Docosahexaenoic Acid (DHA), an Important Fatty Acid in Aging and the Protection of Neurodegenerative Diseases

Authors

  • Rodrigo Wladimir Valenzuela Nutrition and Dietetic School, Faculty of Medicine, University of Chile, Santiago, Chile
  • Julio Sanhueza Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, and Faculty of Medicine, University of Los Andes, Santiago, Chile
  • Alfonso Valenzuela Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, and Faculty of Medicine, University of Los Andes, Santiago, Chile

DOI:

https://doi.org/10.6000/1929-5634.2012.01.01.6

Keywords:

Docosahexaenoic acid, neurodegenerative diseases, brain aging, neuroprotection, neuroprotectin D-1, nutrition and disease prevention

Abstract

Docosahexaenoic acid (DHA) is a fatty acid essential for the proper development and functioning of the nervous and visual system. DHA is found in significant concentrations in the phospholipids of neuronal membranes. DHA is provided by the mother during the fetal and early infancy life, during pregnancy and through breastfeeding. Given the importance of an adequate supply of the fatty acid to the newborn, it has been suggested DHA supplementation to the mother before and during the pregnancy and also during the breastfeeding period. In the recent years, research from different scientist have established that DHA has an important role in the development of the nervous system, as well as having an important key role in the preservation of this tissue, especially during aging and in some neurodegenerative diseases, such as Alzheimer's disease, Multiple Sclerosis and Parkinson's disease. DHA may preserve the integrity and the neuronal viability against different metabolic insults and/or cytotoxic events, among which inflammation and oxidative stress are the most relevant. The neuroprotective effects of DHA in neural tissue are mediated by a metabolic derivative, known as neuroprotectin D-1. This molecule may respond to aggression having anti-inflammatory, antiapoptotic and even neuroregenerative effects, which may contribute to preserve the proper neuronal viability as well as the health and function of the nervous system. This review discusses different evidences about the neuroprotective effect of DHA, during aging and against some neurodegenerative diseases, highlighting the important role of the proper nutrition in this protection

References

Szymański P, Markowicz M, Janik A, Ciesielski M, Mikiciuk-Olasik E. Neuroimaging diagnosis in neurodegenerative diseases. Nucl Med Rev Cent East Eur 2010; 13: 23-31.

Habeck C, Stern Y. Alzheimer’s Disease Neuroimaging Initiative. Multivariate data analysis for neuroimaging data: overview and application to Alzheimer’s disease. Cell Biochem Biophys 2010; 58: 53-67. http://dx.doi.org/10.1007/s12013-010-9093-0 DOI: https://doi.org/10.1007/s12013-010-9093-0

Stampfer MJ. Cardiovascular disease and Alzheimer´s: common links. J Inter Med 2006; 260: 211-23. http://dx.doi.org/10.1111/j.1365-2796.2006.01687.x DOI: https://doi.org/10.1111/j.1365-2796.2006.01687.x

Massaro M, Scoditti E, Carluccio MA, Catetina R. Nutraceuticals and prevention of atherosclerosis: focus on omega-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovasc Ther 2010; 28: 13-9. http://dx.doi.org/10.1111/j.1755-5922.2010.00211.x DOI: https://doi.org/10.1111/j.1755-5922.2010.00211.x

Tully AM, Roche HM, Doyle R, et al. Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer´s disease: a case-control study. Br J Nutr 2003; 89: 483-89. http://dx.doi.org/10.1079/BJN2002804 DOI: https://doi.org/10.1079/BJN2002804

Ikemoto A, Ohishi M, Sato Y, et al. Reversibility of n-3 fatty acid deficiency – induced alterations of learning behavior in the rat: level of n-6 fatty acids as another critical factors. J Lipid Res 2001; 42: 1655-63. DOI: https://doi.org/10.1016/S0022-2275(20)32220-3

Sodeberg M, Edlund C, Kristensson K, G Dallner. Fatty acid composition of brain phospholipids in aging and in Alzheimr´s disease. Lipids 1991; 26: 421-25. DOI: https://doi.org/10.1007/BF02536067

Kalminj S, van Boxtel MPJ, Ocke M, Verschuren WM, Kromhout D, Launer LJ. Dietary intake of fatty acid and fish in relation to cognitive performance at middle age. Neurology 2004; 62: 275-80. http://dx.doi.org/10.1212/01.WNL.0000103860.75218.A5 DOI: https://doi.org/10.1212/01.WNL.0000103860.75218.A5

Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 2009; 50: 400-5. http://dx.doi.org/10.1194/jlr.R800068-JLR200 DOI: https://doi.org/10.1194/jlr.R800068-JLR200

Serhan CN, Petasis NA. Resolvins and Protectins in Inflammation Resolution. Chem Rev 2011; 111: 5922-43. http://dx.doi.org/10.1021/cr100396c DOI: https://doi.org/10.1021/cr100396c

Belayev L, Khoutorova L, Atkins KD, Bazan NG. Robust docosahexaenoic acid-mediated neuroprotection in a rat model of transient, focal cerebral ischemia. Stroke 2009; 40: 3121-26. http://dx.doi.org/10.1161/STROKEAHA.109.555979 DOI: https://doi.org/10.1161/STROKEAHA.109.555979

Zhang W, Li P, Hu X, Zhang F, Chen J, Gao Y. Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection. Frontier Biosci 2011; 16: 2653-70. http://dx.doi.org/10.2741/3878 DOI: https://doi.org/10.2741/3878

Reinoso MA, Mukherjee P, Marcheselli V, Bergsma D, Hesse R, Bazan N. PEDF Promotes Biosynthesis of a Novel Anti-inflammatory and Anti-apoptotic Mediator NPD1 in Retinal Pigment Epithelial Cells. Ochsner J 2008; 8: 39-43.

Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids on visual and brain development. Lipids 2001; 36: 885-95. http://dx.doi.org/10.1007/s11745-001-0798-1 DOI: https://doi.org/10.1007/s11745-001-0798-1

Valenzuela A. Docosahexaenoic acid (DHA), an essential fatty acid for the proper function of neuronal cells: Their role in mood disorders. Grasas Aceites 2009; 60: 203-22. http://dx.doi.org/10.3989/gya.085208 DOI: https://doi.org/10.3989/gya.085208

Horrocks LA, Farooqui AA. Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 361-72. http://dx.doi.org/10.1016/j.plefa.2003.12.011 DOI: https://doi.org/10.1016/j.plefa.2003.12.011

Holman RT, Johnson SB, Hatch TF. A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 1982; 35: 617-23. DOI: https://doi.org/10.1093/ajcn/35.3.617

McNamara RK, Carlson SE. Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids 2006; 75: 329-49. http://dx.doi.org/10.1016/j.plefa.2006.07.010 DOI: https://doi.org/10.1016/j.plefa.2006.07.010

Valenzuela A, Nieto S, Sanhueza J, Nuñez MJ, Ferrer C. Tissue accretion and milk content of docosahexaenoic acid in female rats after supplementation with different docosahexaenoic acid sources. Ann Nutr Metab 2005; 49: 325-32. http://dx.doi.org/10.1159/000087337 DOI: https://doi.org/10.1159/000087337

Carlson SE. Docosahexaenoic acid and arachidonic acid in infant development. Seminars Neonatol 2002; 6: 437-49. http://dx.doi.org/10.1053/siny.2001.0093 DOI: https://doi.org/10.1053/siny.2001.0093

Uauy R, Dangour AD. Fat and fatty acid requirements and recommendations for infants of 0-2 years and children of 2-18 years. Ann Nutr Metab 2009; 55: 76-96. http://dx.doi.org/10.1159/000228997 DOI: https://doi.org/10.1159/000228997

McCann JC, Ames BN. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr 2005; 82: 281-95. DOI: https://doi.org/10.1093/ajcn/82.2.281

Williard DE, Harmon SD, Preuss MA, Kaduce TL, Moore SA, Spector AA. Production and release of docosahexaenoic acid by differentiated rat brain astrocytes. World Rev Nutr Diet 2001; 88: 168-72. http://dx.doi.org/10.1159/000059781 DOI: https://doi.org/10.1159/000059781

Lesa GM, Palfreyman M, Hall DH, et al. Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 2003; 116: 4965-75. http://dx.doi.org/10.1242/jcs.00918 DOI: https://doi.org/10.1242/jcs.00918

Kalant D, Cianflone K. Regulation of fatty acid transport. Curr Opin Lipidol 2004; 15: 309-14. http://dx.doi.org/10.1097/00041433-200406000-00011 DOI: https://doi.org/10.1097/00041433-200406000-00011

Hrelia S, Celadon M, Rossi CA, Biagi PL, Bordoni A. Δ6-Desaturation of linoleic and α-linolenic acids in aged rats: a kinetic analysis. Biochem Int 1990; 22: 659–67.

Cho HP, Nakamura MT, Clarke SD. Cloning, expression, and nutritional regulation of the mammalian Δ6-desaturase. J Biol Chem 1999; 274: 471-77. http://dx.doi.org/10.1074/jbc.274.1.471 DOI: https://doi.org/10.1074/jbc.274.1.471

Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler M. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 1997; 42: 776-82. http://dx.doi.org/10.1002/ana.410420514 DOI: https://doi.org/10.1002/ana.410420514

Strokin M, Chechneva O, Reymann KG, Reiser G. Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience 2006; 140: 547-53. http://dx.doi.org/10.1016/j.neuroscience.2006.02.026 DOI: https://doi.org/10.1016/j.neuroscience.2006.02.026

Serhan CN, Chiang N, Van Dyke TE, Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008; 8: 349-61. http://dx.doi.org/10.1038/nri2294 DOI: https://doi.org/10.1038/nri2294

Rapoport SI, Chang MC, Spector AA. Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J Lipid. Res 2001; 42: 678-85. DOI: https://doi.org/10.1016/S0022-2275(20)31629-1

Marszalek JR, Kitidis C, Dirusso CC, Harvey Lodish. Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J Biol Chem 2005; 280: 10817-26. http://dx.doi.org/10.1074/jbc.M411750200 DOI: https://doi.org/10.1074/jbc.M411750200

Strokin M, Sergeeva M, Reiser G. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 2003; 139: 1014-22. http://dx.doi.org/10.1038/sj.bjp.0705326 DOI: https://doi.org/10.1038/sj.bjp.0705326

Jicha GA, Markesbery WR. Omega-3 fatty acids: potential role in the management of early Alzheimer’s disease. Clin Interv Aging 2010; 5: 45-61. http://dx.doi.org/10.2147/CIA.S5231 DOI: https://doi.org/10.2147/CIA.S5231

Lukiw WJ, Bazan NG. Docosahexaenoic acid and the aging brain. J Nutr 2008; 138: 2510-14. http://dx.doi.org/10.3945/jn.108.096016 DOI: https://doi.org/10.3945/jn.108.096016

Saiz L, Klein ML. Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys J 2001; 81: 204-16. http://dx.doi.org/10.1016/S0006-3495(01)75692-5 DOI: https://doi.org/10.1016/S0006-3495(01)75692-5

Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR. Docosahexaenoic acid affects cell multiple by altering lipid rafts. Reprod Nutr Dev 2005; 45: 559-79. http://dx.doi.org/10.1051/rnd:2005046 DOI: https://doi.org/10.1051/rnd:2005046

Brown DA, London E. Structure and function of sphingolipid and cholesterol-rich membrane rafts. J Biol Chem 2000; 275: 17221-24. http://dx.doi.org/10.1074/jbc.R000005200 DOI: https://doi.org/10.1074/jbc.R000005200

Aveldano MI, Bazan NG. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and –inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res 1983; 24: 620-27. DOI: https://doi.org/10.1016/S0022-2275(20)37967-0

Mukherjee PK, Marcheselli VL, Serhan CN, Bazan G. Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 2004; 101: 8491-96. http://dx.doi.org/10.1073/pnas.0402531101 DOI: https://doi.org/10.1073/pnas.0402531101

Serhan CN. Special Issue on Lipoxins and Aspirin-Triggered Lipoxins. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 301-21. DOI: https://doi.org/10.1016/j.plefa.2005.05.020

Chen C, Bazan NG. Lipid signaling: Sleep, synaptic plasticity, and neuroprotection. Prostaglandins & Other Lipid Mediators 2005; 77: 65-76. http://dx.doi.org/10.1016/j.prostaglandins.2005.07.001 DOI: https://doi.org/10.1016/j.prostaglandins.2005.07.001

Aksenov MY, Markesbery WR. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 2001; 302: 141-45. http://dx.doi.org/10.1016/S0304-3940(01)01636-6 DOI: https://doi.org/10.1016/S0304-3940(01)01636-6

Fetterman JW Jr, Zdanowicz MM. Therapeutic potential of n-3 polyunsaturated fatty acids in disease. Am J Health Syst Pharm 2009; 66: 1169-79. http://dx.doi.org/10.2146/ajhp080411 DOI: https://doi.org/10.2146/ajhp080411

Hamer M, Steptoe A. Influence of specific nutrients on progression of atherosclerosis, vascular function, haemostasis and inflammation in coronary heart disease patients: a systematic review. Br J Nutr 2006; 95: 849-59. http://dx.doi.org/10.1079/BJN20061741 DOI: https://doi.org/10.1079/BJN20061741

Roth EM, Harris WS. Fish oil for primary and secondary prevention of coronary heart disease. Curr Atheroscler Rep 2010; 12: 66-72. http://dx.doi.org/10.1007/s11883-009-0079-6 DOI: https://doi.org/10.1007/s11883-009-0079-6

De Caterina R. N-3 fatty acids in cardiovascular disease. N Engl J Med 2011; 364: 2439-50. http://dx.doi.org/10.1056/NEJMra1008153 DOI: https://doi.org/10.1056/NEJMra1008153

Oliver E, McGillicuddy F, Phillips C, Toomey S, Roche HM. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc Nutr Soc 2010; 69: 232-43. http://dx.doi.org/10.1017/S0029665110000042 DOI: https://doi.org/10.1017/S0029665110000042

Mandal CC, Ghosh-Choudhury T, Yoneda T, Choudhury GG, Ghosh-Choudhury N. Fish oil prevents breast cancer cell metastasis to bone. Biochem Biophys Res Commun 2010; 402: 602-7. http://dx.doi.org/10.1016/j.bbrc.2010.10.063 DOI: https://doi.org/10.1016/j.bbrc.2010.10.063

Szymanski KM, Wheeler DC, Mucci LA. Fish consumption and prostate cancer risk: a review and meta-analysis. Am J Clin Nutr 2010; 92: 1223-33. http://dx.doi.org/10.3945/ajcn.2010.29530 DOI: https://doi.org/10.3945/ajcn.2010.29530

Gillet L, Roger S, Bougnoux P, Le Guennec J, Besson P. Beneficial effects of omega-3 long-chain fatty acids in breast cancer and cardiovascular diseases: voltage-gated sodium channels as a common feature?. Biochimie 2011; 93: 4-6. http://dx.doi.org/10.1016/j.biochi.2010.02.005 DOI: https://doi.org/10.1016/j.biochi.2010.02.005

Kremer JM, Lawrence DA, Jubiz W, DiGiacomo R, Rynes R, Bartholomew LE, Sherman M. Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis. Clinical and inmmunologic effects. Arthritis Rheum 1990; 33: 810-20. http://dx.doi.org/10.1002/art.1780330607 DOI: https://doi.org/10.1002/art.1780330607

Hurst S, Zainal Z, Caterson B, Hughes CE, Harwood JL. Dietary fatty acids and arthritis. Prostaglandins Leukot Essent Fatty Acids 2010; 82: 315-8. http://dx.doi.org/10.1016/j.plefa.2010.02.008 DOI: https://doi.org/10.1016/j.plefa.2010.02.008

Knoc B, Matthew B, Roy N, McNabb W. Study of the effects dietary polyunsaturated fatty acids: Molecular mechanisms involved in intestinal inflammation. Grasas Aceites 2009; 60: 8-21. DOI: https://doi.org/10.3989/gya.086508

Bassaganya-Riera Y, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 2010; 13: 569-73. http://dx.doi.org/10.1097/MCO.0b013e32833b648e DOI: https://doi.org/10.1097/MCO.0b013e32833b648e

Yokoyama A, Hamazaki T, Ohshita A, et al. Effects of aerosolized docosahexaenoic acid in mouse model of atopic asthma. Int Arch Allergy Immunol 2000; 123: 327-32. http://dx.doi.org/10.1159/000053645 DOI: https://doi.org/10.1159/000053645

Fasano E, Serini S, Piccioni E, Innocenti I, Calviello G. Chemoprevention of lung pathologies by dietary n-3 polyunsaturated fatty acids. Curr Med Chem 2010; 17: 3358-76. http://dx.doi.org/10.2174/092986710793176401 DOI: https://doi.org/10.2174/092986710793176401

Araya J, Rodrigo R, Videla LA, et al. Increase in long-chain polyunsaturated fatty acid n6/n 3 ratio in relation to hepatic steatosis in patients with non- alcoholic fatty liver disease. Clin Sci (London) 2004; 106: 635-43. http://dx.doi.org/10.1042/CS20030326 DOI: https://doi.org/10.1042/CS20030326

Gormaz JG, Rodrigo R, Videla LA, Beems M. Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Prog Lipid Res 2010; 49: 407-19. http://dx.doi.org/10.1016/j.plipres.2010.05.003 DOI: https://doi.org/10.1016/j.plipres.2010.05.003

Valenzuela R, Videla LA. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct 2011; 3: 644-48. http://dx.doi.org/10.1039/c1fo10133a DOI: https://doi.org/10.1039/c1fo10133a

Friedman AN. Omega-3 fatty acid supplementation in advanced kidney disease. Semin Dial 2010; 23: 396-400. http://dx.doi.org/10.1111/j.1525-139X.2010.00748.x DOI: https://doi.org/10.1111/j.1525-139X.2010.00748.x

Rodrigo R, Cereceda M, Castillo R, et al. Prevention of atrial fibrillation following cardiac surgery: Basis for a novel therapeutic strategy based on non-hypoxic myocardial preconditioning. Pharmacol Therap 2008; 118: 104-27. http://dx.doi.org/10.1016/j.pharmthera.2008.01.005 DOI: https://doi.org/10.1016/j.pharmthera.2008.01.005

Zúñiga J, Venegas F, Villarreal M, et al. Protection against in vivo liver ischemia-reperfusion injury by n-3 long-chain polyunsaturated fatty acids in the rat. Free Radic Res 2010; 44: 854-63. http://dx.doi.org/10.3109/10715762.2010.485995 DOI: https://doi.org/10.3109/10715762.2010.485995

Mardones M, Valenzuela R, Romanque P, et al. Prevention of liver ischemia reperfusion injury by a combined thyroid hormone and fish oil protocol. J Nutr Biochem 2012; 23: 1113-20. http://dx.doi.org/10.1016/j.jnutbio.2011.06.004 DOI: https://doi.org/10.1016/j.jnutbio.2011.06.004

Laugharne JD, Mellor JE, Peet M. Fatty acids and schizophrenia. Lipids 1996; S1: 163-65. http://dx.doi.org/10.1007/BF02637070 DOI: https://doi.org/10.1007/BF02637070

Hibbeln JR, Salem Jr N. Dietary polyunsaturated fatty acids and depression: when cholesterol does not satisfy. Am J Clin Nutr 1995: 62: 1-9. DOI: https://doi.org/10.1093/ajcn/62.1.1

Wagner W, Nootbaar-Wagner U. Prophylactic treatment of migraine with gamma-linolenic and alpha acids. Cephalalgia 1997; 17: 127-30. http://dx.doi.org/10.1046/j.1468-2982.1997.1702127.x DOI: https://doi.org/10.1046/j.1468-2982.1997.1702127.x

Morley JE, Banks WA. Lipids and cognition. J Alzheimers Dis 2010; 20: 737-47. DOI: https://doi.org/10.3233/JAD-2010-091576

Mehta LR, Dworkin RH, Schwid SR. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat Clin Pract Neurol 2009; 5: 82-92. http://dx.doi.org/10.1038/ncpneuro1009 DOI: https://doi.org/10.1038/ncpneuro1009

Calon F, Cole G. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 287-93. http://dx.doi.org/10.1016/j.plefa.2007.10.019 DOI: https://doi.org/10.1016/j.plefa.2007.10.019

Cunnane SC, Plourde M, Pifferi F, Bégin M, Fear C, Barberger-Gateau P. Fish, docosahexaenoic acid and Alzheimer´s disease. Prog Lipid Res 2009; 48: 239-56. http://dx.doi.org/10.1016/j.plipres.2009.04.001 DOI: https://doi.org/10.1016/j.plipres.2009.04.001

Cummings JL. Alzheimer’s disease. N Engl J Med 2004; 351: 56-67. http://dx.doi.org/10.1056/NEJMra040223 DOI: https://doi.org/10.1056/NEJMra040223

Forsyth E, Ritzline PD. An overview of the etiology, diagnosis, and treatment of Alzheimer disease. Phys Ther 1998; 78: 1325-31. DOI: https://doi.org/10.1093/ptj/78.12.1325

Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med 2003; 348: 1356-64. DOI: https://doi.org/10.1056/NEJM2003ra020003

Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992; 256: 184-185. http://dx.doi.org/10.1126/science.1566067 DOI: https://doi.org/10.1126/science.1566067

Yankner BA. Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 1996; 16: 921-32. http://dx.doi.org/10.1016/S0896-6273(00)80115-4 DOI: https://doi.org/10.1016/S0896-6273(00)80115-4

Selkoe DJ. Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 1994; 53: 438-47. http://dx.doi.org/10.1097/00005072-199409000-00003 DOI: https://doi.org/10.1097/00005072-199409000-00003

Guan ZZ, Söderberg M, Sindelar P, Edlund C. Content and fatty acid composition of cardiolipin in the brain of patients with Alzheimer’s disease. Neurochem Int 1994; 25: 295-300. http://dx.doi.org/10.1016/0197-0186(94)90073-6 DOI: https://doi.org/10.1016/0197-0186(94)90073-6

Skinner ER, Watt C, Besson JA, Best PV. Differences in the fatty acid composition of the grey and white matter of different regions of the brains of patients with Alzheimer’s disease and control subjects. Brain 1993; 116: 717-25. http://dx.doi.org/10.1093/brain/116.3.717 DOI: https://doi.org/10.1093/brain/116.3.717

Kyle DJ, Schaefer E, Patton G, Beiser A. Low serum docosahexaenoic acid is a significant risk factor for Alzheimer’s dementia. Lipids 1999; 34: S245. http://dx.doi.org/10.1007/BF02562306 DOI: https://doi.org/10.1007/BF02562306

Conquer JA, Tierney MC, Zecevic J, Bettger WJ, Fisher RH. Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000; 35: 1305-12. http://dx.doi.org/10.1007/s11745-000-0646-3 DOI: https://doi.org/10.1007/s11745-000-0646-3

Catalan J, Moriguchi T, Slotnick B, et al. Cognitive deficits in docosahexaenoic acid-deficient rats. Behav Neurosci 2002; 116: 1022-31. http://dx.doi.org/10.1037/0735-7044.116.6.1022 DOI: https://doi.org/10.1037//0735-7044.116.6.1022

Barberger-Gateau P, Letenneur L, Deschamps V, Pérès K, Dartigues JF, Renaud S. Fish, meat, and risk of dementia: cohort study. BMJ 2002; 325: 932-33. http://dx.doi.org/10.1136/bmj.325.7370.932 DOI: https://doi.org/10.1136/bmj.325.7370.932

Shinto L, Marracci G, Baldauf-Wagner S, et al. Omega-3 fatty acid supplementation decreases matrix metallopro-teinase-9 production in relapsing-remitting multiple sclerosis. Prostaglandins Leukot Essent Fatty Acids 2009; 80: 131-36. http://dx.doi.org/10.1016/j.plefa.2008.12.001 DOI: https://doi.org/10.1016/j.plefa.2008.12.001

Weinstock-Guttman B, Baier M, Park Y, Feichter J, Lee-Kwen P, Gallagher E. Low fat dietary intervention with omega-3 fatty acid supplementation in m ultiple sclerosis patients. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 397-404. http://dx.doi.org/10.1016/j.plefa.2005.05.024 DOI: https://doi.org/10.1016/j.plefa.2005.05.024

Marcheselli VL, Hong S, Lukiw WJ, et al. Novel multiple of inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 2003; 31: 43807-17. http://dx.doi.org/10.1074/jbc.M305841200 DOI: https://doi.org/10.1074/jbc.M305841200

Nordvik I, Myhr KM, Nyland H, Bjerve KS. Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurol Scand 2000; 102: 143-49. http://dx.doi.org/10.1034/j.1600-0404.2000.102003143.x DOI: https://doi.org/10.1034/j.1600-0404.2000.102003143.x

Kelley DS. Modulation of human immune and inflammatory responses by dietary fatty acids. Nutrition 2001; 17: 669-73. http://dx.doi.org/10.1016/S0899-9007(01)00576-7 DOI: https://doi.org/10.1016/S0899-9007(01)00576-7

Kew S, Banerjee T, Minihane AM, et al. Lack of effect of foods enriched with plant- or marine –derived n-3 fatty acids on human immune function. Am J Clin Nutr 2003; 77: 1287-95. DOI: https://doi.org/10.1093/ajcn/77.5.1287

Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 2000; 192: 1197-204. http://dx.doi.org/10.1084/jem.192.8.1197 DOI: https://doi.org/10.1084/jem.192.8.1197

Chen H, Zhang SM, Hernan MA, Willett WC, Ascherio A. Dietary intakes of fat and risk of Parkinson’s disease. Am J Epidemiol 2003; 157: 1007-14. http://dx.doi.org/10.1093/aje/kwg073 DOI: https://doi.org/10.1093/aje/kwg073

De Lau LM, Bornebroek M, Witteman JC, Hofman A, Koudstaal PJ, Breteler MMB. Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 2005; 64: 2040-45. http://dx.doi.org/10.1212/01.WNL.0000166038.67153.9F DOI: https://doi.org/10.1212/01.WNL.0000166038.67153.9F

Johnson CC, Gorell JM, Rybicki BA, Sanders K, Peterson EL. Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol 1999; 28: 1102-09. http://dx.doi.org/10.1093/ije/28.6.1102 DOI: https://doi.org/10.1093/ije/28.6.1102

Samadi P, Gregoire L, Rouillard C, Berdard PJ, Di Paolo T, Levesque D. Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann Neurol 2006; 59: 282-88. http://dx.doi.org/10.1002/ana.20738 DOI: https://doi.org/10.1002/ana.20738

Breckenridge WC, Morgan IG, Zanetta JP, Vincendon G. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim Biophys Acta 1973; 320: 681-86. http://dx.doi.org/10.1016/0304-4165(73)90148-7 DOI: https://doi.org/10.1016/0304-4165(73)90148-7

Julien C, Berthiaume L, Hadj-Tahar A, et al. Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 2006; 48: 404-14. http://dx.doi.org/10.1016/j.neuint.2005.12.002 DOI: https://doi.org/10.1016/j.neuint.2005.12.002

Bousquet M, Saint-Pierre M, Julien C, Salem Jr N, Cicchetti F, Csalon F. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 2008; 22: 1213-25. http://dx.doi.org/10.1096/fj.07-9677com DOI: https://doi.org/10.1096/fj.07-9677com

Barceló-Coblijn G, Murphy EJ. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 2009; 48: 355-74. http://dx.doi.org/10.1016/j.plipres.2009.07.002 DOI: https://doi.org/10.1016/j.plipres.2009.07.002

Mozaffarian D, Wu JHY. Omega-3 fatty acid and cardiovascular disease. J Am Coll Cardiol 2011; 58: 2047-67. http://dx.doi.org/10.1016/j.jacc.2011.06.063 DOI: https://doi.org/10.1016/j.jacc.2011.06.063

Valenzuela A, Sanhueza J, Nieto S. Docosahexaenoic acid (DHA) essentiality and requirements: why and how to provide supplementation Grasas Aceites 2006; 57: 229-37. http://dx.doi.org/10.3989/gya.2006.v57.i2.43 DOI: https://doi.org/10.3989/gya.2006.v57.i2.43

Downloads

Published

2012-10-05

How to Cite

Valenzuela, R. W., Sanhueza, J., & Valenzuela, A. (2012). Docosahexaenoic Acid (DHA), an Important Fatty Acid in Aging and the Protection of Neurodegenerative Diseases. Journal of Nutritional Therapeutics, 1(1), 63–72. https://doi.org/10.6000/1929-5634.2012.01.01.6

Issue

Section

Articles