Optimal Design of PID Controller for Doubly-Fed Induction Generator-Based Wave Energy Conversion System Using Multi-Objective Particle Swarm Optimization
DOI:
https://doi.org/10.6000/1929-6002.2014.03.01.4Keywords:
Grid integration, Wave Energy Conversion systems, Doubly-Fed Induction Generator (DFIG), Vector control, Genetic Algorithm GA, Particle Swarm Optimization PSOAbstract
This paper presents the complete modeling and simulation of Wave Energy Conversion System (WECS) driven doubly-fed induction generator with a closed-loop vector control system. Two Pulse Width Modulated voltage source (PWM) converters for both rotor- and stator-side converters have been connected back to back between the rotor terminals and utility grid via common dc link. The closed-loop vector control system is normally controlled by a set of PID controllers which have an important influence on the system dynamic performance. This paper presents a Multi-objective optimal PID controller design of a doubly-fed induction generator (DFIG) wave energy system connected to the electrical grid using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). PSO and GA are used to optimize the controller parameters of both the rotor and grid-side converters to improve the transient operation of the DFIG wave energy system under a fault condition as compared with the conventional methods to design PID controllers.
References
Halamay D, Brekken T, Simmons A, McArthur S. Reserve requirement impacts of large-scale integration of wind, solar and ocean wave power generation. IEEE Trans Sustain Energy 2011; 2(3): 321-28. http://dx.doi.org/10.1109/TSTE.2011.2114902 DOI: https://doi.org/10.1109/TSTE.2011.2114902
Fusco F, Ringwood J. Variability reduction through combination of wind and waves: A Irish case study. Energy 2010; 35: 314-25. http://dx.doi.org/10.1016/j.energy.2009.09.023 DOI: https://doi.org/10.1016/j.energy.2009.09.023
Yang X, Song Y, Wang G, Wang M. A comprehensive review on the development of sustainable energy strategy and implementation in China. IEEE Trans Sustain Energy 2010; 1(2): 57-65. http://dx.doi.org/10.1109/TSTE.2010.2051464 DOI: https://doi.org/10.1109/TSTE.2010.2051464
Wang L, Chen Z-J. Stability Analysis of a Wave-Energy Conversion System Containing a Grid-Connected Induction Generator Driven by a Wells Turbine. IEEE Trans Energy Conver 2010; 25(2): 555-63. DOI: https://doi.org/10.1109/TEC.2009.2036837
Amundarain M, Alberdi M, Garrido AJ, Garrido I. Modeling and Simulation of Wave Energy Generation Plants: Output Power Control. IEEE Trans Indust Electron 2011; 58(1): 105-17. DOI: https://doi.org/10.1109/TIE.2010.2047827
Benelghali S, Benbouzid MEH, Charpentier JF. Marine tidal current electric power generation technology: State of the art and current status. Proc 2007 IEEE IEMDC, Antalya (Turkey) 2007; 2: 1407-12. DOI: https://doi.org/10.1109/IEMDC.2007.383635
Fusco F, Ringwood JV. A Simple and Effective Real-Time Controller for Wave Energy Converters. IEEE Trans Sustain Energy 2013; 4(1): 21-30. DOI: https://doi.org/10.1109/TSTE.2012.2196717
Iwanski G, Koczara W. The DFIG-based power generation system with UPS function for variable-speed applications. IEEE Trans Ind Electron 2008; 55(8): 3047-54. http://dx.doi.org/10.1109/TIE.2008.918473 DOI: https://doi.org/10.1109/TIE.2008.918473
Hu J, He Y, Xu L, Williams BW. Improved control of DFIG systems during network unbalance using PI–R current regulators. IEEE Trans Ind Electron 2009; 56(2): 439-51. http://dx.doi.org/10.1109/TIE.2008.2006952 DOI: https://doi.org/10.1109/TIE.2008.2006952
Yamamoto M, Motoyoshi O. Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans Power Electron 1991; 6(4): 624-29. http://dx.doi.org/10.1109/63.97761 DOI: https://doi.org/10.1109/63.97761
Pena R, Clare JC, Asher GM. Doubly fed induction generator using back-to-back PWM converters and its application to variable speed wind-energy generation. IEE Proc Electr Power Appl 1996; 143(3): 231-41.
Muller S, Deicke M, De Doncker RW. Doubly fed induction generator system for wind turbines. IEEE Ind Appl Mag 2002; 8(3): 26-33. http://dx.doi.org/10.1109/2943.999610 DOI: https://doi.org/10.1109/2943.999610
Pena R, Clare JC, Asher GM. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proc Electr Power Appl 1996; 143(3): 231-41. http://dx.doi.org/10.1049/ip-epa:19960288 DOI: https://doi.org/10.1049/ip-epa:19960288
Tapia A, Tapia G, Ostolaza JX, Saenz JR. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE Trans Energy Conver 2003; 18(2): 194-204. http://dx.doi.org/10.1109/TEC.2003.811727 DOI: https://doi.org/10.1109/TEC.2003.811727
Tang T, Xu L. A flexible active reactive power control strategy for a variable speed constant frequency generating system. IEEE Trans Power Electron 1995; 10(4): 472-77. http://dx.doi.org/10.1109/63.391945 DOI: https://doi.org/10.1109/63.391945
Almeida RG, Peças Lopes JA, Barreiros JAL. Improving Power System Dynamic Behavior Through Doubly Fed Induction Machines Controlled by Static Converter Using Fuzzy Control. IEEE Trans Power Syst 2004; 19: 1942-50. http://dx.doi.org/10.1109/TPWRS.2004.836271 DOI: https://doi.org/10.1109/TPWRS.2004.836271
Storn R, Price K. Minimizing the real functions of the ICEC’96 contest by differential evolution. Proc IEEE Int Conf Evolutionary Computing 1996; 842-44. http://dx.doi.org/10.1109/ICEC.1996.542711 DOI: https://doi.org/10.1109/ICEC.1996.542711
Storn R, Price K. Differential evolution- a simple and efficient adaptive scheme for global optimization over continuous spaces. ICSI Technical Report TR-95 –012, Berkeley, CA 1995.
Yang L, Yang GY, Xu Z, Dong ZY, Wong KP, Ma X. Optimal controller design of a doubly-fed induction generator wind turbine system for small signal stability enhancement. Generation, Transmission & Distribution, IET 2010; 4(5): 579-97. DOI: https://doi.org/10.1049/iet-gtd.2009.0553
Abido MA. A novel approach to conventional power system stabilizer design using tabu search. Int J Electr Power Energy Syst 1999; 21(6): 443-54. http://dx.doi.org/10.1016/S0142-0615(99)00004-6 DOI: https://doi.org/10.1016/S0142-0615(99)00004-6
Abido MA. Robust design of multimachine power system stabilizers using simulated annealing. IEEE Trans Energy Conver 2000; 15(3): 297-304. http://dx.doi.org/10.1109/60.875496 DOI: https://doi.org/10.1109/60.875496
Qiao W, Venayagamoorthy GK, Harley RG. Design of optimal PI controllers for doubly fed induction generators driven by wind turbines using particle swarm optimization. Proc Int Joint Conf Neural Network, (Canada) 2006; 1982-87.
Vieira JPA, Nunes MVA, Bezerra UH, Do Nascimento AC. Designing optimal controllers for doubly fed induction generators using genetic algorithm. IET Gener Transm Distrib 2009; 3(5): 472-84. http://dx.doi.org/10.1049/iet-gtd.2008.0239 DOI: https://doi.org/10.1049/iet-gtd.2008.0239
Vieira J, Nunes M, Bezerra UH. Design of optimal PI controllers for doubly fed induction generators in wind turbines using genetic algorithm” Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century 2008; 1-7. DOI: https://doi.org/10.1109/PES.2008.4596751
Serra G, Bottura C. Genetic Approach for Neural Scheduling of Multiobjective Fuzzy PI Controllers. Int Symp Evolving Fuzzy Syst 2006. DOI: https://doi.org/10.1109/ISEFS.2006.251147
Ruiz-Cruz R, Sanchez EN, Ornelas-Tellez F, Loukianov AG, Harley RG. Particle Swarm Optimization for Discrete-Time Inverse Optimal Control of a Doubly Fed Induction Generator. IEEE Trans Cybernet 2012; 99: 1-12. DOI: https://doi.org/10.1109/CCA.2011.6044427
Kennedy J, Eberhart R. Particle swarm optimization. Proc IEEE Int Conf Neural Netw 1995; 4: 1942-48. DOI: https://doi.org/10.1109/ICNN.1995.488968
Shi Y, Eberhart R. Empirical study of particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation 1999; 3.
Eberhart R, Shi Y. Particle swarm optimization: developments, applications and resources. Proceedings of the 2001 Congress on Evolutionary Computation, 2001; 1: 81-86. DOI: https://doi.org/10.1109/CEC.2001.934374
Shi Y, Eberhart R. Parameter Selection in Particle Swarm Optimization. Proc Seventh Annual Conf Evolutionary Progr 1998; 591-601. http://dx.doi.org/10.1007/BFb0040810 DOI: https://doi.org/10.1007/BFb0040810
Ngatchou P, Zarei A, El-Sharkawi A. Pareto Multi Objective Optimization. Intelligent Systems Application to Power Systems, 2005. Proceedings of the 13th International Conference on 6-10 Nov 2005; 84-91.
Berizzi A, Innorta M, Marannino P. Multiobjective optimization techniques applied to modern power systems In 2001 IEEE Power Engineering Society Winter Meeting, 2001.
Coello Coello CA, Lechuga MS. MOPSO: A proposal for multiple objective particle swarm optimization. IEEE Proceedings World Congress on Computational Intelligence 2003; 1051-56.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Journal of Technology Innovations in Renewable Energy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:
- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .