From Beverages to Biofuels: The Journeys of Ethanol-Producing Microorganisms

Authors

  • Nicholas Macedo Department of Bioengineering University of Massachusetts, Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
  • Christopher J. Brigham Department of Bioengineering University of Massachusetts, Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA

DOI:

https://doi.org/10.6000/1927-3037.2014.03.03.1

Keywords:

Bioethanol, Biofuel, Saccharomyces cerevisiae, Zymomonas mobilis.

Abstract

Microbial fermentation for bio-based products is quickly becoming an integral component of the world infrastructure, as the processes encompassing the synthesis of these natural products becomes more efficient and cost effective to compete with existing commodities. Bioethanol is currently one of the most desired fermentation products, as this constituent can be applied to multiple uses in not only contributing to the more traditional routes of beer brewing and winemaking, but also in the foundation for green fuel sources. By optimizing yields, the innovative processes could be applied towards engineering more rapid and productive biomanufacturing. In order to achieve these goals, we as researchers must understand the underlying principles and intricate networks that play a role within the microenvironment and also on the cellular level in key fermentative microbes such as Saccharomyces cerevisiae and Zymomonas mobilis. In-depth pathway analysis could lead to the development of more favorable metabolic outcomes. This review focuses on the key metabolic networks and cellular frameworks in these model organisms, and how biosynthesis of ethanol yields can be optimized throughout the fermentation process.

References

Saghbini M, Hoekstra D, Gautsch J. Media Formulations for Various Two-Hybrid Systems. Method Mol Biol 2011; 177: 15-39.

Pisˇkur J, Rozpedowska E, Polakova S, et al. How did Saccharomyces evolve to become a good brewer? Trends Genet 2006; 22(4): 183-6. http://dx.doi.org/10.1016/j.tig.2006.02.002

Jeffries TW. Ethanol fermentation on the move. Nat Biotechnol 2005; 23: 40-1. http://dx.doi.org/10.1038/nbt0105-40

Dunn KL, Rao CV. Expression of a xylose-specific transporter improves ethanol production by metabolically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 2014; 98(15): 6897-905. http://dx.doi.org/10.1007/s00253-014-5812-6

Lee KY, Park JM, Kim TY, Yun H, Lee SY. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microb Cell Fact 2010; 9: 1-12. http://dx.doi.org/10.1186/1475-2859-9-94

Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF. Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 1987; 53(10): 2420-5.

Yang S, Tschaplinski TJ, Engle NL, et al. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 2009; 10(34). doi:10.1186/1471-2164-10-34.

Seo JS, Chong H, Park HS, et al. The genome sequence of the ethanologenic bacterium Zymomonas mobilis. Nat Biotechnol 2005; 23(1): 63-8. http://dx.doi.org/10.1038/nbt1045

Ming-Xiong H, Wu B, Zong-Xia S, et al. Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol Biofuels 2013; 5(75): 70-6. doi:10.1186/1754-6834-5-75.

Berner TS, Jacobsen S, Armstrong N. The impact of different ale brewer’s yeast strains on the proteome of immature beer. BMC Microbiology 2013; 13: 1-8. doi:10.1186/1471-2180-13-215.

Tristezza M, Fantastico L, Vetrano C, Bleve G, Corallo D, Grieco F, Mita G, Grieco F. Molecular and Technological Characterization of Saccharomyces cerevisiae Strains Isolated from Natural Fermentation of Susumaniello Grape Must in Apulia, Southern Italy. Int J Microbiol 2014; 1-11. doi.org/10.1155/2014/897428.

Di Maio S, Polizzotto G, Di Gangi E, Foresta G, Genna G, et al. Biodiversity of Indigenous Saccharomyces Populations from Old Wineries of South-Eastern Sicily (Italy): Preservation and Economic Potential. PLoS One 2012; 7(2): e30428. http://dx.doi.org/10.1371/journal.pone.0030428

Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 2009; 109: 13-24. doi:10.1111/j.1365-2672.2009.04657.x.

Swings J, De Ley J. The Biology of Zymomonas. Bacteriol Rev 1977; 41(1): 1-46.

Kalnenieks U, Galinina N, Toma MM, Marjutina U. Ethanol cycle in an ethanologenic bacterium. FEBS Lett 2002; 522: 6-8. http://dx.doi.org/10.1016/S0014-5793(02)02923-X

Voegele E. Recent ethanol production volumes among highest recorded levels. Ethanol Producer [serial on the internet]. 2014 August 15 [about 2 screens]. Available from: http://www.ethanolproducer.com/articles/11356/recent-ethanol-production-volumes-among-highest-recorded-levels

Parker M. Ethanol rises to highest price since July 2006. Bloomberg News [serial on the internet]. 2014 March 28 [about 4 screens]. Available from: http://www.bloomberg. com/news/2014-03-28/ethanol-rises-to-highest-price-since-july-2006.html

Rothkopf G. A blueprint for green energy in the Americas. Inter-American Development Bank. Washington, D.C.; 2007.

Puerto Rico JA. Programa de Biocombustíveis no Brasil e na Colômbia: uma análise da implantação, resultados e perspectivas. Ph.D. Thesis. Universidade de Sao Paulo, Brazil 2008.

Miranowski J, Rosburg A. Long-term biofuel projections under different oil price scenarios. AgBioForum 2012; 16(1): 79-87.

Ha SJ, Galazka JM, Kim SR, et al. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Nat Acad Sci USA 2011; 108 (2): 504-9. http://dx.doi.org/10.1073/pnas.1010456108

Hawkins GM, Doran-Peterson J. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnol Biofuels 2011; 4(49): 1-14. doi:10.1186/1754-6834-4-49.

Ma M, Liu ZL. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genom 2010; 11(660): 480-8. doi:10.1186/1471-2164-11-660.

Salinas VW, Signori L, et al. Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express 2014; 4: 56. http://dx.doi.org/10.1186/s13568-014-0056-5

Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels 2013; 6: 84. http://dx.doi.org/10.1186/1754-6834-6-84

Roberts SK, McAinsh M, Widdicks L. Cch1p Mediates Ca2+ Influx to Protect Saccharomyces cerevisiae against Eugenol Toxicity. PLoS One 2012; 7(9): 1-7. doi:10.1371/ journal.pone.0043989.

Zhang Y, Muend S, Rao R. Dysregulation of ion homeostasis by antifungal agents. Front Microbiol 2012; 3(133): 1-6. doi: 10.3389/fmicb.2012.00133

Lambert F, Zucca J, Ness F, Aigle M. Production of ferulic acid and coniferyl alcohol by conversion of eugenol using a recombinant strain of Saccharomyces cerevisiae. Flavor Fragr J 2013; 29: 14-21. http://dx.doi.org/10.1002/ffj.3173

Buijs NA, Siewers V, Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 2012; 17: 480-8. http://dx.doi.org/10.1016/j.cbpa.2013.03.036

Zhang F, Rodriquez S, Keasling JD. Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 2011; 22: 775-83. http://dx.doi.org/10.1016/j.copbio.2011.04.024

Loos H, Kramer R, Sahm H, Sprenger GA. Sorbitol Promotes Growth of Zymomonas mobilis in Environments with High Concentrations of Sugar: Evidence for a Physiological Function of Glucose-Fructose Oxidoreductase in Osmoprotection. J Bacteriol 1994; 176(24): 7688-93.

Mohagheghi A, Linger J, Smith H, et al. Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Biotechnol Biofuels 2014; 7(19): 1-9. doi:10.1186/1754-6834-7-19.

He MX, Wu B, Shui ZX, et al. Transcriptome profiling of Zymomonas mobilis under ethanol stress. Biotechnol Biofuels 2012; 5(75): 1-10. doi:10.1186/1754-6834-5-75.

Peterson JD, Ingram LO. Anaerobic Respiration in Engineered Escherichia coli with an Internal Electron Acceptor to Produce Fuel Ethanol. Ann NY Acad Sci 2008; 1125: 363-72. http://dx.doi.org/10.1196/annals.1419.020

Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 2003; 63: 258-66. http://dx.doi.org/10.1007/s00253-003-1444-y

Hein L, Leemans R. The Impact of first-Generation biofuels on the depletion of the global phosphorus reserve. AMBIO 2012; 41: 341-9. http://dx.doi.org/10.1007/s13280-012-0253-x

Moraïs S, Morag E, Barak Y, et al. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 2012; 3(6): e00508-12. http://dx.doi.org/10.1128/mBio.00508-12

Rico A, Rencoret J, Rio J, et al. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 2014; 7(6): 1-14. doi:10.1186/1754-6834-7-6.

Domingues L, Guimarães PMR, Oliveira C. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Bioeng Bugs 2010; 1(3): 64-171. http://dx.doi.org/10.4161/bbug.1.3.10619

Downloads

Published

2014-10-15

How to Cite

Macedo, N., & Brigham, C. J. (2014). From Beverages to Biofuels: The Journeys of Ethanol-Producing Microorganisms. International Journal of Biotechnology for Wellness Industries, 3(3), 79–87. https://doi.org/10.6000/1927-3037.2014.03.03.1

Issue

Section

Articles