Computational Assessment of a Modular Composite Wind Turbine Blade Joint

Authors

  • Norimichi Nanami Department of Mechanical Engineering, College of Science and Technology, Nihon University,
  • Ozden O. Ochoa Department of Mechanical Engineering, the Dwight Look College of Engineering, Texas A&M University,

DOI:

https://doi.org/10.6000/1929-6002.2016.05.03.1

Keywords:

Finite element analysis, Joining design concept, Structural response, Hybrid composite materials, Large-scale wind turbine blades.

Abstract

Wind energy is one of the most promising and mature alternatives to satisfy the global demand for energy as the world population and the economic activity surge. The wind energy market has grown rapidly in the last couple of decades, boosting up the size of wind turbines to generate higher power output. Typically, the larger/longer blade designs rely on hybrid material systems such as carbon and/or glass fiber (CF/GF) reinforced polymers to improve specific stiffness/strength and damage tolerance.

Herein, we propose a computational design concept for a modular hybrid composite wind turbine blade that maintains its structural integrity and serviceability requirements. The modular configuration will simplify manufacturing-assembly processes and reduce expenses both in transportation and facilities requirements. The 80 m blade in this study is composed of two sections that are joined together with an innovative compression joint. Our results when compared to a single continuous blade, showed no significant alterations to its structural response. It is concluded that the proposed computational design concept that allow two modular blades to create full-length blade with robust joints is achievable. This modular concept can be easily extended for further multi-section modular blade configurations.

References


[1]United States. US Energy Information Administration. International energy outlook 2016. DOE/EIA-0484. Washington, DC:Department of Energy 2016.
[2]Archer CL, Jacobson MZ. Evaluation of global wind power. J of Geophys Res 2005; 110: D12110.
[3]Japan. Cabinet Secretariat. Final report on the accident at the Fukushima nuclear power stations of Tokyo Electric Power Company. Tokyo: Japan Atomic Energy Agency 2012.
[4]Fukushima Offshore Wind Consortium [Internet]. Fukushima Offshore Wind Consortium; 2014 [cited 2014 September 22].Available from: http://www.fukushima-forward.jp/english/ index.html
[5]Enercon GmbH. Windblatt: 01/2010. Aurich: Enercon GmbH 2010.
[6]Technical Specification on Wind Turbine SWT-4.0-130[Internet]. Siemens AG;[cited 2014 March 12]: Available from http://www.energy.siemens.com/us/en/renewable-energy/wind-power/platforms/g4-platform/wind-turbine-swt-4-0-130.htm#content=Technical%20Specification
[7]V164-8.0 MW Breaks World Record for Wind Energy Production [Internet]. MHI Vestas Offshore Wind; [cited 2016 Aug 21]: Available from http://www.mhivestasoffshore.com/ v164-8-0-mw-breaks-world-record-for-wind-energy-production/
[8]Nanami N. Structural and damage assessment of multi-section modular hybrid composite wind turbine blade [Ph.D dissertation].[College Station]:Texas A&M University 2014.
[9]Nanami N, Ochoa OO. Vibration and dynamic response of hybrid wind turbine blades. In:Liu D, editor.Dynamic effects in composites materials.Vol 1.Lancaster: DEStech Publications 2012; pp. 289-301.
[10]Nanami N, Ochoa OO. Bird impact response on a pre-loaded composite wind turbine blade. In: Hoa SV, Hubert P, editors. Proceedings of the 19th International Conference on Composite Materials;2013:Jul 28-Aug 2; Montreal, Canada: Paper ID: 6415.
[11]Nolet S. Advanced manufacturing initiative final report. Presented at the 2014 Wind Turbine Blade Workshop; 2014: Aug 26-28; Albuquerque, New Mexico.
[12]Gamesa 4.5 MW Platform Catalogue. [Online]. Gamesa Corporación Tecnológica; [cited 2013 May 28]: Available fromhttp://www.gamesacorp.com/recursos/doc/productos-servicios/aerogeneradores/catalogo-g10x-45mw-eng.pdf
[13]Enercon GmbH. Windblatt:01/2014. Aurich: Enercon GmbH; 2014.
[14]Saenz E, Nuin I, Montejo R, Sanz J. Development and validation of a new joint system for sectional blades. Wind Energy 2014; 18(3): 419-28.http://dx.doi.org/10.1002/we.1704
[15]Wetzel K. Modular blade design & manufacturing. Presented at the 2014 Wind Turbine Blade Workshop, 2014: Aug 26-28; Albuquerque, New Mexico.
[16]Eyb E, inventor; Eyb E, assignee. Modular rotor blade for a wind turbine and method for assembling same. United States patent US 7654799 B2. 2007 Nov.
[17]Glenn B, Dehlsen JGP, Keller W, Rohm A, Mehrle W, Stuckert M, inventor; Clipper Windpower Technology Inc., assignee. A modular rotor blade for a power-generating turbine and a method for assembling a power-generating turbine with modular rotor blades. International patent WO 2009/090537 A2. 2009 Jul.
[18]Stam R, Starke A, Veldkamp B, Meyer J, inventor; General Electric Company, assignee. Blade modular, a modular rotor blade and a method for assembling a modular rotor blade. United States patent US 8245400 B2. 2012 Aug.
[19]Somers D. The S816, S817, and S818 Airfoils. Golden: National Renewable Energy Laboratory; 2004. Report No.: NREL/SR-500-36333.
[20]Griffin DA. Blade system design studies volume I: Composite technologies for large wind turbine blades. Albuquerque: Sandia National Laboratories; 2002. Report No.: SAND2002-1879.
[21]Griffin DA. Blade system design studies volume II: Preliminary blade designs and recommended test matrix. Albuquerque: Sandia National Laboratories; 2004. Report No.: SAND2004-0073.
[22]Burton T, Jenkins N, Sharpe D, Bossanyi E. Wind energy handbook: New York: Wiley 2011.http://dx.doi.org/10.1002/9781119992714
[23]Hau E. Wind turbines: Fundamentals, technologies, application, economics: 2nd ed. New York: Springer-Verlag 2006.http://dx.doi.org/10.1007/3-540-29284-5
[24]Berring P, Branner K, Berggreen C, Knudsen HW. Torsional performance of wind turbine blades-part II: numerical validation. In: Kageyama K, Ishikawa T, Takeda N, Hojo M, Sugimoto S, Ogasawara T, editors. Proceedings of the 16th International Conference on Composite Materials 2007: Jul 8-13; Kyoto, Kyoto, Japan.
[25]Laird DL, Montoya FC, Malcolm DJ. Finite element modeling of wind turbine blades. In:Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit 2005: Jan 10-13; Reno, Nevada.http://dx.doi.org/10.2514/6.2005-195
[26]Abaqus Inc. ABAQUS Documentation Collection: Ver. 6.12. Pawtucket: Abaqus Inc. 2012.
[27]Vural M, Ravichandran G. Microstructural aspects and modeling of failure in naturally occurring porous composites. Mech Mater 2003; 35: 523-36.http://dx.doi.org/10.1016/S0167-6636(02)00268-5
[28]Hashin Z, Rotem A. A fatigue failure criterion for fiberreinforced materials. J Compos Mater 1973; 7: 448-64.http://dx.doi.org/10.1177/002199837300700404
[29]Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech 1980; 47: 329-34.http://dx.doi.org/10.1115/1.3153664
[30]Kyriazoglou C, Guild FJ. Finite element prediction of damping of composite GFRP and CFRP laminates: a hybrid formulation-vibration damping experiments and Rayleigh damping. Compos Sci Technol 2007; 67: 2643-54.http://dx.doi.org/10.1016/j.compscitech.2004.12.044
[31]Continuous Woven Carbon Fiber.
[Online].MatWeb;
[cited 2010 Jan 12]: Available fromhttp://www.matweb.com/search/ QuickText.aspx?SearchText=woven%20carbon
[32]Daniel MD, Ishai O. Engineering mechanics of composite materials. New York: Oxford University Press 1994.
[33]Galvanized and Stainless Aircraft Cable.
[Online]. Worldwide Enterprises Inc.;
[cited 2013 May 13]: Available from http://www.wwewirerope.com/aircraftcable/
[34]TSK Stainless Ropes.
[Online]. Tokyo Rope MFG;
[cited 2014 Apr 17]: Available from http://saas.startialab.com/ acti_books/1045176105/5240/_SWF_Window.html
[35]Carbon Fiber Composite Cable.
[Online]. Tokyo Rope MFG;
[cited 2014 Apr 17]: Available from http://www.tokyorope.co. jp/product/cfcc/material/index.html
[36]Meier U. Carbon fiber-reinforced polymers: Modern materials in bridge engineering. Struct Eng Int 1992; 2: 7-12.http://dx.doi.org/10.2749/101686692780617020

Downloads

Published

2016-11-04

How to Cite

Nanami, N., & Ochoa, O. O. (2016). Computational Assessment of a Modular Composite Wind Turbine Blade Joint. Journal of Technology Innovations in Renewable Energy, 5(3), 76–90. https://doi.org/10.6000/1929-6002.2016.05.03.1

Issue

Section

Articles