 
suspended in ultra-pure water and subjected to 
sonication (Q700 Sonicator, Newtown) for 30 min. 
Afterwards, TNPs and cinnamaldehyde PE at various 
concentrations (0.1, 0.5, 1, and 3%, v/v) were added to 
the film solution at a constant temperature. Film without 
cinnamaldehyde PE was prepared as a control film. 
The film solution was subsequently cast onto a non-
stick casting plate. The films were dried in an oven at 
40 °C overnight and then stored at room temperature 
for further analysis. The film samples were developed 
as the following Table 1. 

2.4. Fourier Transform Infrared (FTIR) Analysis 

The FTIR spectrum of the film sample within the 
wavelength range of 600 to 4000 cm−1 was evaluated 
using the attenuated total reflection (ATR) component 
(Nicolet iS5 spectrometer, Thermo Fisher Scientific, 
United States).  

2.5. Mechanical Properties 

The film thickness was determined as the average 
of measurements taken at five randomly selected 
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positions (Vernier caliper). The tensile strength (TS) 
and elongation at break (E) of the film samples (10 × 1 
cm2) were determined in accordance with the ASTM D 
882 standard method (ASTM International) using 
tensile testing machine (AG-X plus, Japan) at a 
constant speed of 10 mm/min. The stress-strain curves 
offered the film values for TS (MPa) and E (%). 

2.6. Water Solubility  

The film samples (2 × 2 cm²) were subjected to 
drying in an oven at 100 °C until a constant weight, W0, 
was achieved [31]. Following this, the film samples 
were immersed in 30 mL of distilled water for 24 hours 
at room temperature. Subsequently, the undissolved 
film samples were dried at 100 °C to a constant weight, 
Wf. The water solubility was calculated using the 
following equation:  

Water solubility (%) =
W0 !Wf

W0

"100         (1) 

2.7. Moisture Content  

The moisture content of the film samples was 
determined by measuring the weight loss of the films (2 
× 2 cm²) before drying (W1) and after undergoing a 24-
hour drying process in an oven at 100 °C (W2) [31]. 
Moisture content was then calculated using the 
specified equation. 

Moisture content (%) =W1 !W2

W1

"100         (2) 

2.8. Opacity 

The opacity of the films was assessed using a UV-
visible spectrophotometer (U-1800, Japan) at a 
wavelength of 600 nm, employing an empty plastic 
cuvette as the reference [31]. The opacity of the films 
was then determined through the following equation: 

Opacity = Abs600
d

!100           (3) 

where Abs is the absorbance, and d is the thickness of 
the film (mm). 

2.9. Scanning Electron Microscope (SEM) 

SEM a technique used to study the surface 
morphology and topography of materials at high 
magnification. When applied to semi-refined 
carrageenan films, SEM can provide detailed 
information about its micro-surface of films. 

2.10. Thermogravimetric Analysis (TGA) 

The thermal stability of the films was assessed 
employing a TGA (SDT Q600 V20.9 Shimadzu, Tokyo) 
analyzer. Samples weighing 1–2 mg were positioned in 
the heating chamber, enveloped by an inert nitrogen 
atmosphere (with a flow rate of 50 mL/min), and 
subjected to a heating rate of 10 °C/min. The 
examination of thermal stability was conducted within 
the temperature range of 25 °C to 400 °C.  

3. RESULT AND DISCUSSION 

3.1. Characterization of Cinnamaldehyde PE 

The particle size and PDI of cinnamaldehyde PE 
were 314.7 nm and 0.520, respectively. Previous study 
demonstrated a similar trend with droplet diameter of 
chitosan-loaded nanoemulsion with 0.5% EO (342.33 
nm) than that of chitosan-loaded NE with 1% EO 
(455.13 nm) [32]. The mean droplet size of 
nanoemulsions that is smaller than 500 nm and 
PDI<0.7 has been recognized as colloidal dispersion 
droplets, which bring homogeneity and stability and 
prevent droplet aggregation [19,33].  

3.2. FTIR Analysis 

The FTIR were employed for the analysis of 
chemical bonding and alterations in the functional 

Table 1: Film Formulation 

Sample TNPs (%, w/v) Cinnamaldehyde PE (%, v/v) 

SRC – – 

SRC/TNPs 3 – 

SRC/TNPs/0.1PE 3 0.1 

SRC/TNPs/0.5PE 3 0.5 

SRC/TNPs/1PE 3 1.0 

SRC/TNPs/3PE 3 3.0 
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groups of active packaging films. Figure 1 showed the 
FTIR spectra in the wavenumbers ranging from 500 – 
4000 cm-1 of SRC, TNPs and cinnamaldehyde PE. The 
films displayed a broad band between 3100 and 3600 
cm-1, corresponding to the O―H stretching vibration of 
the hydrogen bond–hydroxyl group in carrageenan and 
absorbed water [34,35]. The peak detected at ~2916 
cm-1 corresponds to the vibration of C―H stretching in 
all the films [36]. In the SRC films, signature bands of 
kappa carrageenan were noticeable at 1215 cm-1, 844 
cm-1, and 919 cm-1. There were attributed with the 
sulfate ester (O═S═O stretching), galactose-4-sulfate 
(C―O―S stretching), and 3,6-anhydro-galactose ring, 
respectively [34,36,37]. The band at 1159 cm-1 is 
associated with the symmetric stretching of C―O―C, 
while the band at 1033 cm-1 corresponds to the 
stretching of C―O and C―OH groups [38].  

The titanium dioxide spectra display a wide band 
below 600 cm-1, signifying the formation of 
nanostructures attributed to the metal-oxygen (Ti―O 
stretching) mode [39]. Previous studies demonstrated a 
similar trend, with a broad peak below 850 cm-1, 
indicating the stretching of the TiO for pure titanium 
dioxide nanostructure [40]. The interaction of various 
concentrations of cinnamaldehyde PE and TNPs in the 
SRC matrix led to a subtle change and shifting in the 
intensity of the bands, evident in all SRC films. 
Furthermore, the SRC films loaded with 
cinnamaldehyde PE showed stronger absorption 
spectra at approximately 1420 cm-1 and 1371 cm-1 
compared to unloaded cinnamaldehyde films. 

Meanwhile, the characteristic band at 2916 cm-1 for the 
SRC films shifted to 2938 cm-1 at a higher 
concentration of cinnamaldehyde in the films. A 
comparable pattern was disclosed in the study by 
Basumatary et al. [41], signifying the interaction 
between the combined active agents in the chitosan 
films with a shift and alteration in peak intensity.  

3.3. Mechanical Properties of the Films 

Packaging film with favorable mechanical 
properties, such as high tensile strength (TS) and 
elongation at break (E), proves beneficial for the 
efficient distribution and storage of food items. The TS 
and E properties of the films are primarily determined 
by the interaction among compounds and the internal 
structure within the film matrix [12]. Table 2 shows the 
thickness, TS and E properties of the films. The TS of 
TNPs-containing film increased slightly to 15.11 MPa 
when compared to the TS of SRC/CNF film (14.48 
MPa). Furthermore, TNPs-loaded SRC films increased 
the E value of the SRC films from 15.76% to 20.97%. 
The higher content of TNPs significantly has a notable 
impact on the agglomeration of particles within the film 
matrix, consequently affecting the TS of the films [42]. 
This study suggests that TNPs at a specific 
concentration can be evenly distributed, serve as fillers, 
and reinforce the film network.  

Conversely, incorporating cinnamaldehyde PE 
resulted in an enhancement of both the TS and E, and 
the film containing 0.5% cinnamaldehyde possessed 

 
Figure 1: FTIR spectra of (a) SRC, (b) SRC/TNPs, (c) SRC/TNPs/0.1PE, (d) SRC/TNPs/0.5PE, (e) SRC/TNPs/1PE, and (f) 
SRC/TNPs/3PE. 
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the highest TS and E values, measuring at 21.86 MPa 
and 34.22%, respectively. Nevertheless, as the 
concentration of the cinnamaldehyde PE increased 
from 0.5% to 3%, both the TS and E values of the films 
declined. The integration of the emulsion substances 
could function as a plasticizer in the matrices, 
improving the flexibility and strength of the films [25]. 
On the contrary, with an elevated concentration of 
cinnamaldehyde PE, there is a possibility of droplet 
aggregation during the film’s casting and drying, 
resulting in a subsequent decline in the mechanical 
properties of the films [43]. Larger oil droplets have the 
potential to disturb the internal structure of the film 
matrix, resulting in an uneven structure [29]. Hence, the 
study revealed that incorporating cinnamaldehyde PE 
and TNPs at a particular concentration markedly 
improved the TS and E values of the films.  

Table 2: Tensile Strength and Elongation Values of SRC 
Films with TNPs and Varying Concentrations of 
Cinnamaldehyde PE 

Sample TS (MPa) E (%) 

SRC 14.48 ± 0.67 15.76 ± 0.89 

SRC/TNPs 15.11 ± 1.53 20.97 ± 1.87 

SRC/TNPs/0.1PE 17.25 ± 1.09 24.98 ± 2.34 

SRC/TNPs/0.5PE 21.86 ± 0.42 34.22 ± 1.56 

SRC/TNPs/1PE 19.14 ± 3.76 27.63 ± 2.85 

SRC/TNPs/3PE 13.79 ± 1.02 26.34 ± 1.54 

 

3.4. Physical Properties of the Films 

The water solubility (S) and moisture content (M) of 
the SRC films are summarized in Table 2. The M value 
is an indicator that refers to the total void volume 
occupied by water molecules in the film matrix [44]. 
The addition of TNPs and cinnamaldehyde PE to the 
SRC films slightly decreased the M values from 

33.23% to 31.00%. The decrease in M value likely 
resulted from the robust intermolecular interaction 
within the compounds in the matrices, impeding the 
effective absorption of water molecules [45]. In 
addition, the hydrophobic nature of the oil encapsulated 
in the O/W emulsion would replace the partial 
interaction of polymers, active compounds, and water 
molecules in the matrices, consequently reducing the 
M value of the film [46]. Shen et al. [47] found that 
combining pullulan-gelatin-based films with PE 
containing clove essential oil reduced the M value, 
making the films more moisture-resistant. In particular, 
the incorporation of TNPs is thought to change the 
physical properties of the films and reduce the M value 
of the films. According to the study conducted by Dash 
et al. [44], an increment in the TNPs concentration from 
0 to 4% reduced the M values of the starch film, 
measuring at 23.12% to 15.15%. 

The S value is a crucial functional property for 
biodegradable-based packaging films due to its close 
linkage with the material's hydrophilicity property [48]. 
Conversely, high humidity conditions can soften the 
film's structure, leading to the use of lower-solubility 
films to minimize wetness for packaging applications 
[44]. The S value exhibited improvement with the 
incorporation of TNPs and cinnamaldehyde PE at any 
concentration, with values ranging from 86.99% to 
47.82% (Table 3). The lowest S value was achieved 
with the incorporation of 1% cinnamaldehyde, possibly 
due to the homogeneous structure in biodegradable 
active films [49]. According to the study by Zhao et al. 
[50], the solubility of chitosan nanoparticle films 
stabilized with Pickering emulsion is lowest due to 
stronger hydrogen bond interactions within the 
polymers and active compounds, which hindered the 
interaction of hydroxyl groups with water molecules. 
Hasheminya et al. [51] also observed a decrease in the 
S value of the gum-based films that incorporated EO-
based nanoemulsions, and this phenomenon was 

Table 3: Moisture Content and Water Solubility of SRC Films with TNPs and Varying Concentrations of 
Cinnamaldehyde PE 

Sample Moisture Content (%) Water Solubility (%) 

SRC 33.23 ± 0.98 86.99 ± 1.36 

SRC/TNPs 33.16 ± 1.25 73.31 ± 0.69 

SRC/TNPs/0.1PE 31.45 ± 2.44 74.39 ± 0.73 

SRC/TNPs/0.5PE 32.15 ± 0.13 66.34 ± 3.87 

SRC/TNPs/1PE 31.00 ± 1.86 47.82 ± 1.93 

SRC/TNPs/3PE 32.17 ± 0.23 71.26 ± 0.14 
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attributed to the hydrophobicity of the oil. Hence, the 
hydrophilic disadvantage of films can be somewhat 
mitigated by adding nanoparticles and/or emulsions 
containing essential oils.  

3.5. Thickness and Opacity of the Films 

The thickness of the SRC films in this study ranged 
from 0.0830 to 0.1270 mm (Table 4). The study found 
that incorporating active compounds resulted in the 
creation of more intricate matrices, consequently 
increasing the thickness of the SRC films [27]. 

Table 4: Thickness and Opacity of SRC Films with TNPs 
and Varying Concentrations of 
Cinnamaldehyde PE 

Films Thickness (mm) Opacity (mm-1) 

SRC 0.0830 ± 0.0051 3.10 ± 0.41 

SRC/TNPs 0.0900 ± 0.0032  12.47 ± 0.97 

SRC/TNPs/0.1PE 0.0870 ± 0.0085 13.78 ± 0.37 

SRC/TNPs/0.5PE 0.0930 ± 0.0048 11.47 ± 0.62 

SRC/TNPs/1PE 0.0900 ± 0.0091 13.44 ± 0.34 

SRC/TNPs/3PE 0.1270 ± 0.0035 10.95 ± 0.73 

 

Film transparency is crucial in food packaging for 
quality control, especially for perishable foods like 
meat, but it can also cause oxidation reactions from the 
light, leading to spoilage [13,40]. The opacity of the film 
is determined by ultraviolet-visible spectroscopy at the 
absorbance value of 600 nm with the film thickness 
[9,16]. Table 4 shows the opacity value of the SRC 
films incorporated with TNPs and various 
concentrations of cinnamaldehyde PE. The addition of 
3% TNPs increased the opacity of the film from 3.10 to 
12.47 mm-1. However, the addition of cinnamaldehyde 
PE at 0.1% and 1% slightly increased the film's opacity, 
with values of 13.78 mm-1 and 13.44 mm-1, 
respectively. In contrary, the film with 3% 
cinnamaldehyde PE exhibited a lower opacity value of 
10.95 mm-1 as compared to the unloaded 
cinnamaldehyde film. A previous study revealed that 
the transparency of pectin/gelatin film decreased with 
TNPs concentration, and film with 5% TNPs having the 
highest opacity, possibly due to the light scattering of 
nano-substances in the film matrix [40]. Nonetheless, 
the addition of cinnamaldehyde PE increased the 
opacity of the film, which may be due to the dispersion 
of droplets in the film matrix. The opacity of a film is 
significantly influenced by the size and number of 
scattered oil droplets, which are determined by the 

difference in refractive index between the two phases 
[52]. Liu et al. [53] showed a similar trend, adding 
cinnamon oil-Pickering emulsion to cellulose-based film 
reduced light transmittance due to the oil droplet 
dispersion.  

3.6. SEM Analysis 

The SEM analysis (Figure 2) was employed to 
examine the surface morphology of the SRC films, 
revealing their microstructure and the distribution 
compatibility of compounds within the film matrix. The 
SEM images exhibited a surface with fold-like features 
and the absence of any holes or cracks for all of the 
SRC films. The even distribution of TNPs and 
cinnamaldehyde PE throughout the polymer matrix 
showcases the uniform distribution of the compounds 
in the matrices. The study indicates that incorporating 
TNPs and cinnamaldehyde PE exhibits compatibility 
with polymer compounds in the film matrix, resulting in 
the formation of a continuous structure in the film. 
Research conducted by Kim et al. [6] illustrated a 
uniform distribution of active compounds in the 
matrices, and it was observed that the droplet size of 
the compounds increased with concentration in CNF-
based films.  

3.7. Thermal Properties of the Films 

The thermal degradation and decomposition of the 
SRC films were evaluated by TGA to observe the 
thermal stability, which was helpful for determining the 
films' resistance to incineration [54]. The rapid thermal 
change (evaporation and decomposition) in the film 
samples was provided by the DTG peak. The TGA 
thermogram pattern (Figure 3) showed that the thermal 
degradation of the films is classified into multi-stages. 
First, initial weight loss was observed between 30 – 
100 °C indicated to the evaporation of any remaining 
solvent and water [54,55]. Next, the majority of weight 
loss took place between 140 – 400 °C, due to the heat 
degradation of glycerol and polysaccharides, and the 
highest decomposition of the materials occurring 
roughly at 222 – 224 °C [56]. The addition of 
cinnamaldehyde PE at 0.5% slightly increased the 
thermal stability of the films as compared to the other 
SRC films. The char residual of the films increased 
marginally from ~22% to ~26% at 600 °C.  

4. CONCLUSION 

The addition of TNPs and cinnamaldehyde PE 
enhanced the mechanical and physical properties of 
the SRC films. The study found that the incorporation 
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Figure 2: Surface morphology of SRC films with TNPs and varying concentrations of cinnamaldehyde PE. 

 

 
Figure 3: Thermal profile (a) TGA and (b) DTG of SRC films with TNPs and varying concentrations of cinnamaldehyde PE. 
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of 0.5% cinnamaldehyde PE possessed the highest TS 
and E with values of 21.86 MPa and 34.22%, 
respectively, in the SRC film. Furthermore, the SRC 
film with TNPs and 0.5% cinnamaldehyde PE showed 
a smooth surface morphology as compared to the other 
SRC films. The moisture content and water solubility of 
the films improved with the addition of TNPs and 
cinnamaldehyde PE at any concentration. The thermal 
stability of the films marginally increased with the 
incorporation of cinnamaldehyde PE at 0.5%. Hence, 
this study integrated that the addition of TNPs and 
cinnamaldehyde PE enhanced the mechanical, 
physical, and thermal properties of the SRC films, 
which presenting favorable attributes to support the 
preservation of packaged food as an eco-friendly 
alternative to non-degradable packaging materials. 
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