Biohydrogen Production Using Immobilized Cells of Hyperthermophilic Eubacterium Thermotoga neapolitana on Porous Glass Beads

Authors

  • Tien Anh Ngo Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
  • Ha Thi Viet Bui Department of Microbiology, Hanoi University of Science, Hanoi, Vietnam

DOI:

https://doi.org/10.6000/1929-6002.2013.02.03.4

Keywords:

Thermotoga neapolitana, Biohydrogen, Immobilized cells, Porous glass beads, CSABR, Fed-batch culture

Abstract

Biohydrogen fermentation using immobilized cells of Thermotoga neapolitana on porous glass beads was successfully performed in a continuously stirring anaerobic bioreactor (CSABR) system operated under the conditions of temperature 75 oC, pH 7.0 and 5.0 g/L pentose (xylose) and/or hexose (glucose). The results showed that both batch and fed-batch cultivations of the immobilized cells were effective for high-rate and high-yield H2 production compared with those from the free cells. In the batch cultivation, the H2 production rate and H2 production yield of the immobilized cells, respectively achieved the highest values of 5.64 ± 0.19 mmol-H2 L-1h-1 and 1.84 ± 0.1 mol H2/mol xylose, which were almost 1.7-fold and 1.3-fold higher than those with free cells. The maximum H2 production rate ­(6.91 mmol L-1 h-1) in this proposed method was 1.5-fold higher than that of free cells in the fed-batch cultivation.

References

Rubin EM. Genomics of cellulosic biofuels. Nature 2008; 454: 841-45. http://dx.doi.org/10.1038/nature07190 DOI: https://doi.org/10.1038/nature07190

Alper H, Stephanopoulos G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 2009; 7: 715-23. http://dx.doi.org/10.1038/nrmicro2186 DOI: https://doi.org/10.1038/nrmicro2186

Winter CJ. Hydrogen energy- Abundant, efficient, clean: A debate over the energy-system-of-change. Int J Hydrogen Energy 2009; 34: S1-52. http://dx.doi.org/10.1016/j.ijhydene.2009.05.063 DOI: https://doi.org/10.1016/j.ijhydene.2009.05.063

Nguyen DTA, Han SJ, Kim JP, Kim MS, Sim SJ. Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 2010; 101: S38-S41. http://dx.doi.org/10.1016/j.biortech.2009.03.041 DOI: https://doi.org/10.1016/j.biortech.2009.03.041

Ngo TA, Kim MS, Sim SJ. Thermophilic hydrogen fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture. Int J Hydrogen Energy 2011; 36: 14014-23. http://dx.doi.org/10.1016/j.ijhydene.2011.04.058 DOI: https://doi.org/10.1016/j.ijhydene.2011.04.058

Cheng CL, Lo YC, Lee KS, Lee DJ, Lin CY, Chang JS. Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 2011; 102(18): 8514-23. http://dx.doi.org/10.1016/j.biortech.2011.04.059 DOI: https://doi.org/10.1016/j.biortech.2011.04.059

Navarro RM, Sánchez-Sánchez MC, Alvarez-Galvan MC, Del Valle F, Fierro JLG. Hydrogen production from renewable sources: biomass and photocatalytic opportunities. Energy Environ Sci 2009; 2: 35-54. http://dx.doi.org/10.1039/b808138g DOI: https://doi.org/10.1039/B808138G

Qiu C, Wen J, Jia X. Extreme-thermophilic biohydrogen production from lignocellulosic bioethanol distillery wastewater with community analysis of hydrogen-producing microflora. Int J Hydrogen Energy 2011; 14: 8243-51. http://dx.doi.org/10.1016/j.ijhydene.2011.04.089 DOI: https://doi.org/10.1016/j.ijhydene.2011.04.089

Ngo TA, Kim MS, Sim SJ. High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrogen Energy 2011; 36: 5636-42. http://dx.doi.org/10.1016/j.ijhydene.2010.11.057 DOI: https://doi.org/10.1016/j.ijhydene.2010.11.057

Sakai S, Yaishita T. Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 2007; 98(2): 340-48. http://dx.doi.org/10.1002/bit.21427 DOI: https://doi.org/10.1002/bit.21427

Kalia V, Lal S, Ghai R, Manda M, Chauhan A. Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 2003; 21(4): 152-56. http://dx.doi.org/10.1016/S0167-7799(03)00028-3 DOI: https://doi.org/10.1016/S0167-7799(03)00028-3

Kapdan I, Kargi F. Bio-hydrogen production from waste materials. Enzyme Micobial Technol 2006; 38: 569-82. http://dx.doi.org/10.1016/j.enzmictec.2005.09.015 DOI: https://doi.org/10.1016/j.enzmictec.2005.09.015

Schröder C, Selig M, Schönheit P. Glucose fermentation to acetate, CO2, and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbial 1994; 16: 460-70. DOI: https://doi.org/10.1007/BF00307766

van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claassen PAM, Stams AJM. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energy 2002; 27: 1391-98. http://dx.doi.org/10.1016/S0360-3199(02)00115-5 DOI: https://doi.org/10.1016/S0360-3199(02)00115-5

d’Ippolito G, Dipasquala L, Vella FM, Romano I, Gambacorta A, Fontana A. Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy 2010; 35: 2290-95. http://dx.doi.org/10.1016/j.ijhydene.2009.12.044 DOI: https://doi.org/10.1016/j.ijhydene.2009.12.044

Heyndrickx M, Vansteenbeeck A, Vos Pd, Ley Ld. Hydrogen gas production from continuous fermentation of glucose in a minimal medium with Clostridium butyrieum LMG 1213tl. Syst Appl Microbiol 1986; 8: 239-44. http://dx.doi.org/10.1016/S0723-2020(86)80087-X DOI: https://doi.org/10.1016/S0723-2020(86)80087-X

Taguchi F, Mizukami N, Hasegawa K, Saito-Taki T. Microbial conversion of arabinose and xylose to hydrogen by a newly isolated Clostridium sp. No. 2. Can J Microbiol 1994; 40: 228-33. http://dx.doi.org/10.1139/m94-037 DOI: https://doi.org/10.1139/m94-037

Tanisho S, Suzuki Y, Wakao N. Fermentative hydrogen evolution by Enterobacter aerogenes strain E82005. Int J Hydrogen Energy 1987; 12: 623-27. http://dx.doi.org/10.1016/0360-3199(87)90003-6 DOI: https://doi.org/10.1016/0360-3199(87)90003-6

Yokoi H, Saitu A, Uchida H, Hirose J, Hayashi S, Takashi Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 2001; 9: 58-63. DOI: https://doi.org/10.1263/jbb.91.58

Ueno Y, Otsuka S, Morimoto M. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 1996; 82: 194-97. http://dx.doi.org/10.1016/0922-338X(96)85050-1 DOI: https://doi.org/10.1016/0922-338X(96)85050-1

Kumar N, Ghosh A, Das D. Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol Lett 2001; 23: 537-41. http://dx.doi.org/10.1023/A:1010334803961 DOI: https://doi.org/10.1023/A:1010334803961

Nguyen DTA, Kim KR, Kim MS, Sim SJ. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrogen Energy 2010; 35: 13392-98. http://dx.doi.org/10.1016/j.ijhydene.2009.11.112 DOI: https://doi.org/10.1016/j.ijhydene.2009.11.112

Nguyen DTA, Kim JP, Kim MS, Oh YK, Sim SJ. Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int J Hydrogen Energy 2008; 33: 1483-88. http://dx.doi.org/10.1016/j.ijhydene.2007.09.033 DOI: https://doi.org/10.1016/j.ijhydene.2007.09.033

Van Groenestijn J, Hazewinkel J, Nienoord M, Bussmann P. Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrogen Energy 2001; 27: 1141-47. http://dx.doi.org/10.1016/S0360-3199(02)00096-4 DOI: https://doi.org/10.1016/S0360-3199(02)00096-4

Lu J, Gavala H, Skiadas I, Mladenovska Z, Ahring B. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. J Environm Manag 2008; 88: 881-89. http://dx.doi.org/10.1016/j.jenvman.2007.04.020 DOI: https://doi.org/10.1016/j.jenvman.2007.04.020

Kádár Z, de Vrije T, van Noorden G, Budde M, Szengyel Z, Réczey K, Claassen P. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol 2004; 114: 497-508. http://dx.doi.org/10.1385/ABAB:114:1-3:497 DOI: https://doi.org/10.1385/ABAB:114:1-3:497

Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 2001; 29: 280-87. http://dx.doi.org/10.1016/S0141-0229(01)00394-5 DOI: https://doi.org/10.1016/S0141-0229(01)00394-5

Karube I, Urano N, Matsunaga T, Suzuki S. Hydrogen production from glucose by immobilized growing cells of Clostridium butyricum. Appl Microbiol Biotechnol 1982; 16:

-9. http://dx.doi.org/10.1007/BF01008235 DOI: https://doi.org/10.1007/BF01008235

a) Yokoi H, Maeda Y, Hirose J, Hayashi S, Takasaki Y. H2 production by immobilized cells of Clostridium butyricum on porous glass beads. Biotechnol Tech 1997; 11: 431-33. http://dx.doi.org/10.1023/A:1018429109020 DOI: https://doi.org/10.1023/A:1018429109020

b) Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y. Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes Strain HO-39. J Ferment Bioeng 1997; 83(5): 481-84.

http://dx.doi.org/10.1016/S0922-338X(97)83006-1 DOI: https://doi.org/10.1016/S0922-338X(97)83006-1

von Felten P, Zürrer H, Bachofen R. Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum. Appl Microbiol Biotechnol 1985; 23: 15-20. http://dx.doi.org/10.1007/BF02660112 DOI: https://doi.org/10.1007/BF02660112

Wu SY, Lin CN, Chang JS, Lee KS, Lin PJ. Microbial hydrogen production with immobilized sewage Sludge. Biotechnoil Prog 2002; 18: 921-26. http://dx.doi.org/10.1021/bp0200548 DOI: https://doi.org/10.1021/bp0200548

Wu SY, Lin CY, Lee KS, Hung CH, Chang JS, Lin PJ, Chang FY. Dark fermentation hydrogen production from xylose in different bioreactors using sewage sludge microflora. Energy Fuels 2008; 22: 113-19. http://dx.doi.org/10.1021/ef700286s DOI: https://doi.org/10.1021/ef700286s

Ismail I, Hassan MA, Rahman NAA, Soon CS. Effect of retention time on biohydrogen production by microbial consortia immobilized in polydimethylsiloxane. Afr J Biotechnol 2011; 10: 601-609.

Ngo TA, Nguyen TH, Bui HTV. Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renewable Energy 2012; 37: 174-79. http://dx.doi.org/10.1016/j.renene.2011.06.015 DOI: https://doi.org/10.1016/j.renene.2011.06.015

Kaushik N, Debarata D. Improvement of fermentative hydrogen production – various approaches. Appl Microbiol Biotechol 2004; 65: 520-29. DOI: https://doi.org/10.1007/s00253-004-1644-0

Basile M. A, Carfagna C, Cerruti P, d`Ayala G. G, Fontana A, Gambacorta A, Malinconico M, Dipasquale L. Continuous hydrogen production by immobilized cultures of Thermotoga neapolitana on an acrylic hydrogel with pH-buffering properties. RSC Adv 2012; 2: 3611-14. DOI: https://doi.org/10.1039/c2ra01025a

Aruna K, Munawar TM. Biological hydrogen production by using immobilized Rhodobacter sphaeroides O. U 5. J. Microbiol Biotech Res 2012; 2(6): 906-12.

Zhao L, Cao GL, Wang AJ, Guo WQ, Liu BF, Ren HY, et al. Enhanced bio-hydrogen production by immobilized Clostridium sp. T2 on a new biological carrier. Int J Hydrogen Energy 2012; 37: 162-66. http://dx.doi.org/10.1016/j.ijhydene.2011.09.103 DOI: https://doi.org/10.1016/j.ijhydene.2011.09.103

Downloads

Published

2013-08-31

How to Cite

Ngo, T. A., & Bui, H. T. V. (2013). Biohydrogen Production Using Immobilized Cells of Hyperthermophilic Eubacterium Thermotoga neapolitana on Porous Glass Beads. Journal of Technology Innovations in Renewable Energy, 2(3), 231–238. https://doi.org/10.6000/1929-6002.2013.02.03.4

Issue

Section

Articles