MarA, SoxS and Rob of Escherichia coli – Global Regulators of Multidrug Resistance, Virulence and Stress Response

Authors

  • Valérie Duval Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
  • Ida M. Lister Arietis Corporation, 650 Albany Street, Room 130, Boston, MA 02118, USA

DOI:

https://doi.org/10.6000/1927-3037.2013.02.03.2

Keywords:

Antibiotic resistance, AraC family regulators, Escherichia coli, Enterobacteriaceae, global regulators, drug development

Abstract

Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.

References

Ishihama A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 2010; 34: 628-45. http://dx.doi.org/10.1111/j.1574-6976.2010.00227.x

Ariza RR, Li Z, Ringstad N, Demple B. Activation of multiple antibiotic resistance and binding of stress- inducible promoters by Escherichia coli Rob protein. J Bacteriol 1995; 177: 1655-61.

Li Z, Demple B. SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J Biol Chem 1994; 269: 18371-7.

Jair KW, Fawcett WP, Fujita N, Ishihama A, Wolf RE. Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Mol Microbiol 1996; 19: 307-17. http://dx.doi.org/10.1046/j.1365-2958.1996.368893.x

Martin RG, Gillette WK, Rhee S, Rosner JL. Structural requirements for marbox function in transcriptional activation of mar/sox/rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 1999; 34: 431-41. http://dx.doi.org/10.1046/j.1365-2958.1999.01599.x

Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 2000; 182: 3467-74. http://dx.doi.org/10.1128/JB.182.12.3467-3474.2000

Pomposiello PJ, Bennik MH, Demple B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 2001; 183: 3890-902. http://dx.doi.org/10.1128/JB.183.13.3890-3902.2001

Okusu H, Ma D, Nikaido H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 1996; 178: 306-8.

Cohen SP, McMurry LM, Levy SB. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988; 170: 5416-22.

Casaz P, Garrity-Ryan L, McKenney D, et al. MarA, SoxS, and Rob function as virulence factors in an Escherichia coli murine model of ascending pyelonephritis. Microbiology 2006; 152: 3643-3650. http://dx.doi.org/10.1099/mic.0.2006/000604-0

Warner DM, Levy SB. SoxS increases the expression of the zinc uptake system ZnuACB in an Escherichia coli murine pyelonephritis model. J Bacteriol 2012; 194: 1177-85. http://dx.doi.org/10.1128/JB.05451-11

Alekshun MN. New advances in antibiotic development and discovery. Expert Opin Investig Drugs 2005; 14: 117-34. http://dx.doi.org/10.1517/13543784.14.2.117

Alksne LE, Projan SJ. Bacterial virulence as a target for antimicrobial chemotherapy. Curr Opin Biotechnol 2000; 11: 625-36. http://dx.doi.org/10.1016/S0958-1669(00)00155-5

Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007; 3: 541-8. http://dx.doi.org/10.1038/nchembio.2007.24

George AM, Levy SB. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J Bacteriol 1983; 155: 541-8.

Cohen SP, Hachler H, Levy SB. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J Bacteriol 1993; 175: 1484-92.

McDermott PF, McMurry LM, Podglajen I, et al. The marC gene of Escherichia coli is not involved in multiple antibiotic resistance. Antimicrob Agents Chemother 2008; 52: 382-3. http://dx.doi.org/10.1128/AAC.00930-07

Rhee S, Martin RG, Rosner JL, Davies DR. A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci USA 1998; 95: 10413-8. http://dx.doi.org/10.1073/pnas.95.18.10413

Martin RG, Rosner JL. The AraC transcriptional activators. Curr Opin Microbiol 2001; 4: 132-7. http://dx.doi.org/10.1016/S1369-5274(00)00178-8

Gambino L, Gracheck SJ, Miller PF. Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. J Bacteriol 1993; 175: 2888-94.

Nichols RJ, Sen S, Choo YJ, et al. Phenotypic landscape of a bacterial cell. Cell 2011; 144: 143-56. http://dx.doi.org/10.1016/j.cell.2010.11.052

Vinue L, McMurry LM, Levy SB. The 216 bp marB gene of the marRAB operon in Escherichia coli encodes a periplasmic protein which reduces the transcription rate of marA. FEMS Microbiol Lett 2013; 345: 49-55. http://dx.doi.org/10.1111/1574-6968.12182

Ariza RR, Cohen SP, Bachhawat N, Levy SB, Demple B. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J Bacteriol 1994; 176: 143-8.

Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 A resolution. Nat Struct Biol 2001; 8: 710-4. http://dx.doi.org/10.1038/90429

Martin RG, Rosner JL. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc Natl Acad Sci U S A 1995; 92: 5456-60. http://dx.doi.org/10.1073/pnas.92.12.5456

Cohen SP, Levy SB, Foulds J, Rosner JL. Salicylate induction of antibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J Bacteriol 1993; 175: 7856-62.

Alekshun MN, Levy SB. Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J Bacteriol 1999; 181: 4669-72.

Chubiz LM, Rao CV. Aromatic acid metabolites of Escherichia coli K-12 can induce the marRAB operon. J Bacteriol 2010; 192: 4786-9. http://dx.doi.org/10.1128/JB.00371-10

Duval V, McMurry LM, Foster K, Head JF, Levy SB. A mutational analysis of the multiple antibiotic resistance regulator MarR reveals a ligand binding pocket at the interface between the dimerization and DNA-binding domains. J Bacteriol 2013; 195: 3341-51. http://dx.doi.org/10.1128/JB.02224-12

Martin RG, Jair KW, Wolf RE, Rosner JL. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. J Bacteriol 1996; 178: 2216-23.

Hachler H, Cohen SP, Levy SB. marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. J Bacteriol 1991; 173: 5532-8.

Griffith KL, Shah IM, Wolf RE. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol Microbiol 2004; 51: 1801-16. http://dx.doi.org/10.1046/j.1365-2958.2003.03952.x

Martin RG, Rosner JL. Fis, an accessorial factor for transcriptional activation of the mar (multiple antibiotic resistance) promoter of Escherichia coli in the presence of the activator MarA, SoxS, or Rob. J Bacteriol 1997; 179: 7410-9.

Gillette WK, Martin RG, Rosner JL. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning

mutagenesis: residues important for DNA binding and activation. J Mol Biol 2000; 299: 1245-55. http://dx.doi.org/10.1006/jmbi.2000.3827

Miller PF, Gambino LF, Sulavik MC, Gracheck SJ. Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli. Antimicrob Agents Chemother 1994; 38: 1773-9. http://dx.doi.org/10.1128/AAC.38.8.1773

Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R. Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 1995; 61: 2302-7.

Jair KW, Yu X, Skarstad K, et al. Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. J Bacteriol 1996; 178: 2507-13.

Chubiz LM, Glekas GD, Rao CV. Transcriptional cross talk within the mar-sox-rob regulon in Escherichia coli is limited to the rob and marRAB operons. J Bacteriol 2012; 194: 4867-75. http://dx.doi.org/10.1128/JB.00680-12

Sulavik MC, Gambino LF, Miller PF. The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol Med 1995; 1: 436-46.

Brooun A, Tomashek JJ, Lewis K. Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J Bacteriol 1999; 181: 5131-3.

Lomovskaya O, Lewis K, Matin A. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J Bacteriol 1995; 177: 2328-34.

Xiong A, Gottman A, Park C, et al. The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region. Antimicrob Agents Chemother 2000; 44: 2905-7. http://dx.doi.org/10.1128/AAC.44.10.2905-2907.2000

Fic E, Bonarek P, Gorecki A, et al. cAMP receptor protein from Escherichia coli as a model of signal transduction in proteins-a review. J Mol Microbiol Biotechnol 2009; 17: 1-11. http://dx.doi.org/10.1159/000178014

Saier MH, Jr. Cyclic AMP-independent catabolite repression in bacteria. FEMS Microbiol Lett 1996; 138: 97-103. http://dx.doi.org/10.1111/j.1574-6968.1996.tb08141.x

Zheng D, Constantinidou C, Hobman JL, Minchin SD. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 2004; 32: 5874-93. http://dx.doi.org/10.1093/nar/gkh908

Shimada T, Yamamoto K, Ishihama A. Novel members of the Cra regulon involved in carbon metabolism in Escherichia coli. J Bacteriol 2011; 193: 649-59. http://dx.doi.org/10.1128/JB.01214-10

Wu J, Weiss B. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J Bacteriol 1991; 173: 2864-71.

Amabile-Cuevas CF, Demple B. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res 1991; 19: 4479-84. http://dx.doi.org/10.1093/nar/19.16.4479

Wu J, Weiss B. Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J Bacteriol 1992; 174: 3915-20.

Hidalgo E, Leautaud V, Demple B. The redox-regulated SoxR protein acts from a single DNA site as a repressor and an allosteric activator. EMBO J 1998; 17: 2629-36. http://dx.doi.org/10.1093/emboj/17.9.2629

Nunoshiba T, Hidalgo E, Amabile Cuevas CF, Demple B. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol 1992; 174: 6054-60.

Hidalgo E, Demple B. An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein. EMBO J 1994; 13: 138-46.

Wu J, Dunham WR, Weiss B. Overproduction and physical characterization of SoxR, a [2Fe-2S] protein that governs an oxidative response regulon in Escherichia coli. J Biol Chem 1995; 270: 10323-7. http://dx.doi.org/10.1074/jbc.270.17.10323

Ding H, Hidalgo E, Demple B. The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem 1996; 271: 33173-5. http://dx.doi.org/10.1074/jbc.271.52.33173

Gaudu P, Weiss B. SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form. Proc Natl Acad Sci U S A 1996; 93: 10094-8.

Pomposiello PJ, Demple B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 2001; 19: 109-14. http://dx.doi.org/10.1016/S0167-7799(00)01542-0

Demple B. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon - a review. Gene 1996; 179: 53-57. http://dx.doi.org/10.1016/S0378-1119(96)00329-0

Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci USA 2000; 97: 5146-5150.

Gu M, Imlay JA. The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 2011; 79: 1136-50. http://dx.doi.org/10.1111/j.1365-2958.2010.07520.x

Nunoshiba T, Hidalgo E, Li Z, Demple B. Negative autoregulation by the Escherichia coli SoxS protein: a dampening mechanism for the soxRS redox stress response. J Bacteriol 1993; 175: 7492-4.

Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL. Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 1997; 61: 393-410.

Fawcett WP, Wolf RE. Purification of a MalE-SoxS fusion protein and identification of the control sites of Escherichia coli superoxide-inducible genes. Mol Microbiol 1994; 14: 669-79. http://dx.doi.org/10.1111/j.1365-2958.1994.tb01305.x

Skarstad K, Thony B, Hwang DS, Kornberg A. A novel binding protein of the origin of the Escherichia coli chromosome. J Biol Chem 1993; 268: 5365-70.

Tanaka T, Horii T, Shibayama K, et al. RobA-induced multiple antibiotic resistance largely depends on the activation of the AcrAB efflux. Microbiol Immunol 1997; 41: 697-702.

Azam TA, Hiraga S, Ishihama A. Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 2000; 5: 613-26. http://dx.doi.org/10.1046/j.1365-2443.2000.00350.x

Michan C, Manchado M, Pueyo C. SoxRS down-regulation of rob transcription. J Bacteriol 2002; 184: 4733-8. http://dx.doi.org/10.1128/JB.184.17.4733-4738.2002

Schneiders T, Levy SB. MarA-mediated transcriptional repression of the rob promoter. J Biol Chem 2006; 281: 10049-55. http://dx.doi.org/10.1074/jbc.M512097200

McMurry LM, Levy SB. Evidence that regulatory protein MarA of Escherichia coli represses rob by steric hindrance. J Bacteriol 2010; 192: 3977-82. http://dx.doi.org/10.1128/JB.00103-10

Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 1997; 41: 2067-75.

Kwon HJ, Bennik MH, Demple B, Ellenberger T. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 2000; 7: 424-30. http://dx.doi.org/10.1038/75213

Griffith KL, Fitzpatrick MM, Keen EF, Wolf RE. Two functions of the C-terminal domain of Escherichia coli Rob: mediating "sequestration-dispersal" as a novel off-on switch for regulating Rob's activity as a transcription activator and preventing degradation of Rob by Lon protease. J Mol Biol 2009; 388: 415-30. http://dx.doi.org/10.1016/j.jmb.2009.03.023

Rosner JL, Dangi B, Gronenborn AM, Martin RG. Posttranscriptional activation of the transcriptional activator Rob by dipyridyl in Escherichia coli. J Bacteriol 2002; 184: 1407-16. http://dx.doi.org/10.1128/JB.184.5.1407-1416.2002

Rosenberg EY, Bertenthal D, Nilles ML, Bertrand KP, Nikaido H. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol 2003; 48: 1609-19. http://dx.doi.org/10.1046/j.1365-2958.2003.03531.x

Martin RG, Rosner JL. Genomics of the marA/soxS/rob regulon of Escherichia coli: identification of directly activated promoters by application of molecular genetics and informatics to microarray data. Mol Microbiol 2002; 44: 1611-24. http://dx.doi.org/10.1046/j.1365-2958.2002.02985.x

Martin RG, Gillette WK, Martin NI, Rosner JL. Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 2002; 43: 355-70. http://dx.doi.org/10.1046/j.1365-2958.2002.02748.x

Jair KW, Martin RG, Rosner JL, et al. Purification and regulatory properties of MarA protein, a transcriptional activator of Escherichia coli multiple antibiotic and superoxide resistance promoters. J Bacteriol 1995; 177: 7100-4.

Zafar MA, Shah IM, Wolf RE. Protein-protein interactions between sigma(70) region 4 of RNA polymerase and Escherichia coli SoxS, a transcription activator that functions by the prerecruitment mechanism: evidence for "off-DNA" and "on-DNA" interactions. J Mol Biol 2010; 401: 13-32. http://dx.doi.org/10.1016/j.jmb.2010.05.052

Shah IM, Wolf RE. Novel protein-protein interaction between Escherichia coli SoxS and the DNA binding determinant of the RNA polymerase alpha subunit: SoxS functions as a co-sigma factor and redeploys RNA polymerase from UP-element-containing promoters to SoxS-dependent promoters during oxidative stress. J Mol Biol 2004; 343: 513-32. http://dx.doi.org/10.1016/j.jmb.2004.08.057

Zafar MA, Sanchez-Alberola N, Wolf RE. Genetic evidence for a novel interaction between transcriptional activator SoxS and region 4 of the sigma(70) subunit of RNA polymerase at class II SoxS-dependent promoters in Escherichia coli. J Mol Biol 2011; 407: 333-53. http://dx.doi.org/10.1016/j.jmb.2010.12.037

Dangi B, Gronenborn AM, Rosner JL, Martin RG. Versatility of the carboxy-terminal domain of the alpha subunit of RNA polymerase in transcriptional activation: use of the DNA contact site as a protein contact site for MarA. Mol Microbiol 2004; 54: 45-59. http://dx.doi.org/10.1111/j.1365-2958.2004.04250.x

Ptashne M, Gann A. Transcriptional activation by recruitment. Nature 1997; 386: 569-77. http://dx.doi.org/10.1038/386569a0

Wall ME, Markowitz DA, Rosner JL, Martin RG. Model of transcriptional activation by MarA in Escherichia coli. PLoS Comput Biol 2009; 5: e1000614. http://dx.doi.org/10.1371/journal.pcbi.1000614

Martin RG, Gillette WK, Rosner JL. Promoter discrimination by the related transcriptional activators MarA and SoxS: differential regulation by differential binding. Mol Microbiol 2000; 35: 623-34. http://dx.doi.org/10.1046/j.1365-2958.2000.01732.x

Martin RG, Rosner JL. Promoter discrimination at class I MarA regulon promoters mediated by glutamic acid 89 of the MarA transcriptional activator of Escherichia coli. J Bacteriol 2011; 193: 506-15. http://dx.doi.org/10.1128/JB.00360-10

Martin RG, Bartlett ES, Rosner JL, Wall ME. Activation of the Escherichia coli marA/soxS/rob regulon in response to

transcriptional activator concentration. J Mol Biol 2008; 380: 278-84. http://dx.doi.org/10.1016/j.jmb.2008.05.015

Schneiders T, Barbosa TM, McMurry LM, Levy SB. The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA. J Biol Chem 2004; 279: 9037-42. http://dx.doi.org/10.1074/jbc.M313602200

George AM, Levy SB. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol 1983; 155: 531-40.

Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA 1990; 87: 6181-5. http://dx.doi.org/10.1073/pnas.87.16.6181

Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta 2009; 1794: 769-81. http://dx.doi.org/10.1016/j.bbapap.2008.10.004

White DG, Goldman JD, Demple B, Levy SB. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J Bacteriol 1997; 179: 6122-6.

Fralick JA. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 1996; 178: 5803-5805.

Ma D, Cook DN, Alberti M, et al. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 1995; 16: 45-55. http://dx.doi.org/10.1111/j.1365-2958.1995.tb02390.x

Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol 1996; 19: 101-12. http://dx.doi.org/10.1046/j.1365-2958.1996.357881.x

Aixia Z, Judah LR, Robert GM. Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli. Mol Microbiol 2008; 69: 1450-1455.

Rosner JL, Martin RG. An excretory function for the Escherichia coli outer membrane pore TolC: Upregulation of marA and soxS transcription and Rob activity due to metabolites accumulated in tolC mutants. J Bacteriol 2009; 191: 5283-5292. http://dx.doi.org/10.1128/jb.00507-09

Krishnamoorthy G, Tikhonova EB, Dhamdhere G, Zgurskaya HI. On the role of TolC in multidrug efflux: the function and assembly of AcrAB-TolC tolerate significant depletion of intracellular TolC protein. Mol Microbiol 2013; 87: 982-97. http://dx.doi.org/10.1111/mmi.12143

Zhang A, Rosner JL, Martin RG. Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli. Mol Microbiol 2008; 69: 1450-5. http://dx.doi.org/10.1111/j.1365-2958.2008.06371.x

Hobbs EC, Yin X, Paul BJ, Astarita JL, Storz G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc Natl Acad Sci U S A 2012; 109: 16696-701. http://dx.doi.org/10.1073/pnas.1210093109

Lee A, Mao W, Warren MS, et al. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 2000; 182: 3142-50. http://dx.doi.org/10.1128/jb.182.11.3142-3150.2000

Moken MC, McMurry LM, Levy SB. Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob Agents Chemother 1997; 41: 2770-2772.

McMurry LM, Oethinger M, Levy SB. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett 1998; 166: 305-9. http://dx.doi.org/10.1111/j.1574-6968.1998.tb13905.x

Elkins CA, Mullis LB. Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. J Bacteriol 2006; 188: 1191-95. http://dx.doi.org/10.1128/jb.188.3.1191-1195.2006

Delgado MA, Vincent PA, Farias RN, Salomon RA. YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 2005; 187: 3465-3470. http://dx.doi.org/10.1128/jb.187.10.3465-3470.2005

Warner DM, Levy SB. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon. Microbiology 2010; 156: 570-8. http://dx.doi.org/10.1099/mic.0.033415-0

Isken S, de Bont JA. Bacteria tolerant to organic solvents. Extremophiles 1998; 2: 229-38.

Aono R, Tsukagoshi N, Yamamoto M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic solvent tolerance of Escherichia coli K-12. J Bacteriol 1998; 180: 938-944.

Oh HY, Lee JO, Kim OB. Increase of organic solvent tolerance of Escherichia coli by the deletion of two regulator genes, fadR and marR. Appl Microbiol Biotechnol 2012; 96: 1619-27. http://dx.doi.org/10.1007/s00253-012-4463-8

Watanabe R, Doukyu N. Contributions of mutations in acrR and marR genes to organic solvent tolerance in Escherichia coli. AMB Express 2012; 2: 58. http://dx.doi.org/10.1186/2191-0855-2-58

Lennen RM, Kruziki MA, Kumar K, et al. Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 2011; 77: 8114-28. http://dx.doi.org/10.1128/AEM.05421-11

Masi M, Pages JM. Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7: 22-33. http://dx.doi.org/10.2174/1874285801307010022

Mortimer PG, Piddock LJ. The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J Antimicrob Chemother 1993; 32: 195-213. http://dx.doi.org/10.1093/jac/32.2.195

Vidal S, Bredin J, Pages JM, Barbe J. Beta-lactam screening by specific residues of the OmpF eyelet. J Med Chem 2005; 48: 1395-400. http://dx.doi.org/10.1021/jm049652e

Duval V, Nicoloff H, Levy SB. Combined inactivation of lon and ycgE decreases multidrug susceptibility by reducing the amount of OmpF porin in Escherichia coli. Antimicrob Agents Chemother 2009; 53: 4944-8. http://dx.doi.org/10.1128/AAC.00787-09

Guillier M, Gottesman S, Storz G. Modulating the outer membrane with small RNAs. Genes Dev 2006; 20: 2338-48. http://dx.doi.org/10.1101/gad.1457506

Dupont M, James CE, Chevalier J, Pages JM. An early response to environmental stress involves regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob Agents Chemother 2007; 51: 3190-8. http://dx.doi.org/10.1128/AAC.01481-06

Yoshida T, Qin L, Egger LA, Inouye M. Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem 2006; 281: 17114-23. http://dx.doi.org/10.1074/jbc.M602112200

Vogel J, Papenfort K. Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol 2006; 9: 605-11. http://dx.doi.org/10.1016/j.mib.2006.10.006

De la Cruz MA, Calva E. The complexities of porin genetic regulation. J Mol Microbiol Biotechnol 2010; 18: 24-36. http://dx.doi.org/10.1159/000274309

Andersen J, Delihas N, Ikenaka K, et al. The isolation and characterization of RNA coded by the micF gene in Escherichia coli. Nucleic Acids Res 1987; 15: 2089-101. http://dx.doi.org/10.1093/nar/15.5.2089

Delihas N, Forst S. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 2001; 313: 1-12. http://dx.doi.org/10.1006/jmbi.2001.5029

Deighan P, Free A, Dorman CJ. A role for the Escherichia coli H-NS-like protein StpA in OmpF porin expression through modulation of micF RNA stability. Mol Microbiol 2000; 38: 126-39. http://dx.doi.org/10.1046/j.1365-2958.2000.02120.x

Huang L, Tsui P, Freundlich M. Integration host factor is a negative effector of in vivo and in vitro expression of ompC in Escherichia coli. J Bacteriol 1990; 172: 5293-8.

Ferrario M, Ernsting BR, Borst DW, et al. The leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF. J Bacteriol 1995; 177: 103-13.

Aiba H, Matsuyama S, Mizuno T, Mizushima S. Function of micF as an antisense RNA in osmoregulatory expression of the ompF gene in Escherichia coli. J Bacteriol 1987; 169: 3007-12.

Takayanagi K, Maeda S, Mizuno T. Expression of micF involved in porin synthesis in Escherichia coli: two distinct cis-acting elements respectively regulate micF expression positively and negatively. FEMS Microbiol Lett 1991; 67: 39-44. http://dx.doi.org/10.1111/j.1574-6968.1991.tb04385.x

Andersen J, Forst SA, Zhao K, Inouye M, Delihas N. The function of micF RNA. micF RNA is a major factor in the thermal regulation of OmpF protein in Escherichia coli. J Biol Chem 1989; 264: 17961-70.

Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989; 33: 1318-25.

Oh JT, Cajal Y, Skowronska EM, et al. Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli. Biochim Biophys Acta 2000; 1463: 43-54. http://dx.doi.org/10.1016/S0005-2736(99)00177-7

Warner DM, Yang Q, Duval V, et al. Involvement of MarR and YedS in carbapenem resistance in a clinical isolate of Escherichia coli from China. Antimicrob Agents Chemother 2013; 57: 1935-7. http://dx.doi.org/10.1128/AAC.02445-12

Baez A, Shiloach J. Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microb Cell Fact 2013; 12: 23. http://dx.doi.org/10.1186/1475-2859-12-23

Koo MS, Lee JH, Rah SY, et al. A reducing system of the superoxide sensor SoxR in Escherichia coli. Embo J 2003; 22: 2614-22. http://dx.doi.org/10.1093/emboj/cdg252

Kobayashi K, Tagawa S. Isolation of reductase for SoxR that governs an oxidative response regulon from Escherichia coli. FEBS Lett 1999; 451: 227-230. http://dx.doi.org/10.1016/S0014-5793(99)00565-7

Poole K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 2012; 20: 227-34. http://dx.doi.org/10.1016/j.tim.2012.02.004

Ding H, Demple B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci U S A 2000; 97: 5146-50. http://dx.doi.org/10.1073/pnas.97.10.5146

Forrester MT, Foster MW. Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 2012; 52: 1620-33. http://dx.doi.org/10.1016/j.freeradbiomed.2012.01.028

Vasil'eva SV, Stupakova MV, Lobysheva, II, Mikoyan VD, Vanin AF. Activation of the Escherichia coli SoxRS-regulon by nitric oxide and its physiological donors. Biochemistry (Mosc) 2001; 66: 984-8. http://dx.doi.org/ 10.1023/A:1012317508971

Giro M, Carrillo N, Krapp AR. Glucose-6-phosphate dehydrogenase and ferredoxin-NADP(H) reductase contribute to damage repair during the soxRS response of Escherichia coli. Microbiology 2006; 152: 1119-28. http://dx.doi.org/10.1099/mic.0.28612-0

Blanchard JL, Wholey WY, Conlon EM, Pomposiello PJ. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One 2007; 2: e1186. http://dx.doi.org/10.1371/journal.pone.0001186

Niazi JH, Kim BC, Gu MB. Characterization of superoxide-stress sensing recombinant Escherichia coli constructed using promoters for genes zwf and fpr fused to lux operon. Appl Microbiol Biotechnol 2007; 74: 1276-83. http://dx.doi.org/10.1007/s00253-006-0758-y

Zheng M, Doan B, Schneider TD, Storz G. OxyR and SoxRS regulation of fur. J Bacteriol 1999; 181: 4639-43.

Liochev SI, Fridovich I. Fumarase C, the stable fumarase of Escherichia coli, is controlled by the soxRS regulon. Proc Natl Acad Sci U S A 1992; 89: 5892-6. http://dx.doi.org/10.1073/pnas.89.13.5892

Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995; 64: 97-112. http://dx.doi.org/10.1146/annurev.bi.64.070195.000525

Geslin C, Llanos J, Prieur D, Jeanthon C. The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 2001; 152: 901-5. http://dx.doi.org/10.1016/S0923-2508(01)01273-6

Pomposiello PJ, Koutsolioutsou A, Carrasco D, Demple B. SoxRS-regulated expression and genetic analysis of the yggX gene of Escherichia coli. J Bacteriol 2003; 185: 6624-32. http://dx.doi.org/10.1128/JB.185.22.6624-6632.2003

Zenno S, Koike H, Tanokura M, Saigo K. Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri. J Biochem 1996; 120: 736-44.

Zenno S, Koike H, Kumar AN, et al. Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J Bacteriol 1996; 178: 4508-14.

Sandegren L, Lindqvist A, Kahlmeter G, Andersson DI. Nitrofurantoin resistance mechanism and fitness cost in Escherichia coli. J Antimicrob Chemother 2008; 62: 495-503. http://dx.doi.org/10.1093/jac/dkn222

Barbosa TM, Levy SB. Activation of the Escherichia coli nfnB gene by MarA through a highly divergent marbox in a class II promoter. Mol Microbiol 2002; 45: 191-202. http://dx.doi.org/10.1046/j.1365-2958.2002.03006.x

Liochev SI, Hausladen A, Fridovich I. Nitroreductase A is regulated as a member of the soxRS regulon of Escherichia coli. Proc Natl Acad Sci U S A 1999; 96: 3537-9. http://dx.doi.org/10.1073/pnas.96.7.3537

Ju KS, Parales RE. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 2010; 74: 250-72. http://dx.doi.org/10.1128/MMBR.00006-10

Hong W, Wu YE, Fu X, Chang Z. Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol 2012; 20: 328-35. http://dx.doi.org/10.1016/j.tim.2012.03.001

Ruiz C, McMurry LM, Levy SB. Role of the multidrug resistance regulator MarA in global regulation of the hdeAB acid resistance operon in Escherichia coli. J Bacteriol 2008; 190: 1290-7. http://dx.doi.org/10.1128/JB.01729-07

White S, Tuttle FE, Blankenhorn D, Dosch DC, Slonczewski JL. pH dependence and gene structure of inaA in Escherichia coli. J Bacteriol 1992; 174: 1537-43.

Bennik MH, Pomposiello PJ, Thorne DF, Demple B. Defining a rob regulon in Escherichia coli by using transposon mutagenesis. J Bacteriol 2000; 182: 3794-801. http://dx.doi.org/10.1128/JB.182.13.3794-3801.2000

Rosner JL, Slonczewski JL. Dual regulation of inaA by the multiple antibiotic resistance (mar) and superoxide (soxRS) stress response systems of Escherichia coli. J Bacteriol 1994; 176: 6262-9.

Lee S, Nam D, Jung JY, et al. Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds. Bioresour Technol 2012; 114: 450-456. http://dx.doi.org/10.1016/j.biortech.2012.02.085

Lee S, Mitchell RJ. Detection of toxic lignin hydrolysate-related compounds using an inaA::luxCDABE fusion strain. J Biotechnol 2012; 157: 598-604. http://dx.doi.org/10.1016/j.jbiotec.2011.06.018

Hoffman JA, Badger JL, Zhang Y, Sik Kim K. Escherichia coli K1 pur A and sor C are preferentially expressed upon association with human brain microvascular endothelial cells. Microbial Pathogenesis 2001; 31: 69-79.

Vejborg RM, de Evgrafov MR, Phan MD, et al. Identification of genes important for growth of asymptomatic bacteriuria Escherichia coli in urine. Infect Immun 2012; 80: 3179-88. http://dx.doi.org/10.1128/IAI.00473-12

Dunstan SJ, Simmons CP, Strugnell RA. Comparison of the abilities of different attenuated Salmonella typhimurium strains to elicit humoral immune responses against a heterologous antigen. Infect Immun 1998; 66: 732-740.

O'Callaghan D, Maskell D, Liew FY, Easmon CS, Dougan G. Characterization of aromatic- and purine-dependent Salmonella typhimurium: attention, persistence, and ability to induce protective immunity in BALB/c mice. Infect Immun 1988; 56: 419-423.

Ben-Bassat A, Bauer K, Chang SY, et al. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 1987; 169: 751-757.

Chai SC, Wang WL, Ding DR, Ye QZ. Growth inhibition of Escherichia coli and methicillin-resistant Staphylococcus aureus by targeting cellular methionine aminopeptidase. Eur J Med Chem 2011; 46: 3537-40. http://dx.doi.org/10.1016/j.ejmech.2011.04.056

Vila J, Soto SM. Salicylate increases the expression of marA and reduces in vitro biofilm formation in uropathogenic

Escherichia coli by decreasing type 1 fimbriae expression. Virulence 2012; 3: 280-5. http://dx.doi.org/10.4161/viru.19205

Maira-Litran T, Allison DG, Gilbert P. An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. J Antimicrob Chemother 2000; 45: 789-95. http://dx.doi.org/10.1093/jac/45.6.789

Duo M, Hou S, Ren D. Identifying Escherichia coli genes involved in intrinsic multidrug resistance. Appl Microbiol Biotechnol 2008; 81: 731-41. http://dx.doi.org/10.1007/s00253-008-1709-6

Stancik LM, Stancik DM, Schmidt B, et al. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 2002; 184: 4246-58. http://dx.doi.org/10.1128/JB.184.15.4246-4258.2002

Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 2005; 187: 1591-603. http://dx.doi.org/10.1128/JB.187.5.1591-1603.2005

White-Ziegler CA, Um S, Perez NM, et al. Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 2008; 154: 148-66. http://dx.doi.org/10.1099/mic.0.2007/012021-0

Cohen SP, Yan W, Levy SB. A multidrug resistance regulatory chromosomal locus is widespread among enteric bacteria. J Infect Dis 1993; 168: 484-8.

Dietrich LE, Teal TK, Price-Whelan A, Newman DK. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 2008; 321: 1203-6. http://dx.doi.org/10.1126/science.1160619

Prouty AM, Brodsky IE, Falkow S, Gunn JS. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 2004; 150: 775-83. http://dx.doi.org/10.1099/mic.0.26769-0

Hartog E, Ben-Shalom L, Shachar D, Matthews KR, Yaron S. Regulation of marA, soxS, rob, acrAB and micF in Salmonella enterica serovar Typhimurium. Microbiol Immunol 2008; 52: 565-74.

Hartog E, Menashe O, Kler E, Yaron S. Salicylate reduces the antimicrobial activity of ciprofloxacin against extracellular Salmonella enterica serovar Typhimurium, but not against Salmonella in macrophages. J Antimicrob Chemother 2010; 65: 888-96. http://dx.doi.org/10.1093/jac/dkq077

Nikaido E, Shirosaka I, Yamaguchi A, Nishino K. Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. Microbiology 2011; 157: 648-55. http://dx.doi.org/10.1099/mic.0.045757-0

Sulavik MC, Dazer M, Miller PF. The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. J Bacteriol 1997; 179: 1857-66.

Collao B, Morales EH, Gil F, et al. Differential expression of the transcription factors MarA, Rob, and SoxS of Salmonella Typhimurium in response to sodium hypochlorite: down-regulation of rob by MarA and SoxS. Arch Microbiol 2012; 194: 933-42. http://dx.doi.org/10.1007/s00203-012-0828-8

Randall LP, Woodward MJ. Role of the mar locus in virulence of Salmonella enterica serovar Typhimurium DT104 in chickens. J Med Microbiol 2001; 50: 770-9.

Collao B, Morales EH, Gil F, Calderon IL, Saavedra CP. ompW is cooperatively upregulated by MarA and SoxS in response to menadione. Microbiology 2013; 159: 715-25. http://dx.doi.org/10.1099/mic.0.066050-0

Ruzin A, Visalli MA, Keeney D, Bradford PA. Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2005; 49: 1017-22. http://dx.doi.org/10.1128/AAC.49.3.1017-1022.2005

Schneiders T, Amyes SG, Levy SB. Role of AcrR and ramA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 2003; 47: 2831-7. http://dx.doi.org/10.1128/AAC.47.9.2831-2837.2003

Rosenblum R, Khan E, Gonzalez G, Hasan R, Schneiders T. Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int J Antimicrob Agents 2011; 38: 39-45. http://dx.doi.org/10.1016/j.ijantimicag.2011.02.012

Bratu S, Landman D, George A, Salvani J, Quale J. Correlation of the expression of acrB and the regulatory genes marA, soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York City. J Antimicrob Chemother 2009; 64: 278-83. http://dx.doi.org/10.1093/jac/dkp186

Lee EH, Collatz E, Podglajen I, Gutmann L. A rob-like gene of Enterobacter cloacae affecting porin synthesis and susceptibility to multiple antibiotics. Antimicrob Agents Chemother 1996; 40: 2029-33.

Perez A, Poza M, Aranda J, et al. Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-TolC in Enterobacter cloacae. Antimicrob Agents Chemother 2012; 56: 6256-66. http://dx.doi.org/10.1128/AAC.01085-12

Achtman M, Zurth K, Morelli G, et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 1999; 96: 14043-8.

Lister IM, Mecsas J, Levy SB. Effect of MarA-like proteins on antibiotic resistance and virulence in Yersinia pestis. Infect Immun 2010; 78: 364-71. http://dx.doi.org/10.1128/IAI.00904-09

Udani RA, Levy SB. MarA-like regulator of multidrug resistance in Yersinia pestis. Antimicrob Agents Chemother 2006; 50: 2971-5. http://dx.doi.org/10.1128/AAC.00015-06

Mehata S, Duan GC. Molecular mechanism of multi-drug resistance in Shigella isolates from rural China. Nepal Med Coll J 2011; 13: 27-9.

Pu XY, Zhang Q, Pan JC, Shen Z, Zhang W. Spontaneous mutation frequency and molecular mechanisms of Shigella flexneri fluoroquinolone resistance under antibiotic selective stress. World J Microbiol Biotechnol 2013; 29: 365-71. http://dx.doi.org/10.1007/s11274-012-1190-3

George AM, Hall RM, Stokes HW. Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology 1995; 141: 1909-20. http://dx.doi.org/10.1099/13500872-141-8-1909

Abouzeed YM, Baucheron S, Cloeckaert A. ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2008; 52: 2428-34. http://dx.doi.org/10.1128/AAC.00084-08

Ricci V, Busby SJ, Piddock LJ. Regulation of RamA by RamR in Salmonella enterica serovar Typhimurium: isolation of a RamR superrepressor. Antimicrob Agents Chemother 2012; 56: 6037-40. http://dx.doi.org/10.1128/AAC.01320-12

Ricci V, Piddock LJ. Only for substrate antibiotics are a functional AcrAB-TolC efflux pump and RamA required to select multidrug-resistant Salmonella typhimurium. J Antimicrob Chemother 2009; 64: 654-7. http://dx.doi.org/10.1093/jac/dkp234

Nikaido E, Yamaguchi A, Nishino K. AcrAB multidrug efflux pump regulation in Salmonella enterica serovar Typhimurium by RamA in response to environmental signals. J Biol Chem 2008; 283: 24245-24253. http://dx.doi.org/10.1074/jbc.M804544200

Lawler AJ, Ricci V, Busby SJ, Piddock LJ. Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 2013; 68: 1551-7. http://dx.doi.org/10.1093/jac/dkt069

Vallance P, Charles I. Nitric oxide as an antimicrobial agent: does NO always mean NO? [ comment]. Gut 1998; 42: 313-4.

Hernandez-Urzua E, Zamorano-Sanchez DS, Ponce-Coria J, et al. Multiple regulators of the Flavohaemoglobin (hmp) gene of Salmonella enterica serovar Typhimurium include RamA, a transcriptional regulator conferring the multidrug resistance phenotype. Arch Microbiol 2007; 187: 67-77. http://dx.doi.org/10.1007/s00203-006-0175-8

van der Straaten T, Zulianello L, van Diepen A, et al. Salmonella enterica serovar Typhimurium RamA, intracellular oxidative stress response, and bacterial virulence. Infect Immun 2004; 72: 996-1003. http://dx.doi.org/10.1128/iai.72.2.996-1003.2004

Hentschke M, Wolters M, Sobottka I, Rohde H, Aepfelbacher M. ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 2010; 54: 2720-3. http://dx.doi.org/10.1128/AAC.00085-10

Kallman O, Motakefi A, Wretlind B, et al. Cefuroxime non-susceptibility in multidrug-resistant Klebsiella pneumoniae overexpressing ramA and acrA and expressing ompK35 at reduced levels. J Antimicrob Chemother 2008; 62: 986-90. http://dx.doi.org/10.1093/jac/dkn296

Bialek-Davenet S, Marcon E, Leflon-Guibout V, et al. In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother 2011; 55: 2795-802. http://dx.doi.org/10.1128/AAC.00156-11

Veleba M, De Majumdar S, Hornsey M, Woodford N, Schneiders T. Genetic characterization of tigecycline resistance in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. J Antimicrob Chemother 2013; 68: 1011-8. http://dx.doi.org/10.1093/jac/dks530

Skurnik M, Toivanen P. LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J Bacteriol 1992; 174: 2047-51.

Cornelis GR, Wolf-Watz H. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 1997; 23: 861-7. http://dx.doi.org/10.1046/j.1365-2958.1997.2731623.x

Jackson MW, Silva-Herzog E, Plano GV. The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 2004; 54: 1364-78. http://dx.doi.org/10.1111/j.1365-2958.2004.04353.x

Garrity-Ryan LK, Kim OK, Balada-Llasat JM, et al. Small molecule inhibitors of LcrF, a Yersinia pseudotuberculosis transcription factor, attenuate virulence and limit infection in a murine pneumonia model. Infect Immun 2010; 78: 4683-90. http://dx.doi.org/10.1128/IAI.01305-09

Talbot GH, Bradley J, Edwards JE, Jr., et al. Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the Infectious Diseases Society of America. Clin Infect Dis 2006; 42: 657-68. http://dx.doi.org/10.1086/499819

Projan SJ, Bradford PA. Late stage antibacterial drugs in the clinical pipeline. Curr Opin Microbiol 2007; 10: 441-6. http://dx.doi.org/10.1016/j.mib.2007.08.007

Bowser TE, Bartlett VJ, Grier MC, et al. Novel anti-infection agents: small-molecule inhibitors of bacterial transcription factors. Bioorg Med Chem Lett 2007; 17: 5652-5. http://dx.doi.org/10.1016/j.bmcl.2007.07.072

Kim OK, Garrity-Ryan LK, Bartlett VJ, et al. N-hydroxybenzimidazole inhibitors of the transcription factor LcrF in Yersinia: novel antivirulence agents. J Med Chem 2009; 52: 5626-34. http://dx.doi.org/10.1021/jm9006577

Thoerner P, Bin Kingombe CI, Bogli-Stuber K, et al. PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution. Appl Environ Microbiol 2003; 69: 1810-6. http://dx.doi.org/10.1128/AEM.69.3.1810-1816.2003

Grier MC, Garrity-Ryan LK, Bartlett VJ, et al. N-Hydroxybenzimidazole inhibitors of ExsA MAR transcription factor in Pseudomonas aeruginosa: in vitro anti-virulence activity and metabolic stability. Bioorg Med Chem Lett 2010; 20: 3380-3. http://dx.doi.org/10.1016/j.bmcl.2010.04.014

Finck-Barbancon V, Goranson J, Zhu L, et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 1997; 25: 547-57. http://dx.doi.org/10.1046/j.1365-2958.1997.4891851.x

Laskowski MA, Osborn E, Kazmierczak BI. A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. Mol Microbiol 2004; 54: 1090-103. http://dx.doi.org/10.1111/j.1365-2958.2004.04331.x

Yahr TL, Wolfgang MC. Transcriptional regulation of the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2006; 62: 631-40. http://dx.doi.org/10.1111/j.1365-2958.2006.05412.x

Ruiz C, Levy SB. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli. Antimicrob Agents Chemother 2010; 54: 2125-34. http://dx.doi.org/10.1128/AAC.01420-09

Downloads

Published

2013-09-30

How to Cite

Duval, V., & Lister, I. M. (2013). MarA, SoxS and Rob of Escherichia coli – Global Regulators of Multidrug Resistance, Virulence and Stress Response. International Journal of Biotechnology for Wellness Industries, 2(3), 101–124. https://doi.org/10.6000/1927-3037.2013.02.03.2

Issue

Section

Articles