The Influence of Electrospinning Parameters and Drug Loading on Polyhydroxyalkanoate (PHA) Nanofibers for Drug Delivery

Authors

  • Yan-Fen Lee Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden 11800 Penang, Malaysia
  • Nanthini Sridewi Department of Maritime Science and Technology, Faculty of Defence Science and Technology, National Defense University of Malaysia, Sungai Besi Camp, 57000 Kuala Lumpur, Malaysia
  • Surash Ramanathan Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia
  • Kumar Sudesh Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden 11800 Penang, Malaysia

DOI:

https://doi.org/10.6000/1927-3037.2015.04.04.1

Keywords:

polyhydroxyalkanoate, electrospinning, nanofibers, drug loading, biocompatibility

Abstract

The impact of polymer concentration and drug loading on nanofiber morphology and diameter were investigated during electrospinning of polyhydroxyalkanoate nanofibrous films. Low molecular weight poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-95 mol% 4HB)] required a 5-fold higher solution concentration than high molecular weight poly(3-hydroxybutyrate) [P(3HB)] to produce bead-free nanofibers. Loading the films with paclitaxel increased the initial polymer solution viscosity allowing larger diameter nanofibers to form. Furthermore, paclitaxel added at 1% (w/w) into 8 % (w/v) P(3HB-co-95 mol% 4HB) solution eliminated the formation of beads seen in solutions without the drug, at the same initial polymer solution concentration. In preliminary drug release studies, nanofiber mats consisting of large-diameter nanofibers with high drug loading released paclitaxel at a faster rate due to larger pore sizes. This was a consequence of the random packing of larger diameter nanofibers. However, the release pattern of nanofibers with low drug loading was much more consistent and controlled. Lastly, we have shown the potential applications of P(3HB-co-4HB) drug loaded nanofibers in the development of biocompatible drug eluting stents by directly coating a metal stent with a homogeneous layer of electrospun polymer.

References

Yoo HS, Kim TG, Park, TG. Surface-funtionalized electrospun nanofibers for tissue engineering and drug delivery. Adv Drug Deliv Rev 2009; 61: 1033-42. http://dx.doi.org/10.1016/j.addr.2009.07.007

Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine 2006; 1: 15-30. http://dx.doi.org/10.2147/nano.2006.1.1.15

Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 2007; 46: 5670-703. http://dx.doi.org/10.1002/anie.200604646

Liang D, Hsiao BS, Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 2007; 59: 1392-412. http://dx.doi.org/10.1016/j.addr.2007.04.021

Pillay V, Dott C, Choonara YE, et al. A review of the effect of processing variables on the fabrication of electrospun

nanofibers for drug delivery applications. J Nanomater 2013 Article ID 789289, 22 pages. http://dx.doi.org/10.1155/2013/789289

Joyyi L, Sridewi N, Abdullah AAA, Kasuya K, Sudesh K. Fabrication and degradation of electrospun polyhydroxyalkanoate film. J Sib Fed Univ Biol 2015; 8: 236-53. http://dx.doi.org/10.17516/1997-1389-2015-8-2-236-253

Brigham CJ, Sinskey AJ. Applications of polyhydroxyalkanoates in the medical industry. Int J Biotech Well Indus 2012; 1: 53-60. http://dx.doi.org/10.6000/1927-3037.2012.01.01.03

Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 2000; 25: 1503-55. http://dx.doi.org/10.1016/S0079-6700(00)00035-6

Thomson N, Summers D, Sivaniah E. Synthesis, properties and uses of bacterial storage lipid granules as natural occurring nanoparticles. Soft Matter 2010; 6: 4045-57. http://dx.doi.org/10.1039/b927559b

Bhubalan K, Lee WH, Sudesh K. Polyhydroxyalkanoate. In: AJ Domb, N Kumar, A. Ezra, John Wiley & Sons, Inc. Biodegradable polymers in clinical use and clinical development. Hoboken: New Jersey 2011; pp. 249-315.

Martin DP, Williams, SF. Medical application of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 2003; 16: 97-105. http://dx.doi.org/10.1016/S1369-703X(03)00040-8

Siew EL, Rajab NF, Annear BO, Sudesh K, Inayat-Hussain, SH. In vitro biocompatibility evaluation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer in fibroblast cells. J Biomed Mater Res 2007; 81A: 317-25. http://dx.doi.org/10.1002/jbm.a.31000

Siew EL, Rajab NF, Annear BO, Sudesh K, Inayat-Hussain SH. Mutagenesis and clastogenic characterization of post sterilized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer biosynthesized by Delftia acidovorans. J Biomed Mater Res A 2009; 91A: 786-94. http://dx.doi.org/10.1002/jbm.a.32290

Nelson T, Kaufman E, Kline J, Sokoloff L. The extraneural distribution of γ-hydroxybutyrate. J Neurochem 1981; 37: 1345-8. http://dx.doi.org/10.1111/j.1471-4159.1981.tb04689.x

Sendelbeck SL, Girdis GL. Disposition of a 14C-labeled bioerodible polyorthoester and its hydrolysis products, 4-hydroxybutyrate and cis, trans-1,4-bis(hydroxymethyl) cyclohexane, in rats. Drug Metab Dispos 1985; 13: 291-5.

Yu D, Zhu L, White K, Branford-White C. Electrospun nanofiber-based drug delivery systems. Health 2009; 1: 67-75. http://dx.doi.org/10.4236/health.2009.12012

Long HJ. Paclitaxel (Taxol): a novel anticancer chemo-therapeutic drug. Mayo Clin Proc 1994; 69: 341-5. http://dx.doi.org/10.1016/S0025-6196(12)62219-8

Cahan MA, Walter KA, Colven OM, Brem H. Cytotoxicity of taxol in vitro against human and rat malignant brain tumors. Cancer Chemother Pharmacol 1994; 33: 441-4. http://dx.doi.org/10.1007/BF00686276

Arbuck SG, Christian MC, Fisherman JS, et al. Clinical development of Taxol. J Natl Cancer Inst Monogr 1993; 15: 11-24.

Foa R, Norton L, Seidman AD. Taxol (paclitaxel) a novel micro-tubule agent with remarkable anti-neoplastic activity. Int J Clin Lab Res 1994; 24: 6-14. http://dx.doi.org/10.1007/BF02592403

Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N Engl J Med 1995; 332: 1004-14. http://dx.doi.org/10.1056/NEJM199504133321507

Singla AK, Garg A, Aggarwal D. Palitaxel and its formulations. Int J Pharm 2002; 235: 179-92. http://dx.doi.org/10.1016/S0378-5173(01)00986-3

Lee WH, Azizan MNM, Sudesh K. Effects of culture conditions on the composition of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Comamonas acidovorans. Polym Degrad Stab 2004; 84: 129-34. http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.003

Braunegg G, Sonnleitner B, Lafferty RM. A rapid gas chromatographic method for the determination of poly--hydroxybutyric acid in microbial biomass. Eur J Microbiol Biotechnol 1978; 6: 29-37. http://dx.doi.org/10.1007/BF00500854

Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010; 28: 325-47. http://dx.doi.org/10.1016/j.biotechadv.2010.01.004

Luo CJ, Nangrejo M, Edirisinghe MA. Novel method of selecting solvents for polymer electrospinning. Polymer 2010; 51: 1654-62. http://dx.doi.org/10.1016/j.polymer.2010.01.031

Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chain entanglement on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer 2005; 46: 3372-84. http://dx.doi.org/10.1016/j.polymer.2005.03.011

Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An introduction to electrospinning and nanofibers. Singapore: World Scientific; 2005

Tan SH, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005; 46: 6128-34. http://dx.doi.org/10.1016/j.polymer.2005.05.068

Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001; 42: 261-72. http://dx.doi.org/10.1016/S0032-3861(00)00250-0

Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996; 7: 216-23. http://dx.doi.org/10.1088/0957-4484/7/3/009

Demir MM, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer 2002; 43: 3303-9. http://dx.doi.org/10.1016/S0032-3861(02)00136-2

Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer 2005; 46: 5094-102. http://dx.doi.org/10.1016/j.polymer.2005.04.040

Zeng J, Xu X, Chen X, et al. Biodegradable electrospun fibers for drug delivery. J Control Release 2003; 92: 227-31. http://dx.doi.org/10.1016/S0168-3659(03)00372-9

Ch’ng DHE, Sudesh K. Densitometry based microassay for the determination of lipase depolymerizing activity on polyhydroxyalkanoate. AMB Express 2013; 3: 22. http://dx.doi.org/10.1186/2191-0855-3-22

Ch’ng DHE, Lee WH, Sudesh K. Biosynthesis and lipase-catalysed hydrolysis of 4-hydroxybutyrate-containing polyhydroxyalkanoates from Delftia acidovorans. Mal J Microbiol 2012; 8: 156-63.

Mukai K, Doi Y, Sema Y, Tomita K. Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases. Biotechnol Lett 1993; 15: 601-4. http://dx.doi.org/10.1007/BF00138548

Hsieh WC, Wada Y, Chang CP. Fermentation, biodegradation and tensile strength of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) synthesized by Delftia acidovorans. J Taiwan Inst Chem Eng 2009; 40: 143-7. http://dx.doi.org/10.1016/j.jtice.2008.11.004

Okuda T, Tominaga K, Kidoaki S. Time-programmed dual release formulation by multilayered drug-loaded nanober meshes. J Control Release 2009; 143: 258-64. http://dx.doi.org/10.1016/j.jconrel.2009.12.029

Cui W, Li X, Zhu X, Yu G, Zhou S, Weng J. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation. Biomacromolecules 2006; 7: 1623-9. http://dx.doi.org/10.1021/bm060057z

Xie Z, Buschle-Diller G. Electrospun poly(D,L-lactide) fibers for drug delivery: The influence of cosolvent and the mechanism of drug release. J Appl Polym Sci 2010; 115: 1-8. http://dx.doi.org/10.1002/app.31026

Kenawy ER, Bowlin GL, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 2002; 81: 57-64. http://dx.doi.org/10.1016/S0168-3659(02)00041-X

Buschle-Diller G, Cooper J, Xie Z, Wu Y, Waldrup J, Ren X. Release of antibiotics from electrospun bicomponent fibers. Cellulose 2007; 14: 553-62. http://dx.doi.org/10.1007/s10570-007-9183-3

Zamani M, Morshed M, Varshosaz J, Jannesari M. Controlled release of metronidazole benzoate from poly epsilon-caprolactone electrospun nanobers for periodontal diseases. Eur J Pharm Biopharm 2010; 75: 179-85. http://dx.doi.org/10.1016/j.ejpb.2010.02.002

Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Control Release 2005; 105: 43-51. http://dx.doi.org/10.1016/j.jconrel.2005.02.024

Goonoo N, Bhaw-Luximon A, Jhurry D. Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol 2014; 10: 2173-99. http://dx.doi.org/10.1166/jbn.2014.1885

Meng ZX, Zheng W, Li L, Zheng YF. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Mater Chem Phys 2011; 125: 606-11. http://dx.doi.org/10.1016/j.matchemphys.2010.10.010

Downloads

Published

2017-01-18

How to Cite

Lee, Y.-F., Sridewi, N., Ramanathan, S., & Sudesh, K. (2017). The Influence of Electrospinning Parameters and Drug Loading on Polyhydroxyalkanoate (PHA) Nanofibers for Drug Delivery. International Journal of Biotechnology for Wellness Industries, 4(4), 103–113. https://doi.org/10.6000/1927-3037.2015.04.04.1

Issue

Section

Articles