Energy Generation from Osmotic Pressure Difference Between the Low and High Salinity Water by Pressure Retarded Osmosis

Authors

  • Xu Wang Wuhan Univeristy
  • Zhongmai Huang Wuhan University
  • Lei Li Jiao Tong University
  • Shusheng Huang EnvWater Co. Ltd.
  • Eileen Hao Yu Newcastle University
  • Keith Scott Newcastle University

DOI:

https://doi.org/10.6000/1929-6002.2012.01.02.7

Keywords:

Osmosis, pressure retarded osmosis, membrane, concentration polarization

Abstract

Osmosis is a natural phenomenon and exists widely from the salinity gradient between sea water and fresh water. This green energy can be captured using pressure retarded osmosis (PRO). A potential energy of 2.5 terawatts is available globally from rivers flowing into the sea. Membrane is the key component and it has been the main limitation for this technique. The most challenging problem is the internal concentration polarization (ICP) which reduces the water flux by up to 80 %. This paper reviews most critical and recent publications on membrane fabrication (e.g. composite membrane, hollow fibber membrane). Summary and perspectives will be given in order to prepare high performance membranes.

References

[1] Pattle RE. Production of Electric Power by mixing Fresh and Salt Water in the Hydroelectric Pile. Nature 1954; 174(4431): 660-60. http://dx.doi.org/10.1038/174660a0[2] Logan BE, Elimelech M. Membrane-based processes for sustainable power generation using water. Nature 2012; 488(7411): 313-19. http://dx.doi.org/10.1038/nature11477[3] Zhao S, et al. Recent developments in forward osmosis: Opportunities and challenges. J Membr Sci 2012; 396(0): 1-21. http://dx.doi.org/10.1016/j.memsci.2011.12.023[4] Loeb S. Osmotic power plants. Science 1975; 189(4203): 654-55. http://dx.doi.org/10.1126/science.189.4203.654[5] Loeb S, Van Hessen F, Shahaf D. Production of energy from concentrated brines by pressure retarded osmosis. II. Experimental results and projected energy costs. J Membr Sci 1976; 1(3): 249-69. http://dx.doi.org/10.1016/S0376-7388(00)82271-1[6] Loeb S, Mehta GD, A two-coefficient water transport equation for pressure-retarded osmosis. J Membr Sci 1978; 4(0): 351-62. http://dx.doi.org/10.1016/S0376-7388(00)83313-X[7] Loeb S, Honda T, Reali M. Comparative mechanical efficiency of several plant configurations using a pressure-retarded osmosis energy converter. J Membr Sci 1990; 51(3): 323-35. http://dx.doi.org/10.1016/S0376-7388(00)80354-3[8] Loeb S, et al. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J Membr Sci 1997; 129(2): 243-49. http://dx.doi.org/10.1016/S0376-7388(96)00354-7[9] Loeb S, Bloch MR. Countercurrent flow osmotic processes for the production of solutions having a high osmotic pressure. Desalination 1973; 13(2): 207-15. http://dx.doi.org/10.1016/S0011-9164(00)82045-7[10] Loeb S. Energy production at the Dead Sea by pressure-retarded osmosis: Challenge or chimera? Desalination 1998; 120(3): 247-62. http://dx.doi.org/10.1016/S0011-9164(98)00222-7[11] Loeb S. Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules. Desalination 2002; 143(2): 115-22. http://dx.doi.org/10.1016/S0011-9164(02)00233-3[12] McGinnis RL, McCutcheon JR, Elimelech M. A novel ammonia-carbon dioxide osmotic heat engine for power generation. J Membr Sci 2007; 305(1-2): 13-19. http://dx.doi.org/10.1016/j.memsci.2007.08.027[13] http://www.statkraft.com/ [14] Lee KL, Baker RW, Lonsdale HK. Membranes for power generation by pressure-retarded osmosis. J Membr Sci 1981. 8(2): 141-71. http://dx.doi.org/10.1016/S0376-7388(00)82088-8[15] McCutcheon JR, Elimelech M. Modeling water flux in forward osmosis: Implications for improved membrane design. AIChE J 2007; 53(7): 1736-44. http://dx.doi.org/10.1002/aic.11197[16] Cath TY, Childress AE, Elimelech M. Forward osmosis: Principles, applications, and recent developments. J Membr Sci 2006; 281(1-2): 70-87. http://dx.doi.org/10.1016/j.memsci.2006.05.048[17] McCutcheon JR, McGinnis RL, Elimelech M. Desalination by ammonia-carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. J Membr Sci 2006; 278(1-2): 114-23. http://dx.doi.org/10.1016/j.memsci.2005.10.048[18] McCutcheon JR, Elimelech M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J Membr Sci 2006; 284(1-2): 237-47. http://dx.doi.org/10.1016/j.memsci.2006.07.049[19] Zhao S, Zou L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis. J Membr Sci 2011; 379(1-2): 459-67. http://dx.doi.org/10.1016/j.memsci.2011.06.021[20] McCutcheon JR, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J Membr Sci 2008; 318(1-2): 458-66. http://dx.doi.org/10.1016/j.memsci.2008.03.021[21] Mehta GD, Loeb S. Performance of permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures. J Membr Sci 1978; 4(0): 335-49. http://dx.doi.org/10.1016/S0376-7388(00)83312-8[22] Mehta GD, Loeb S. Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis. J Membr Sci 1978; 4(0): 261-65. http://dx.doi.org/10.1016/S0376-7388(00)83301-3[23] Chou S, et al. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. J Membr Sci 2012; 389(0): 25-33. http://dx.doi.org/10.1016/j.memsci.2011.10.002[24] Xu Y, et al. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module. J Membr Sci 2010; 348(1-2): 298-309. http://dx.doi.org/10.1016/j.memsci.2009.11.013[25] Yong JS, Phillip WA, Elimelech M. Coupled reverse draw solute permeation and water flux in forward osmosis with neutral draw solutes. J Membr Sci 2012; 392-393(0): 9-17. http://dx.doi.org/10.1016/j.memsci.2011.11.020[26] Hancock NT, Cath TY. Solute Coupled Diffusion in Osmotically Driven Membrane Processes. Environ Sci Technol 2009; 43(17): 6769-75. http://dx.doi.org/10.1021/es901132x[27] Gerstandt K, et al. Membrane processes in energy supply for an osmotic power plant. Desalination 2008; 224(1-3): 64-70. http://dx.doi.org/10.1016/j.desal.2007.02.080 [28] Post JW, et al. Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. J Membr Sci 2007; 288(1-2): 218-30. http://dx.doi.org/10.1016/j.memsci.2006.11.018[29] Zhang S, et al. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J Membr Sci 2010; 360(1-2): 522-35. http://dx.doi.org/10.1016/j.memsci.2010.05.056[30] Geise GM, et al. Water purification by membranes: The role of polymer science. J Polym Sci Part B: Polym Phys 2010; 48(15): 1685-18. http://dx.doi.org/10.1002/polb.22037[31] Reid CE, Breton EJ. Water and ion flow across cellulosic membranes. J Appl Polym Sci 1959; 1(2): 133-43. http://dx.doi.org/10.1002/app.1959.070010202[32] Reid CE, Kuppers JR. Physical characteristics of osmotic membranes of organic polymers. J Appl Polym Sci 1959; 2(6): 264-72. http://dx.doi.org/10.1002/app.1959.070020602[33] Loeb S, Sourirajan S. Sea Water Demineralization by Means of an Osmotic Membrane, in Saline Water Conversion?II. Am Chem Soc 1963; 117-32. http://dx.doi.org/10.1021/ba-1963-0038.ch009[34] Wang R, et al. Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 2012; 355(1-2): 158-67. [35] McCutcheon JR, McGinnis RL, Elimelech M. A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination 2005; 174(1): 1-11. http://dx.doi.org/10.1016/j.desal.2004.11.002[36] Su J, et al. Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J Membr Sci 2012; 355(1-2): 36-44. [37] Wang KY, Ong RC, Chung T-S. Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer. Indust Eng Chem Res 2010; 49(10): 4824-31. http://dx.doi.org/10.1021/ie901592d[38] Zhang S, et al. Molecular design of the cellulose ester-based forward osmosis membranes for desalination. Chem Eng Sci 2011; 66(9): 2008-18. http://dx.doi.org/10.1016/j.ces.2011.02.002[39] Tang CY, et al. Modeling double-skinned FO membranes. Desalination 2011; 283(0): 178-86. http://dx.doi.org/10.1016/j.desal.2011.02.026[40] Sairam M, et al. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution. Desalination 2011; 273(2-3): 299-307. http://dx.doi.org/10.1016/j.desal.2011.01.050[41] Wang KY, Chung T-S, Qin J-J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J Membr Sci 2007; 300(1-2): 6-12. http://dx.doi.org/10.1016/j.memsci.2007.05.035[42] Setiawan L, et al. Fabrication of novel poly(amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci 2010; 369(1-2): 196-205. [43] Tiraferri A, et al. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J Membr Sci 2011; 367(1-2): 340-52. http://dx.doi.org/10.1016/j.memsci.2010.11.014[44] Wang KY, Chung T-S, Amy G. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization. AIChE J 2012; 58(3): 770-81. http://dx.doi.org/10.1002/aic.12635[45] Wei J, et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J Membr Sci 2011; 372(1-2): 292-302. http://dx.doi.org/10.1016/j.memsci.2011.02.013[46] Wei J, et al. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. J Membr Sci 2011; 381(1-2): 110-17. http://dx.doi.org/10.1016/j.memsci.2011.07.034[47] Yip NY, et al. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients. Environ Sci Technol 2011; 45(10): 4360-69. http://dx.doi.org/10.1021/es104325z[48] Yip NY, Elimelech M. Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis. Environ Sci Technol 2011; 45(23): 10273-82. http://dx.doi.org/10.1021/es203197e[49] Shi L, et al. Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes. J Membr Sci 2011; 382(1-2): 116-23. http://dx.doi.org/10.1016/j.memsci.2011.07.045

Downloads

Published

2013-01-01

How to Cite

Wang, X., Huang, Z., Li, L., Huang, S., Yu, E. H., & Scott, K. (2013). Energy Generation from Osmotic Pressure Difference Between the Low and High Salinity Water by Pressure Retarded Osmosis. Journal of Technology Innovations in Renewable Energy, 1(2), 122–130. https://doi.org/10.6000/1929-6002.2012.01.02.7

Issue

Section

Articles