The Influence of Diet and Exercise on the Physical Health of Affected Individuals with VCP Disease

Authors

  • Virginia Kimonis Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
  • Katherine Hamorsky Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
  • Abhilasha Surampalli Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
  • Marie Wencel Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA
  • Manaswitha Khare Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA 92697, USA

DOI:

https://doi.org/10.6000/1927-3037.2014.03.02.2

Keywords:

IBMPFD, inclusion body myopathy, valosin-containing protein, diet, exercise.

Abstract

While there is no curative treatment for the Inclusion body myopathy, Paget disease of bone and/ or frontotemporal dementia (IBMPFD) disorder, it is worthwhile to investigate alternate therapies that may slow the progression of the disease and improve the quality of life in this patient population. Therefore, this study aims to evaluate the impact of diet and exercise changes on the Quality of Life questionnaire. We assessed data from the questionnaire in 30 individuals (mean age 50.86 years; range 27-65 years; 16 Males, 14 Females) that participated in the clinical study of Valosin Containing Protein (VCP) disease. Eleven affected individuals consumed a high fat/sugar diet and 15 low fat/sugar diet of 4.09±0.25 and 1.53±0.13 servings/day respectively. Eleven individuals reported not exercising and 12 reported moderate exercise of 2.44±0.74 hours/week. In this cohort we found significantly higher mean physical health domain score for all those who exercised (P=.02) and surprisingly in those who had a high fat/sugar diet (P=.01). In the high fat/sugar diet group there was a significantly greater ability to walk; greater perceived muscle strength in arms and legs (P=.03; P=.02 and P= .02 respectively). Therefore lifestyle changes with exercise training and a higher fat/ sugar diet may have a beneficial effect in affected individuals with VCP disease. Nevertheless, larger studies with further research are needed to confirm these preliminary studies before making clinical practice recommendations.

 

References

Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 2004; 36: 377-81. http://dx.doi.org/10.1038/ng1332

Kimonis VE, Kovach MJ, Waggoner B, Leal S, Salam A, et al. Clinical and molecular studies in a unique family with autosomal dominant limb-girdle muscular dystrophy and Paget disease of bone. Genet Med 2000; 2: 232-41. http://dx.doi.org/10.1097/00125817-200007000-00006

Maurizi MR, Li CC. AAA proteins: in search of a common molecular basis. International Meeting on Cellular Functions of AAA Proteins. EMBO Rep 2001; 2: 980-5. http://dx.doi.org/10.1093/embo-reports/kve229

Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, et al. VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ 2001; 8: 977-84. http://dx.doi.org/10.1038/sj.cdd.4400907

Watts GD, Thorne M, Kovach MJ, Pestronk A, Kimonis VE. Clinical and genetic heterogeneity in chromosome 9p associated hereditary inclusion body myopathy: exclusion of GNE and three other candidate genes. Neuromuscul Disord 2003; 13(7-8): 559-67. http://dx.doi.org/10.1016/S0960-8966(03)00070-1

Djamshidian A, Schaefer J, Haubenberger D, Stogmann E, Zimprich F, et al. A novel mutation in the VCP gene (G157R) in a German family with inclusion-body myopathy with Paget disease of bone and frontotemporal dementia. Muscle Nerve 2009; 39: 389-91. http://dx.doi.org/10.1002/mus.21225

Guyant-Marechal L, Laquerriere A, Duyckaerts C, Dumanchin C, Bou J, et al. Valosin-containing protein gene mutations: clinical and neuropathologic features. Neurol 2006: 67; 644-51. http://dx.doi.org/10.1212/01.wnl.0000225184.14578.d3

Haubenberger D, Bittner RE, Rauch-Shorny S, Zimprich F, Mannhalter C, et al. Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene. Neurology 2005; 65: 1304-5. http://dx.doi.org/10.1212/01.wnl.0000180407.15369.92

Kumar KR, Needham M, Mina K, Davis M, Brewer J, et al. Two Australian families with inclusion-body myopathy, Paget's disease of bone and frontotemporal dementia: novel clinical and genetic findings. Neuromuscul Disord 2010; 20: 330-4. http://dx.doi.org/10.1016/j.nmd.2010.03.002

Miller TD, Jackson AP, Barresi R, Smart CM, Eugenicos M, et al. Inclusion body myopathy with Paget disease and frontotemporal dementia (IBMPFD): clinical features including sphincter disturbance in a large pedigree. J Neurol Neurosurg Psychiatry 2009; 80: 583-4. http://dx.doi.org/10.1136/jnnp.2008.148676

Weihl CC, Temiz P, Miller SE, Watts G, Smith C, et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry 2008; 79: 1186-9. http://dx.doi.org/10.1136/jnnp.2007.131334

Forman MS, Mackenzie IR, Cairns NJ, Swanson E, Boyer PJ, et al. Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol 2006; 65: 571-81. http://dx.doi.org/10.1097/00005072-200606000-00005

Neumann M, Mackenzie IR, Cairns NJ, Boyer PJ, Markesbery WR, et al. TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol 2007; 66: 152-7. http://dx.doi.org/10.1097/nen.0b013e31803020b9

Siris E. Zoledronate in the treatment of Paget's disease. Br J Clin Pract Suppl 1996 Sep; 87: 19-20; discussion 2.

Langston AL, Ralston SH. Management of Paget's disease of bone. Rheumatol 2004; 43: 955-9. http://dx.doi.org/10.1093/rheumatology/keh243

Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol 2006; 17: 431-9. http://dx.doi.org/10.1097/00008877-200609000-00009

Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012; 3: 59. http://dx.doi.org/10.3389/fphar.2012.00059

Paganoni S, Wills AM. High-fat and ketogenic diets in amyotrophic lateral sclerosis. J Child Neurol 2013; 28: 989-92. http://dx.doi.org/10.1177/0883073813488669

Wills AM, Hubbard J, Macklin EA, Glass J, Tandan R, et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 2014; 27. pii: S0140-6736(14)60222-1.

Stafstrom CE. Dietary approaches to epilepsy treatment: old and new options on the menu. Epilepsy Curr 2004; 4: 215-22. http://dx.doi.org/10.1111/j.1535-7597.2004.46001.x

Baranano KW, Hartman AL. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol 2008; 10: 410-9. http://dx.doi.org/10.1007/s11940-008-0043-8

Noh HS, Kim YS, Choi WS. Neuroprotective effects of the ketogenic diet. Epilepsia 2008; 49 Suppl 8: 120-3. http://dx.doi.org/10.1111/j.1528-1167.2008.01855.x

Anderson C, Laubscher S, Burns R. Validation of the Short Form 36 (SF-36) health survey questionnaire among stroke patients. Stroke 1996; 27: 1812-6. http://dx.doi.org/10.1161/01.STR.27.10.1812

Ware JE, Jr. SF-36 health survey update. Spine 2000; 25: 3130-9. http://dx.doi.org/10.1097/00007632-200012150-00008

Luquiens A, Reynaud M, Falissard B, Aubin HJ. Quality of life among alcohol-dependent patients: how satisfactory are the available instruments? A systematic review. Drug Alcohol Depend 2012; 25: 192-202. http://dx.doi.org/10.1016/j.drugalcdep.2012.08.012

Robbins CL, Zapata LB, Farr SL, Morrow B, Ahluwalia I, et al. Core state preconception health indicators - pregnancy risk assessment monitoring system and behavioral risk factor surveillance system, 2009. MMWR Surveill Summ 2014; 63: 1-62.

Nelson DE, Holtzman D, Bolen J, Stanwyck CA, Mack KA. Reliability and validity of measures from the Behavioral Risk Factor Surveillance System (BRFSS). Soz Praventivmed 2001; 46 Suppl 1: S3-42.

Jackson CE, Barohn RJ, Gronseth G, Pandya S, Herbelin L. Inclusion body myositis functional rating scale: a reliable and valid measure of disease severity. Muscle Nerve 2008; 37: 473-6. http://dx.doi.org/10.1002/mus.20958

Llewellyn KJ, Nalbandian A, Jung KM, Nguyen C, Avanesian A, et al. Lipid-enriched diet rescues lethality and slows down progression in a murine model of VCP-associated disease. Hum Mol Genet 2014; 23: 1333-44. http://dx.doi.org/10.1093/hmg/ddt523

O'Reilly EJ, Wang H, Weisskopf MG, Fitzgerald KC, Falcone G, et al. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14: 205-11. http://dx.doi.org/10.3109/21678421.2012.735240

Eisenberg I, Novershtern N, Itzhaki Z, Becker-Cohen M, Sadeh M, et al. Mitochondrial processes are impaired in hereditary inclusion body myopathy. Hum Mol Genet 2008; 17: 3663-74. http://dx.doi.org/10.1093/hmg/ddn261

Hancock CR, Han DH, Chen M, Terada S, Yasuda T, et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A 2008; 105: 7815-20. http://dx.doi.org/10.1073/pnas.0802057105

Ahola-Erkkila S, Carroll CJ, Peltola-Mjosund K, Tulkki V, Mattila I, et al. Ketogenic diet slows down mitochondrial myopathy progression in mice. Hum Mol Genet 2010; 19: 1974-84. http://dx.doi.org/10.1093/hmg/ddq076

Schrauwen P, Saris WH, Hesselink MK. An alternative function for human uncoupling protein 3: protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix. FASEB J 2001; 15: 2497-502. http://dx.doi.org/10.1096/fj.01-0400hyp

Nalbandian A, Nguyen, C., Katheria, V., Llewellyn, K., Badadani, M., et al. Exercise training paradigm reverses skeletal muscle atrophy in VCP-associated disease. PLOS One 2013; 8: e76187. http://dx.doi.org/10.1371/journal.pone.0076187

Alexanderson H. Exercise: an important component of treatment in the idiopathic inflammatory myopathies. Curr Rheumatol Rep 2005; 7: 115-24. http://dx.doi.org/10.1007/s11926-005-0063-2

Sveen ML, Jeppesen TD, Hauerslev S, Kober L, Krag TO, et al. Endurance training improves fitness and strength in patients with Becker muscular dystrophy. Brain 2008; 131: 2824-31. http://dx.doi.org/10.1093/brain/awn189

Sveen ML, Andersen SP, Ingelsrud LH, Blichter S, Olsen NE, et al. Resistance training in patients with limb-girdle and becker muscular dystrophies. Muscle Nerve 2013; 47: 163-9. http://dx.doi.org/10.1002/mus.23491

Abresch RT, Carter GT, Han JJ, McDonald CM. Exercise in neuromuscular diseases. Phys Med Rehabil Clin N Am 2012; 23: 653-73. http://dx.doi.org/10.1016/j.pmr.2012.06.001

Devries MC, Samjoo IA, Hamadeh MJ, Tarnopolsky MA. Effect of endurance exercise on hepatic lipid content, enzymes, and adiposity in men and women. Obesity (Silver Spring) 2008; 16: 2281-8. http://dx.doi.org/10.1038/oby.2008.358

Devries MC, Tarnopolsky MA. Muscle physiology in healthy men and women and those with metabolic myopathies. Neurol Clin 2008; 26: 115-48. http://dx.doi.org/10.1016/j.ncl.2007.11.010

Siciliano G, Simoncini C, Lo Gerfo A, Orsucci D, Ricci G, et al. Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies. Neuromuscul Disord 2012; 22 (Suppl 3): S172-7. http://dx.doi.org/10.1016/j.nmd.2012.10.005

Downloads

Published

2014-07-22

How to Cite

Kimonis, V., Hamorsky, K., Surampalli, A., Wencel, M., & Khare, M. (2014). The Influence of Diet and Exercise on the Physical Health of Affected Individuals with VCP Disease . International Journal of Biotechnology for Wellness Industries, 3(2), 46–52. https://doi.org/10.6000/1927-3037.2014.03.02.2

Issue

Section

Articles