Scanning and Transmission Electron-Microscopic Studies on the Lingual Tonsil of the Buffalo (Bubalus bubalis)

Authors

  • Ibrahim Alhaji Girgiri Department of Veterinary Anatomy, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125 004, India
  • Pawan Kumar Department of Veterinary Anatomy, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125 004, India

DOI:

https://doi.org/10.6000/1927-520X.2020.09.02

Keywords:

Lingual tonsil, Microplicae, Vesiculo-vacuolar organelles, Buffalo.

Abstract

The present study examined lingual tonsil of six buffaloes of the local mixed breed by scanning and transmission electron-microscopy to elucidate their ultrastructural features. The lingual tonsil presented folded mucosa having longitudinally oriented folds which were separated by grooves. The surface mucosa showed a squamous arrangement of cells which delineated from the adjacent cells. The surface of these cells at a higher magnification presented the microplicae of different arrangements which were mainly of closed pattern type and resembled fingerprints of humans. The luminal openings of glandular ducts on the free surface presented varying shapes. The transmission electron-microscopy described ultrastructural details of the different strata of the stratified squamous keratinised, non-keratinised and reticular epithelia. The propria-submucosa contain reticular cells, fibroblast, lymphoid cells, plasma cells, granulocytes and interdigitating cells. Few high endothelial venules observed and the cytoplasmic process of these endothelial cells contained small vacuoles equivalent to vesiculo-vacuolar organelles, membrane-bound bodies and vacuolated structures.

References

Kumar P, Timoney JF. Histology and ultrastructure of the equine lingual tonsil. I. crypt epithelium and associated structures. Anat Histol Embryol 2005; 34: 27-33. https://doi.org/10.1111/j.1439-0264.2004.00560.x DOI: https://doi.org/10.1111/j.1439-0264.2004.00560.x

Brandtzaeg P. Immunology of tonsils and adenoids: everything the ENT surgeon needs to know. Int J Pediatr Otorhinolaryngol 2003; 67S1: 69-76. https://doi.org/10.1016/j.ijporl.2003.08.018 DOI: https://doi.org/10.1016/j.ijporl.2003.08.018

Brandtzaeg P, Pabst P. Let’s go mucosal: communication on slippery ground. Trends Immunol 2004; 25: 570-78. https://doi.org/10.1016/j.it.2004.09.005 DOI: https://doi.org/10.1016/j.it.2004.09.005

Kumar P, Timoney JF. Histology and ultrastructure of the equine lingual tonsil. II. lymphoid tissue and associated high endothelial venules. Anat Histol Embryol 2005; 34: 98-104. https://doi.org/10.1111/j.1439-0264.2004.00579.x DOI: https://doi.org/10.1111/j.1439-0264.2004.00579.x

Horter DC, Yoon JK, Zimmerman JJ. A review of porcine tonsils in immunity and disease. Anim Health Res Rev 2003; 4(2): 143-55. https://doi.org/10.1079/AHRR200358 DOI: https://doi.org/10.1079/AHR200358

Ez Elarab SM, Zidan M, Zaghloul MD, Derbalah AE. Histological structure of the lingual tonsils of the buffalo calf (Bos Bubalus). Alexandria J Vet Sci 2016; 49(1): 78-84. https://doi.org/10.5455/ajvs.222704 DOI: https://doi.org/10.5455/ajvs.222704

Girgri IA, Kumar Pawan. Histological and histochemical studies on the lingual tonsil of the buffalo (Bubalus bubalis). J Buff Sci 2019; 8: 68-76. https://doi.org/10.6000/1927-520X.2019.08.03.3 DOI: https://doi.org/10.6000/1927-520X.2019.08.03.3

Ranjit Kumar P, Kumar P, Singh G. Histology, histochemistry and scanning electron microscopy of lingual tonsil of the young pigs. Vet Res Int 2015; 3(1): 55-9.

Kumar P, Kumar P. Light and scanning transmission electron microscopic studies on lingual tonsil of goat. Haryana Vet 2005; 44: 13-6.

Indu VR, Lucy KM, Ashok N, Maya S. Histology and scanning electron microscopy of the tubal tonsil of goats. Int J Current Microbiol App Sci 2015; 6 (3): 1716-22. https://doi.org/10.14202/vetworld.2015.1011-1014 DOI: https://doi.org/10.14202/vetworld.2015.1011-1014

Casteleyn C, Cornelissen M, Simoens P, Van den Broeck W. Ultramicroscopic examination of the ovine tonsillar epithelia. Anat Rec 2010; 293: 879-89. https://doi.org/10.1002/ar.21098 DOI: https://doi.org/10.1002/ar.21098

Cocquyt G, Simoens P, Muylle S, Van den Broeck W. Anatomical localization and histology of bovine tonsils. Res Vet Sci 2008; 83: 166-73. https://doi.org/10.1016/j.rvsc.2007.04.011 DOI: https://doi.org/10.1016/j.rvsc.2007.04.011

Heusermann U, Zurborn KH, Schroeder L, Stutte HJ. The origin of the dendritic reticulum cell. An experimental enzyme histochemical and electron microscopic study on the rabbit spleen. Cell Tissue Res 1980; 209: 279-94. https://doi.org/10.1007/BF00237632 DOI: https://doi.org/10.1007/BF00237632

Brandtzaeg P. Immunobiology of the tonsils and adenoids. Mucosal Immunol 2015; 2: 1985-2016. https://doi.org/10.1016/B978-0-12-415847-4.00103-8 DOI: https://doi.org/10.1016/B978-0-12-415847-4.00103-8

Wang X, Rodda LB, Bannard O, Cyster JG. Integrin-mediated interactions between B cell and follicular dendritic cells influence germinal centre B cell fitness. J Immunol 2014; 192: 4601-09. https://doi.org/10.4049/jimmunol.1400090 DOI: https://doi.org/10.4049/jimmunol.1400090

MacLennan ICM. Germinal centres. Annu Rev Immunol 1994; 12: 117-39. https://doi.org/10.1146/annurev.iy.12.040194.001001 DOI: https://doi.org/10.1146/annurev.iy.12.040194.001001

Heinen E, Bosselloir A, Bouzahzah F. Follicular dendritic cells. Origin and function. Curr Top Microbiol Immunol 1995; 201: 15-47. https://doi.org/10.1007/978-3-642-79603-6_2 DOI: https://doi.org/10.1007/978-3-642-79603-6_2

Zidan M, Jecker P, Pabst R. Differences in lymphocyte subsets in the wall of high endothelial venules and the lymphatics of human palatine tonsils. Scand J Immunol 2000; 51: 372-76. https://doi.org/10.1046/j.1365-3083.2000.00681.x DOI: https://doi.org/10.1046/j.1365-3083.2000.00681.x

Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Sci 1996; 272: 60-6. https://doi.org/10.1126/science.272.5258.60 DOI: https://doi.org/10.1126/science.272.5258.60

Christelle F, Graham P, Ann A. Transendothelial migration of lymphocytes across high endothelial venules into lymph nodes is affected by metalloproteinases. Blood 2001; 98: 688-95. https://doi.org/10.1182/blood.V98.3.688 DOI: https://doi.org/10.1182/blood.V98.3.688

Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO): a new endothelial cell permeability organelle. J Histochem Cytochem 2001; 49: 419-31. https://doi.org/10.1177/002215540104900401 DOI: https://doi.org/10.1177/002215540104900401

Kohn S, Nagy JA, Dvorak HF, Dvorak AM. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 1992; 67: 596-607.

Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 1996; 59: 100-15. https://doi.org/10.1002/jlb.59.1.100 DOI: https://doi.org/10.1002/jlb.59.1.100

Downloads

Published

2020-02-11

How to Cite

Girgiri, I. A., & Kumar, P. (2020). Scanning and Transmission Electron-Microscopic Studies on the Lingual Tonsil of the Buffalo (Bubalus bubalis). Journal of Buffalo Science, 9, 5–12. https://doi.org/10.6000/1927-520X.2020.09.02

Issue

Section

Articles